Inference in Probabilistic Ontologies with Attributive Concept Descriptions and Nominals – URSW 2008 –

> Rodrigo B. Polastro - Fabio G. Cozman rodrigopolastro@usp.br - fgcozman@usp.br

Decision Making Lab, Escola Politécnica, Univ. São Paulo, Brazil

Decision Making Lab

- Universidade de São Paulo \rightarrow Engineering School
- Interest: representation of **uncertainty** in decision making.

・ロト ・ 四ト ・ ヨト ・ ヨ

- $P(A) \ge 0$
- **2** P(S) = 1

3
$$P(\bigcup_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty}P(A_i)$$
 [if $A_i \cap A_j = 0$]

4 Conditional probability: if P(B) > 0, $P(A|B) = \frac{P(A,B)}{P(B)}$

A Bayesian network encodes, using a directed acyclic graph,

 $P(X_1,\ldots,X_n)$.

- Each node represents a random variable *X_i*.
 - Parents of X_i : pa (X_i) .
- Semantics (Markov condition):

$$p(X_1,\ldots,X_n)=\prod_i p(X_i|\operatorname{pa}(X_i)).$$

イロト 不得 とうほう イヨン

э

 Description logics offer attractive trade-offs between expressivity and complexity.

Now used in ontologies, semantic web.

Our goal:

- Brazilian 🗆 SouthAmerican,
- $P(\text{FootballFan} | \text{Brazilian}) \geq 0.85.$
- Brazilian(Tweety)).
- P(BaseballFan(Tweety))?

• There are many!

No independence:

Heinsohn 94, Jaeger 94, Sebastiani 94, Dürig and Studer 2005, Lukasiewicz 2002.

Independence:

Koller et al 97, Yelland 99, Staker 2002, Ding e Peng 2004, Costa e Laskey 2005, Nottelmann 2006

A Simple Description Logics (ALC)

- Individuals, concepts, roles.
- Conjunction (C □ D), disjunction (C □ D), negation (¬C), existential restriction (∃r.C), value restriction (∀r.C).
- Terminologies: $C \sqsubseteq D$ and $C \equiv D$.

(日)

 Assertions (Abox): Fruit(appleFromJohn), buyFrom(houseBob, John).

- Consider *ALC*.
- Add probabilistic inclusions P(C|D), where C is concept name.
 - Interpret as $\forall x : P(C(x)|D(x)) = \alpha$.
- Add probabilistic assessment $P(r) = \alpha$ for roles.
 - Interpret as $\forall x, y : P(r(x, y)) = \alpha$.
- Require acyclicity (common assumption).
- Assume Markov condition on terminology (independence!).

Consider a terminology T_2 with concepts A, B, C, D, where:

- $P(A) = \alpha_1$,
- $B \sqsubseteq A$,
- $P(B|A) = \alpha_2$,
- $D \equiv \forall r.A$,
- $C \equiv B \sqcup \exists r.D,$
- and $P(r) = \alpha_3$.

Consider the same terminology \mathcal{T}_2 , and a domain $\{a, b\}$.

• Previous example, with inference $P(C(a_0))$ for domain a_0, \ldots, a_{n-1} , for several *n*.

n	1	2	3	5	9	10	20	50
Loopy: $P(C(a_0))$	0.5175	0.5383	0.5291	0.4885	0.4296	0.4223	0.4049	0.4050
Exact: $P(C(a_0))$	0.4350	0.4061	0.4050	0.4050	0.4050	—	—	-

• Exact inferences with Samlam package at reasoning.cs.ucla.edu/samiam.

- Same problem, but $P(r) \in [0, 1]$.
- Inference: $P(C(a_0))$ for several n.
- inference with a version of loopy propagation that handles imprecision in probability values (L2U).

n	1	3	5	10	20
L2U: $P(C(a_0))$	[0.405000	[0.405000	[0.405000	[0.405000	[0.405000]
	0.404500	0.400785	0.403030	0.405000	0.405000

Another Test - Kangaroo ontology

Inferences P(Parent(0)|Human(1)) for domain size *n*.

n	2	5	10	20	30	40	50
L2U	0.2232	0.3536	0.4630	0.5268	0.5377	0.5396	0.5399

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

- Extensively used in real ontologies to make assertions over individuals or to define a concept with them.
- One-of: WineFlavor \equiv {delicate, moderate, strong}.
- hasValue: ∃hasColor.{red,white}
- Usually add considerable complexity. Nominals are difficult to handle even in standard description logics.

We wish to attach sensible semantics to sentences such as

 $P(\mathsf{Merlot}(\mathsf{a})|\exists\mathsf{Color}.\{\mathsf{red}\}) = \alpha,$

We allow nominals only as domains of roles in restrictions $r.\{a\}$

We do not allow constructs such as WineFlavor \equiv {delicate, moderate, strong}.

CRALC and Nominals

The construct $r.\{a\}$ is interpreted directly either as:

in existential restrictions: $\exists x : r(x,y) \land (y = a),$

in universal restrictions: $\forall x : r(x,y) \rightarrow (y = a).$

Example

 \exists hasColor.{red} is interpreted as:

$$x \in D$$
: hasColor $(x, y) \land (y = \text{red}),$

where \mathcal{D} is the domain with the elements being described and y ranges over all the nominals that "are" colors.

- Wine ontology relies extensively in use of nominals.
- Network generated from Wine ontology in CRALC with a domain size 1:

Example 1:

The probability of a wine to be Merlot given it has medium body, red color, moderate flavor, dry sugar and is made from merlot grape:

 $P(\mathsf{Merlot}(a) \mid evidences_I(a)) = 1.0$

Example 2:

The probability of a wine to be Merlot given it has medium body, red color, moderate flavor and dry sugar:

```
P(\mathsf{Merlot}(b) \mid evidences_2(b)) = 0.5
```

Example 3:

The probability of a wine to be Merlot given it has sweet sugar and is made from merlot grape:

$$P(\mathsf{Merlot}(c) \mid evidences_3(c)) = 0.0$$

Note that in the case of the Wine ontology the Markov condition let us break the network in independent smaller networks of domain size 1.

• Thus inference is independent of the size of the domain!

There are cases where this split is not possible, but we have developed a *first-order* loopy propagation algorithm to deal with them.

- Added nominals (in a limited setting) to a simple description logics keeping it viable.
- Some next steps that seems easy to take towards SHOIN logic:
 - inverse roles;
 - cardinality.
- Future work: extend the first order loopy propagation to deal with the nominals.

• Hope to gradually close the remaining gap and a complete probabilistic version of OWL in future work.