

Using the Dempster-Shafer theory of evidence to resolve ABox inconsistencies

Andriy Nikolov Victoria Uren Enrico Motta Anne de Roeck

The Open University

Outline

- Motivation
- Algorithm description
- Limitations and future work

Knowledge fusion scenario

Fusion problems

- Ambiguity
 - Object identification (instance-level ontology matching)

Inconsistency

- Detecting and localizing conflicts
- Processing conflicts (ranking the alternatives)
- Use uncertainty
- Sources of uncertainty
 - Extraction errors
 - Obsolete data
 - Unreliable sources

conference1	rdfs:label	ISWC2007
conference2	rdfs:label	ISWC2007+ASWC2007
conference3	rdfs:label	ISC2007

conference1	rdfs:label	ISWC2007
	rdfs:label	ISWC2007+ASWC2007
conference3	rdfs:label	ISC2007

conference1	rdfs:label	ISWC2007	0.8
	rdfs:label	ISWC2007+ASWC2007	0.6
conference3	rdfs:label	ISC2007	

Motivation

- Fuzzy logic
 - Different interpretation:
 - degree of vagueness
 - vs degree of confidence
- Probability intervals [de Campos et al 2004]
 - Using *max* and *min* combination operators
 - Hard to represent cumulative evidence
- Bayesian probability
 - Appropriate but has disadvantages...

Dempster-Shafer theory of evidence

The Open University

Outline

- · Motivation
- Algorithm description
 - Conflict detection
 - Building belief networks
 - Belief propagation
- Limitations and future work

Conflict detection

 Goal: select minimal conflict sets (statements that together produce an inconsistency)

The Open University

Conflict detection

- Identifying the cause of inconsistency
 - Using an OWL reasoner with diagnostic capabilities
 - initially Pellet
 - moving to RaDoN
- Find all minimal conflict sets
 - Use Reiter's hitting set algorithm [Reiter 1987]

Belief networks

- Valuation networks [Shenoy and Shafer 1990]
 - {a, $\{\Omega_{\Xi}\}_{X2a}$, $\{i_1, \dots, i_n\}, +, -\}$ undirected graph
 - ^a : variables ABox statements
 - $\{\Omega_{\Xi}\}_{X2^{a}}$: variable states $\{true; false\}$
 - $\{i_1, \dots, i_n\}$: belief potentials
 - + : marginalization operator
 - - : combination operator Dempster's rule

Belief networks (cont)

- Network nodes OWL axioms
 - -Variable nodes
 - ABox statements (I2X, R(I₁, I₂))
 - One variable the statement itself
 - -Valuation nodes
 - TBox axioms (XtY)
 - Mass distribution between several variables (I2X, I2Y, I2XtY)

Belief networks (cont)

- Belief network construction
 - Using translation rules
 - Rule antecedents:
 - Existence of specific OWL axioms (one rule per OWL construct)
 - Existence of network nodes
 - Example rule:
 - Explicit ABox statements: IF I2X THEN CREATE N₁(I2X)
 - TBox inferencing:

IF Trans(R) AND EXIST $N_1(R(I_1, I_2))$ AND EXIST $N_2(R(I_2, I_3))$ THEN CREATE $N_3(Trans(R))$ AND CREATE $N_4(R(I_1, I_3))$

Example ontology

- "Somebody is a reliable applicant if (s)he has a UK citizenship and has never been bankrupt before"
- TBox
 - RiskyApplicantvLoanApplicantu:ReliableApplicant
 - ReliableApplicant'LoanApplicantu 9wasBankrupt.Falseu 9hasCitizenship.UK
 - >v·1wasBankrupt
- ABox
 - Ind12RiskyApplicant Sup = 0.7
 - hasCitizenship(Ind1, UK)
 - wasBankrupt(Ind1, False)
 - wasBankrupt(Ind1, True)

Sup = 0.4Sup = 0.6

Sup = 0.5

Example ontology

- Conflict set 1
 - RiskyApplicantvLoanApplicantu:ReliableApplicant
 - ReliableApplicant'LoanApplicantu
 9wasBankrupt.Falseu
 9hasCitizenship.UK
 - Ind12RiskyApplicant Sup = 0.7
 - hasCitizenship(Ind1, UK) Sup = 0.4
 - wasBankrupt(Ind1, False) Sup = 0.6
- Conflict set 2
 - >v·1wasBankrupt
 - wasBankrupt(Ind1, False) Sup = 0.6
 - wasBankrupt(Ind1, True) Sup = 0.5

Example network

- Exp1=9wasBankrupt.Falseu9hasCitizenship.UK
- Exp2=9hasCitizenship.UK
- Exp3=9wasBankrupt.False

Assigning mass distributions

- Variable nodes
 - Direct assignment of masses to explicit statements
- Valuation nodes
 - crisp logic TBox:
 - $m(\{\text{possible states}\}) = 1$
- Example
 - Node: XtY
 - Variables: I2X, I2Y, I2XtY
 - Distribution:

 $m({0;0;0}, {0;1;1}, {1;0;1}, {1;1;1})=1$

Belief propagation

- Axioms for valuation networks [Shenoy and Shafer 1990]
- Marginalization $m^{+}C(X) = \sum_{Y^{+}C=X} m(Y)$
- Combination (Dempster's rule) $m_1-m_2(X) = (\sum_{X_1 \cup X_2 = X} m_1(X_1)m_2(X_2))/(1-\sum_{X_1 \cup X_2 = \mathbb{R}} m_1(X_1)m_2(X_2))$

Propagation example

Summary

- Translation
 - From: minimum inconsistent OWL-DL subontology
 - -To: valuation network
- Dempster-Shafer theory
 - Representing ignorance
 - Switching to Bayesian probabilities (support only) when needed

Assumptions

- Valuation network has to be a tree
- Elimination of loops
 - Replace a loop with a single node containing joint distribution

Limitations

- Only applicable to ABox conflicts [Pearl 1990]
- Does not consider identity uncertainty

paper1	hasTitle	AquaLog: An Ontology portable Question Answering Interface for the Semantic Web
paper1	hasTitle	AquaLog: An ontology-driven Question Answering System to interface the Semantic Web
paper1	owl:sameAs	paper2

The Open	University
----------	------------

Model extension

- The belief propagation model has to be extended
 - Extracted statements uncertainty from the extraction methods
 - Auxiliary statements uncertainty from object identification methods

Future Work

- Conducting experiments
 - No project data available (yet...)
 - Scientific publications dataset
 - Geographic data extracted using GATE
- Comparing with Bayesian approach

 Additional expressivity vs
 computational complexity

OWLEDGE MEDIA

Questions?

Thanks for your attention

Representing ignorance (example)

- Complementary representation
 - Extraction uncertainty
 - Reliability of sources
- Assigning conditional probabilities
 - P(document X does not support the statement S| statement S is correct) = ?