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Motivation

Uncertainty management is required not only in the process of
following practices guidelines, but also in an earlier phase of
selecting which practice guidelines might be applicable to a
given patient. For this type of application, the ability to deal
with uncertain data and quantify the uncertainty in order to
perform inference on missing value is critical.

Most guidelines are designed in such way that a clinician
should not proceed unless there is no uncertainty about any
data item. This expectation is unrealistic.

Three sources of uncertain data have been identified: 1.data
stemming from an unreliable sources; 2.data not obtainable;
and 3.data not yet collected. [L. Ohno-Machado 2000]
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Motivation

The guideline should be able to proceed as long
as principled inference could be made about the
required data items.

For example, a guideline that requires that risk factors
for heart disease be assessed, including risk of diabetes,
may need to proceed even if the information on this item
IS uncertain.

A machine readable representation of
uncertainty has to be filled the needs of the
model that will be applied to perform principled
Inference.
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Framework

User(Medical Student, p Bayesian Network
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Representation of Uncertainty
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Encoding Uncertainty into a CPG
Ontology

Patient 21 years Check for
or older Aspirin therapy

© Context Activity
@ Decision Activity

Action Activity

0. any aspirin
Indicating
risk factors?

Mone:
age=40 years?

Yas:
check for ASA
contraindications

No ASA
contraindications;
recommend ASA

Clinical practice guideline of aspirin therapy for diabetic patients (ASA means
aspirin therapy)
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Three Kinds of Activities in CPGs

Context activity

Each activity graph segment within a guideline begins with a
context activity node that serves as a control point in guideline
execution by specifying the clinical context for that segment.

Decision activity

A decision activity node in the SAGE guideline model
represents clinical decision logic by listing alternatives
(typically subsequent action activity nodes), and specifying the
criteria that need to be met to reach those nodes.

Action activity

An action activity node encapsulates a set of work items that must be
performed by either a computer system or persons.

In CPGs, activities may include internal conditions that restrict the
Ir execution.
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Classes in the CPG ontology
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A CPG ontology with Uncertainty
Features

Definition 1. (CPG Ontology) CPG Ontology O = {C. 1, Ps,cinst}, with an
activity class set C, an activity instance set [, a property set Ps, and an activity
class instantiation function cinst : ' — 2L,

Definition 2. (Properties for uncertainty representation) Property Set Ps =
{cause, hasCondition, hasState, 1sObserved, hasPriorProValue, hasCondiProValue},

has a property function cause : I — I, a property function hasCondition : [ —
I, a property function hasState : I — Boolean, a property function isObserved:
[ — Boolean, a property function hasPriorProValue: [ — Float, and a prop-
erty function hasCondiProValue: I — Float.

arin
aaaaaaaa

Seoul Mational Universtiy



A Fragment of CPG Ontology

{Context rdf:ID="Patient_21_yo_or_older">
<hasPriorProValue

rdf :datatype="http://www.w3.org/2001/XMLSchenattfloat"

>0.5</hagPriorProValue>

<hasState

rdf :datatype="http://www.w3.org/2001/XMLSchema#boolean"

>true</hasState>

<cause rdf:resource="#Check_for_Aspirin_therapy"/>
</Context>
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Construction of CPTs in BN

We apply the max entropy assumption to learn the parameters.

(a) (o)
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Construction of CPTs in BN

A canses the set of activities { By, By, .., By, | simultaneously, the conditional
probability P(Bi|4) = 1.0,(i = 1,...,n) (Fig, 4(a)); when an activity A causes
one of the activities By, By,.., By, the conditional probability P(B;A) =
L0/m,(i = 1,..,n) (Fig. 4(b)); when a qet Df aftimitieq Ay Ay, A canse
activity B tmgether then P BA;, 4y,.., A,) = L0 (Fig, 4{c ))'when one of the
activities {Ay, Ay,.., Ay | can canse actm hen PB4y, 4y,.. Ay =00

Fig. 4(d))

nnnnnnnnn
aaaaaaaa

Seoul Mational Universtiy



Algorithm of Bayesian Network Inference

Variable elimination algorithm

P(X) = [[(P(Xilpa(x).
P(Xqy, E) _ 2X\(X, Xs} PX)

PGB == = Toxx, PX)
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Algorithm of Bayesian Network Inference

Variable elimination algorithm [F. G. Cozman 2000]:

1. Generate an ordering for the N requisite, non-observed, non-query variables.
2. Place all network densities in a pool of densities.
3. For i from 1 to N:
(a) Create a data structure B;, called a bucket, containing: the variable,called
the bucket variable; all densities that contain the bucket variable, called the
bucket densities:
(b) Multiply the densities in B;. Store the resulting unnormalized density in
B;: the density is called B;’s cluster.
(¢) Sum out X, from B;’s cluster. Store the resulting unnormalized density
in B;’s; the density is called B;’s separator.
(d) Place the bucket separator in the density pool.

4. At the end of the process,collect the densities that contain the query variables

in a bucket B,. Multiply the densities in B, together and normalize the
result.
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A Scenario Validation

Scenario: a user (medical student, nurse or physician
etc. ) Is trying to apply aspirin therapy for a diabetic
patient using the diabetes CPG. When he/she tries to
check the aspirin risk factors, he/she can get a few
observed evidence, such as observations of
hypertensive disorder, tobacco user finding,
hyperlipidemia, and myocardial infarction. In this case,
the user wants to evaluate target activities that he is
concerned about in this CPG. In this way, he hopes the
results can help him understand the effect of the
observed evidence on the target activities during the
whole clinical process.
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An ontology based Bayesian network of
A aspirin therapy for diabetic patients
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A Scenario Validation

P, ) LXK X, P(X)

TR

where X, ={ "No ASA contraindications; recommend ASA"}, and E={ “presence
of problem hypertensive disorder” = false, presence of problem myocardial in-
arction” = false, “presence of tobacco user finding” = false. “presence of
roblem hyperlipidemia”= false }.
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A Scenario Validation

P(X,.E)
P(E)
where X, =+ “presence of problem coagulation factor deficiency syndrome” | and

' is the same as above case.

P(X,|E) = = 0.6425
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Conclusion

In this paper, we contribute to present an ontology based
BN approach to represent the uncertainty in CPGs.

With this uncertain representation in ontology, computers
can.
(1) calculate the uncertain degree of target activities in CPGs;

(2) remind users the missing important data or event items, which
should be observed in the clinical process;

(3) simulate the clinical process under the uncertain situation,
which can be applied to the e-learning systems in medical schools.
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Future Work

We will develop a more sophisticated
learning algorithm based on experts
opinions to construct the CPTs of BN.

We will carry out a more comprehensive
experiment to evaluate our approach.

We will combine our approach with a real
CIS (Clinical Information System)
environment and apply uncertain clinical
data to our application.
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Question?

Thank you
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