
Implementing Uncertainty in a
Logic Programming Framework

Trevor Martin,
AI Group, University of Bristol, UK

(Senior Research Fellow, BT Intelligent Systems Lab)
Trevor.Martin@bristol.ac.uk

{ / 0.8 }/ 0.2 ,

How should we handle uncertainty?

• mathematician : probability
– model (subjective) uncertainty by gambling
– anyone who does not follow the laws of probability

is guaranteed to make a loss (Dutch book)

3 out of 4 boxes contain an apple Option 1
Play as many times as you like.
The (opaque) boxes are shuffled.
You pay £1 and choose a box.
If the box contains an apple, you
win £1-50
Option 2
Same but if the box contains an
apple, you win £1-05

Problems with Propositions

• sorites paradox : take one grain from a heap
of sand and you still have a heap of sand.
One grain is not a heap; adding another grain
is still not a heap

• similarly - what is meant by
– checkout time is 11:00
– speed limit is 30mph

how many of these boxes contain a bunch of grapes ?

noyes
maybe

In between the
black and white
cases, there are
shades of grey

Natural Language
• words mean what we agree that they mean

– wicked, cool, bling, chav, rubbish
– light snowfall, bright colour, rock music
– what makes a White Christmas? “That one flake of

snow will fall on Met office monitoring stations over
the 24 hr period of the 25th of December”

www.mybetting.co.uk/white-christmas-betting.htm

• communication is made more efficient by use
of loose definitions

• over-precision is not user-friendly
– should we adapt our thinking to the computer or
– adapt the computer to us

Fuzzy Sets

• in mathematics we have precisely defined terms
– a set has a characteristic function χ : U → {0, 1}

• in human language, most terms are defined by use
– a fuzzy set has a characteristic function χ : U → [0, 1]
– it indicates the degree to which an object has some

property
– more generally χ : U → L where L is a lattice
– X is fuzzy if an object can be very X, slightly X, etc
– fuzzy can be related to probability via random sets /

mass assignment

it’s raining

if it rains for a
few minutes,

the road will be
quite slippery

drizzle = “uniform precipitation composed
exclusively of fine drops with diameters of less
than 0.02 inch (0.5 mm) very close together”

(www.daml.org)
a few minutes = 2-10 minutes

016
005
014

0.303
0.712
101

χsmall(x)χeven(x)x
U={1, 2, 3, 4, 5, 6}

no, it’s
light

drizzle

(fuzzy ABS)

Mass Assignments

(cf random sets, basic probability assignment)
• voting model : interpret fuzzy set membership as the proportion of voters (possible

worlds) who agree that a value satisfies a fuzzy label
– small = {1/1, 2/0.7 3/0.3}
– 30% accept {1, 2, 3} as small, 40% accept {1, 2}, 30% accept {1}
– least prejudiced distribution 1 : 0.6, 2 : 0.3, 3 : 0.1

• MA references : Google ← baldwin AND “mass assignment”

mass assignment

fuzzy set (family of) distributions
(prior)

enables deduction, defuzzification,
partial matching (semantic unification)
e.g. Pr(x is small | x is medium)

least prejudiced distribution

distribution over power set

Uncertain Logic Programming

• Many approaches - typically using numerical uncertainty
– implemented systems e.g. Fril, fuzzy Prolog, Fprolog, f-Prolog, Prolog-

ELF, …
– theoretical studies e.g. van Emden, Kifer & Subrahmanian, Vojtas,

Lukasiewicz, Damasio & Pereira

• Support logic uses numerical uncertainty - voting model
luxuryCar(rolls-royce) everyone agrees
luxuryCar(jaguar) : 0.9 9 out of 10 agree
likes(John, Jill) : (0.7 0.8) 7/10 yes, 1/10 abstain, 2/10 no
highMaintenanceCost(X) :- luxuryCar(X), oldCar(X) : 0.9
highMaintenanceCost(X) :- exRentalCar(X), highMileage(X) : (0.8 1)

• what about deduction ?

Support Logic rules
• Probabilistically quantified rules

 A if B and C : S1 S2 interval containing pr(conclusion | ¬conditions)

((performance of company X is good in YEAR)
(turnover of company X in YEAR is HighTurnover)
(profit of company X in YEAR is TenToTwentyPC)) : ((0.8 1) (0 1))

A if B and C : S1
A if B and ¬C : S2
A if ¬B and C : S3
A if ¬B and ¬C : S4

evidential logic uses weighted combination of features

consider basic rule (top)
default conjunction is (interval) product
(calculation of supports is more complex for general rule)

conclusion conditions interval containing pr(conclusion | conditions)

General (extended) rule

Basic Fril rule - examples
((blond X) (swede X)) : (0.9 0.9)
((fairSkinned X) (blond X)) : (0.8 0.95)
((swede Bjorn))
((fairSkinned Bjorn)) : (0.72, 0.955)

((blond X) (swede X)) : (0.9 0.9)
((fairSkinned X) (blond X)) : ((0.8 0.95) (0 0.3))
((swede Bjorn)) : (0.9 1)

((fairSkinned Bjorn)) : (0.648 0.8915)

our belief that
Bjorn is a Swede

There are
between
80% and 95%
of blond
people who
are fair

Pr(blond Bjorn) = 0.9
Pr(fairSkinned Bjorn) = 0.9x where x ∈ [0.8, 0.95]

Standard logic program with support calculated on proof path

Multiple proof paths

Knowledge
Base

1 2

Proof Path 1
 gives

[x1, x2] for hMC(car1)

Proof Path 2
gives

[y1, y2] for hMC(car1)

Combine to give
[Max(x1, y1), Min(x2, y2)]

example
[x1, x2] = [0.3 0.9]
[y1, y2] = [0 0.5]
intersection
[z1, z2] = [0.3 0.5]
shafer-dempster
[z1, z2] = [0.18 0.53]]

highMaintenanceCost(X) :- luxuryCar(X), oldCar(X) : 0.9
highMaintenanceCost(X) :- exRentalCar(X), highMileage(X) : (0.8 1)

OR shafer-dempster
combination?

Execution of logic programs
p(A,B) if q(A), r(B)
p(1, C) if s(2, C), t(C)
q(1)
q(2)
q(Z) if t(Z) …

p(X,Y)

logic program = and/or tree

q(X), r(Y)

r(Y))q(X)

s(2,Y), t(Y)

s(2,Y)) t(Y))

etc

or

and and

depth search

support logic program
= logic program
+ calculation of support

breadth search
- all solutions at or nodes

Support : replace each or-node
p(A,B) if q(A), r(B)
p(1, C) if s(2, C), t(C)
q(1)
q(2)
q(Z) if t(Z)
t(2)
t(3) …

p(X,Y)

logic program = and/or tree

q(X), r(Y)

r(Y))

s(2,Y), t(Y)

etc

or

and and
q(X)

x=1 x=2 x=3 etc

q(X)

x=1 x=2 t(X)

x=2 x=3 etc

or

or

Fril Abstract Machine Code
p1:
set_mode inter ((p A B)(q A)(r B)) : ((.9 1)(0 .1))
try_me_else fail creates choicepoint, support frame
allocate 2 saves environment, continuation
push_support ((.9 1)(0 .1)) <cond> fills support frame
call q, 1, 2
put_var A1, Y2 puts variable 2 (B) in reg 1
deallocate reset continuation, discard env
execute r, 1
q1:
set_mode inter ((q a)) : (.85 1)
try_me_else q2 create choicepoint, support frame
get_const A1, a unify a with argument 1
push_support (.85 1) <conj> fills support frame
proceed evaluate support stack
q2 : ((q Z)(s Z)) : ((.6 .9)(.3 .5))
trust_me_else fail
push_support ((.6 .9)(.3 .5)) <cond>
execute s

warren machine (Prolog) extended by support ops

Support operations
• conj - overall support for rule body (conjunction) from

individual goals (product)
supp(q(A), r(B)) = conj(supp(q(A)), supp(r(B))

• cond - support for rule head from rule body and rule
(conditional) support
supp(head) = cond(supp(rule)), supp(body))

• comb - support for conclusion from multiple paths
(intersection)

supp(conc) = comb(supp(path1)), supp(path2))

Calculation of support

p(X,Y) p(A,B) if q(A), r(B) : S1
p(1, C) if s(2, C), t(C) : S2
q(1) : S3
q(2) : S4
q(Z) if t(Z) : S5 …

q(X), r(Y)

r(Y)q(X)

s(2,Y), t(Y)

s(2,Y) t(Y)

etc

or

and and

supp(p(1, 2)) = comb (cond(S1, conj (supp(q(1)), supp(r(2))),
 cond(S2, conj (supp(s(2, 2)), supp(t(2))))

supp(q(1)) = comb (S3,
 cond(S5, conj (supp(t(1))))

S1 S2

S3
S4

S5

Execution of support logic programs

p(X,Y)

logic program = and/or tree
p(A,B) if q(A), r(B) : S1
p(1, C) if s(2, C), t(C) : S2
q(1) : S3
q(2) : S4
q(Z) if t(Z) : S5 …

q(X), r(Y)

r(Y))q(X)

s(2,Y), t(Y)

s(2,Y)) t(Y))

etc

or

and and
support logic program
= logic program
+ calculation of support

depth search exhaustive depth search
(+ support calculation)

Transformation of SLP ⇒ LP

p(A,B) if q(A), r(B) : S1
p(1, C) if s(2, C), t(C) : S2
q(1) : S3
q(2) : S4
q(Z) if t(Z) : S5 …

p(cond(S1, conj(Sq,Sr)), A, B) if q(Sq,A), r(Sr,B)
p(cond(…), 1, C) if s(Ss, 2, C), t(St, C)
q(S3, 1)
q(S4, 2)
q(cond(…), Z) if t(Z)
 …

because (e.g)

!

conj comb S
1
,S
2(),S3()

= comb conj S
1
,S
3(),conj S2 ,S3()()

!

Supp head() = cond Sr, conj
i=1…n

comb
j=1…ki

Si
j()"

$ %

&
'

"

$

%

&
'

replace

!

Supp head() = comb cond Sr, conj
i=1…n
j=1…ki

Si
j()

"

$
$

%

&

'
'

"

$
$

%

&

'
'

with

Is it a real problem?

two examples

Cooking without butter - dairy-free spread

Bakery
Beers, Wines, Spirits
Beverages, Hot Drinks
Breakfast Cereals
Clothing
Confectionery, Biscuits,
Cakes
Cooking/Baking Ingredients
Crisps, Nuts, Snacks
Dairy
Delicatessen
Easter Confectionery
…
Pickles, Preserves, Oils, Spreads
… www.sainsburystoyou.com

No luck …

Animal and Vegetable Fats
Artificial Sweeteners
Colouring and Decoration
Custard and Cornflour
Dried Fruit
Flour - Other
…

Cadbury's Mini Eggs Nest, 190g
Lard 250g

Cheese - American
Cheese - Canadian
…
Cheese - Snacking
…
Spreads (Butter, Margarine,
etc.)
…
 Yogurt - Twin Pots

Dairy Free Spread 500g

dairy-free
classified
as dairy.
Not logic!
But it
works.

Wine example - conflicting definitions

wine
– wine is a subclass of potable liquid
– wine -> (madeFromGrape) -> wineGrape (at least one)
– vintage wine is made from wineGrapes harvested in a single year

• US regulations : a vintage wine is wine made from wineGrapes at least 95 %
of which were harvested in a single year

Single ontologies may be crisp.
Combined (multiple) ontologies are very unlikely to be crisp

<owl:Class rdf:ID="Wine">
 <rdfs:subClassOf rdf:resource =

"&food;PotableLiquid"/>
 <rdfs:label xml:lang="en">wine</rdfs:label>
 <rdfs:label xml:lang="fr">vin</rdfs:label>

 … … …
</owl:Class>

French supplier
using
French ontology

US supplier
using
US ontology

classed as
vintage wine
in UK?

Modelling with support logic
• first case can be expressed within existing frameworks

combinedOnt:vintageWine(X) ← Fr: vintageWine(X)
– a straightforward logic programming rule

• what about
Pr(combinedOnt : vintageWine | US: vintageWine) ∈ [0.9, 1]
combinedOnt : vintageWine(X) ← US: vintageWine(X) : (0.9 1)
(support logic program)

– not expressible in RuleML / SWRL / logic program

Fuzzy attribute values
• Support logic also allows uncertainty in attribute values

height(John, tall)
height(Bill, 72)
maintenanceCost(X, high) :- luxuryCar(X), age(X, old)

• interpretation - single value, but not known precisely
– e.g. contrast

• safe-speed on an open highway is about-80mph
• current-speed of car-1 is about-80mph
safe-speed(open-highway, 60) : 0.1
safe-speed(open-highway, 80) : 1
…
safe-speed(open-highway, 90) : 0.2

current-speed(car-1, {60/0.1 … 80/1 … 90/0.2}

• how do we unify a query height(X, medium)
with a clause head height(John, tall)

height(X, medium) IF height(X, tall) : Pr(medium | tall)

60 70 80

µtall

Semantic Unification
e.g. Dice values
– small = {1/1, 2/0.7 3/0.3}
– mass assignment is {1, 2, 3} : 0.3, {1, 2} : 0.4 {1} : 0.3

– about2 = {1/0.4, 2/1 3/0.4} , MA = {1} : 0.6, {1, 2, 3} : 0.4

– Pr (about2 | small) ∈ [0.4, 0.82]
– point value can be calculated if a prior is known

T
0.3 × 0.4

U
0.3 × 0.6

{1, 2, 3} : 0.3

T
0.4 × 0.4

U
0.4 × 0.6

{1, 2} : 0.4

T
0.3 × 0.4

F
0.3 × 0.6

{1} : 0.3

{1, 2, 3} : 0.4{2} : 0.6about2 | small

This requires modifications
to the logic programming
unification method, and so is
not easily embedded in a
conventional framework

Same method
for crisp value
given fuzzy set
and vice-versa

Summary - transformed
support logic

• restricted form of rules and operators
– represent attribute uncertainty via predicates

• embed support as argument to predicates

• standard execution model (efficiency)
– evaluate support when query is completed

• no conflict with “crisp” standards
• no conflict with logic program semantics

– but rule/fact uncertainty is now implicit, not explicit
– object level vs meta-level

Summary - the need for fuzziness
• Machine-based solutions must be understandable

– humans use natural language - machines cannot understand NL but
can process it

– engineering approach - be consistent with (fuzzy) humans
– soft methods are vital because most relations / categories /

attributes / … are not defined by unbreakable rules, data can be
missing, inconsistent, unreliable, …

• a useful semantic web needs to be fuzzy
– meta-data comes from

humans (subjective) or
machines (cannot guarantee correctness)

• we expect multiple sources to be (slightly) inconsistent
– logic says anything follows from inconsistency
– most rules are not true all the time
– humans manage, so should machines

Thank you for your attention

acknowledgments : slides 9 and 10 adapted from originals by jim baldwin
picture of Nicholas Cage (the Weatherman) taken from www.imdb.com/
The organisation of www.sainsburystoyou.com has changed recently but still includes non-dairy spread in a
“dairy” category

