Implementing Uncertainty in a Logic Programming Framework

Trevor Martin,

Al Group, University of Bristol, UK (Senior Research Fellow, BT Intelligent Systems Lab) Trevor.Martin@bristol.ac.uk

 $\left\{ \bigotimes_{\text{BRISTOL}}^{\text{University of}} / 0.2, BT \left(\begin{array}{c} 0.2 \\ 0.8 \end{array} \right) \right\}$

How should we handle uncertainty?

- mathematician : probability
 - model (subjective) uncertainty by gambling
 - anyone who does not follow the laws of probability is guaranteed to make a loss (Dutch book)

3 out of 4 boxes contain an apple

Option 1

Play as many times as you like. The (opaque) boxes are shuffled. You pay £1 and choose a box. If the box contains an apple, you win £1-50 Option 2 Same but if the box contains an apple, you win £1-05

Problems with Propositions

how many of these boxes contain a bunch of grapes ?

- sorites paradox : take one grain from a heap of sand and you still have a heap of sand.
 One grain is not a heap; adding another grain is still not a heap
- similarly what is meant by
 - checkout time is 11:00
 - speed limit is 30mph

In between the black and white cases, there are shades of grey

Natural Language

- words mean what we agree that they mean
 - wicked, cool, bling, chav, rubbish
 - light snowfall, bright colour, rock music
 - what makes a White Christmas? "That one flake of snow will fall on Met office monitoring stations over the 24 hr period of the 25th of December" www.mybetting.co.uk/white-christmas-betting.htm
- communication is made more efficient by use of loose definitions
- over-precision is not user-friendly
 - should we adapt our thinking to the computer or
 - adapt the computer to us

drizzle = "uniform precipitation composed exclusively of fine drops with diameters of less than 0.02 inch (0.5 mm) very close together"

a few minutes = 2-10 minutes (www.daml.org)

U={1, 2, 3, 4, 5, 6}

- in mathematics we have precisely defined terms
 - a set has a characteristic function $\chi : U \rightarrow \{0, 1\}$
- in human language, most terms are defined by use
 - a fuzzy set has a characteristic function $\chi : U \rightarrow [0, 1]$
 - it indicates the degree to which an object has some property
 - more generally $\chi : U \rightarrow L$ where L is a lattice
 - X is fuzzy if an object can be very X, slightly X, etc
 - fuzzy can be related to probability via random sets / mass assignment

Mass Assignments

(cf random sets, basic probability assignment)

- voting model : interpret fuzzy set membership as the proportion of voters (possible worlds) who agree that a value satisfies a fuzzy label
 - small = {1/1, 2/0.7 3/0.3}
 - 30% accept {1, 2, 3} as *small*, 40% accept {1, 2}, 30% accept {1}
 - least prejudiced distribution 1:0.6, 2:0.3, 3:0.1
- MA references : Google ← baldwin AND "mass assignment"

Uncertain Logic Programming

- Many approaches typically using *numerical* uncertainty
 - implemented systems e.g. Fril, fuzzy Prolog, Fprolog, f-Prolog, Prolog-ELF, …
 - theoretical studies e.g. van Emden, Kifer & Subrahmanian, Vojtas, Lukasiewicz, Damasio & Pereira
- Support logic uses numerical uncertainty voting model luxuryCar(rolls-royce) everyone agrees luxuryCar(jaguar) : 0.9 9 out of 10 agree likes(John, Jill) : (0.7 0.8) 7/10 yes, 1/10 abstain, 2/10 no highMaintenanceCost(X) :- luxuryCar(X), oldCar(X) : 0.9 highMaintenanceCost(X) :- exRentalCar(X), highMileage(X) : (0.8 1)
- what about deduction ?

Support Logic rules

evidential logic uses weighted combination of features

consider basic rule (top) default conjunction is (interval) product (calculation of supports is more complex for general rule)

Basic Fril rule - examples

Pr(blond Bjorn) = 0.9 Pr(fairSkinned Bjorn) = 0.9x where $x \in [0.8, 0.95]$

Standard logic program with support calculated on proof path

Multiple proof paths

highMaintenanceCost(X) :- luxuryCar(X), oldCar(X) : 0.9 highMaintenanceCost(X) :- exRentalCar(X), highMileage(X) : (0.8 1)

Execution of logic programs

Support : replace each or-node

Fril Abstract Machine Code

```
p1:
set_mode inter
try_me_else fail
allocate 2
push_support ((.9 1)(0 .1)) <cond>
call q, 1, 2
put_var A1, Y2
deallocate
execute r, 1
q1:
set mode inter
try_me_else q2
get_const A1, a
push_support (.85 1) <conj>
proceed
q2 :
trust_me_else fail
push_support ((.6 .9)(.3 .5)) <cond>
execute s
```

((p A B)(q A)(r B)) : ((.9 1)(0 .1))

creates choicepoint, support frame saves environment, continuation fills support frame

puts variable 2 (B) in reg 1 reset continuation, discard env

((q a)) : (.85 1)
create choicepoint, support frame
unify a with argument 1
fills support frame
evaluate support stack
((q Z)(s Z)) : ((.6 .9)(.3 .5))

warren machine (Prolog) extended by support ops

Support operations

- conj overall support for rule body (conjunction) from individual goals (product) supp(q(A), r(B)) = conj(supp(q(A)), supp(r(B))
- cond support for rule head from rule body and rule (conditional) support supp(head) = cond(supp(rule)), supp(body))
- comb support for conclusion from multiple paths (intersection)

supp(conc) = comb(supp(path1)), supp(path2))

Calculation of support

etc

supp(p(1, 2)) = comb (cond(S1, conj (supp(q(1)), supp(r(2))),cond(S2, conj (supp(s(2, 2)), supp(t(2))))supp(q(1)) = comb (S3,cond(S5, conj (supp(t(1))))

Execution of support logic programs

Transformation of SLP \Rightarrow LP

p(A,B) if q(A), r(B) : S1 p(1, C) if s(2, C), t(C) : S2 q(1) : S3 q(2) : S4 q(Z) if t(Z) : S5 ...

 $p(cond(S1, conj(S_q, S_r)), A, B) \text{ if } q(S_q, A), r(S_r, B)$ p(cond(...), 1, C) if s(Ss, 2, C), t(St, C) q(S3, 1) q(S4, 2)q(cond(...), Z) if t(Z)

$$\begin{aligned} \text{replace} \\ Supp(head) &= cond\left(S_r, conj\left(comb(S_i^j)\right)\right) \\ \text{with} \\ Supp(head) &= comb\left(cond\left(S_r, conj(S_i^j)\right)\right) \\ &= comb(conj(S_1, S_2), S_3) \\ &= comb(conj(S_1, S_3), conj(S_2, S_3)) \end{aligned} \end{aligned}$$

. . .

Is it a real problem?

two examples

Cooking without butter - dairy-free spread

Wine example - conflicting definitions

<owl:Class rdf:ID="Wine">

<rdfs:subClassOf rdf:resource = "&food;PotableLiquid"/> <rdfs:label xml:lang="en">wine</rdfs:label> <rdfs:label xml:lang="fr">vin</rdfs:label>

</owl:Class>

- wine is a subclass of potable liquid

wine

- wine -> (madeFromGrape) -> wineGrape (at least one)
- vintage wine is made from wineGrapes harvested in a single year

• US regulations : a vintage wine is wine made from wineGrapes at least 95 % of which were harvested in a single year

Modelling with support logic

- first case can be expressed within existing frameworks combinedOnt:vintageWine(X) ← Fr: vintageWine(X)
 - a straightforward logic programming rule
- what about

Pr(combinedOnt : vintageWine | US: vintageWine) ∈ [0.9, 1] combinedOnt : vintageWine(X) ← US: vintageWine(X) : (0.9 1) (support logic program)

- not expressible in RuleML / SWRL / logic program

Fuzzy attribute values

- Support logic also allows uncertainty in attribute values
 - height(John, *tall*) height(Bill, 72) maintenanceCost(X, *high*) :- luxuryCar(X), age(X, *old*)
- interpretation single value, but not known precisely
 - e.g. contrast

. . .

- safe-speed on an open highway is *about-80mph*
- current-speed of car-1 is *about-80mph* safe-speed(open-highway, 60) : 0.1 safe-speed(open-highway, 80) : 1

safe-speed(open-highway, 90): 0.2

current-speed(car-1, {60/0.1 ... 80/1 ... 90/0.2}

how do we unify a query height(X, medium) with a clause head
 height(John, tall)

Semantic Unification

Same method

for crisp value

given fuzzy set

and vice-versa

e.g. Dice values

- small = {1/1, 2/0.7 3/0.3}
- mass assignment is {1, 2, 3}: 0.3, {1, 2}: 0.4 {1}: 0.3
- $about2 = \{1/0.4, 2/1, 3/0.4\}, MA = \{1\} : 0.6, \{1, 2, 3\} : 0.4$
- Pr (*about2* | *small*) ∈ [0.4, 0.82]
- point value can be calculated if a prior is known

	about2 small	{2} : 0.6	{1, 2, 3} : 0.4
This requires modifications to the logic programming unification method, and so is not easily embedded in a conventional framework	{1} : 0.3	F	Т
		0.3 × 0.6	0.3 × 0.4
	{1, 2} : 0.4	U	Т
		0.4 × 0.6	0.4 × 0.4
	{1, 2, 3} : 0.3	U	Т
		0.3 × 0.6	0.3 × 0.4

Summary - transformed support logic

- restricted form of rules and operators

 represent attribute uncertainty via predicates
- embed support as *argument* to predicates
- standard execution model (efficiency)
 evaluate support when query is completed
 - evaluate support when query is completed
- no conflict with "crisp" standards
- no conflict with logic program semantics
 - but rule/fact uncertainty is now implicit, not explicit
 - object level vs meta-level

Summary - the need for fuzziness

- Machine-based solutions must be understandable
 - humans use natural language machines cannot understand NL but can process it
 - engineering approach be consistent with (fuzzy) humans
 - soft methods are vital because most relations / categories / attributes / ... are not defined by unbreakable rules, data can be missing, inconsistent, unreliable, ...
- a useful semantic web needs to be fuzzy
 - meta-data comes from humans (subjective) or machines (cannot guarantee correctness)
- we expect multiple sources to be (slightly) inconsistent
 - logic says anything follows from inconsistency
 - most rules are not true all the time
 - humans manage, so should machines

Thank you for your attention

Questions Comments

acknowledgments : slides 9 and 10 adapted from originals by jim baldwin picture of Nicholas Cage (the Weatherman) taken from www.imdb.com/ The organisation of www.sainsburystoyou.com has changed recently but still includes non-dairy spread in a "dairy" category