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Abstract. Most languages for the Semantic Web have their logical basis in 
some fragment of first-order logic. Thus, integrating first-order logic with 
probability is fundamental for representing and reasoning with uncertainty in 
the semantic web. Defining semantics for probability logics presents a 
dilemma: a logic that assigns a real-valued probability to any first-order 
sentence cannot be axiomatized and lacks a complete proof theory. This paper 
develops a first-order axiomatic theory of probability in which probability is 
formalized as a function mapping Gödel numbers to elements of a real closed 
field. The resulting logic is fully first-order and recursively axiomatizable, and 
therefore has a complete proof theory. This gives rise to a plausible reasoning 
logic with a number of desirable properties: the logic can represent arbitrarily 
fine-grained degrees of plausibility intermediate between proof and disproof; all 
mathematical and logical assumptions can be explicitly represented as finite 
computational structures accessible to automated reasoners; contradictions can 
be discovered in finite time; and the logic supports learning from observation.  
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1   Introduction 

Logic-based languages have long been recognized as an effective means to represent 
information clearly, unambiguously, and in a manner that facilitates processing by 
machines. By far the most common logical basis for Semantic Web languages is 
classical first-order logic (FOL). This is no accident: its clear syntax, well-understood 
semantics, and complete proof theory make FOL a natural choice for computational 
knowledge representation and reasoning. However, FOL lacks a fundamental 
capability essential for semantically aware systems. As Jeffreys [1] put it, “Traditional 
or deductive logic admits only three attitudes to any proposition: definite proof, 
disproof, or blank ignorance.” An intelligent reasoner must do more: it must assess 
the plausibility of uncertain hypotheses, make reasonable choices when the outcome 
is uncertain, and use observations to improve its representation of the world.  

Probability is the unique plausible reasoning calculus that satisfies certain 
intuitively satisfying axioms of coherent reasoning (e.g., [2]).  For this reason, 
probability has achieved a privileged status for plausible reasoning akin to FOL’s 
privileged status with respect to logical reasoning. The past few decades have given 
rise to increasingly expressive probability-based languages, as well as a host of 



restricted languages designed for scalability. There is increasing interest in probability 
for semantic web applications [3]. 

It is often taken for granted that a new kind of logic is needed to capture essential 
aspects of plausible reasoning: “Ordinary logic seems to be inadequate by itself to 
cope with problems involving beliefs. In addition a theory of probability is required” 
[4]. Because of their built-in machinery for reasoning about functions, higher-order 
logic has been proposed as a natural logical basis for combining probability and logic 
[5].  On the other hand, its complete proof theory makes first-order logic attractive as 
a computational logic. Moreover, it is attractive to use the same logic to reason both 
about the domain itself and about the plausibility of statements about the domain.  
The question thus arises of whether an adequate formalization of probability is 
possible within first-order logic itself.  

This paper formalizes, within standard first-order logic, a probabilistic logic pow-
erful enough to express uncertainty about arbitrary first-order sentences.  By formal-
izing probability as an axiomatic first-order theory, probabilities can be associated 
coherently with arbitrary first-order sentences, with no modification of traditional 
first-order semantics. To stay within axiomatic first-order logic, probabilities are 
defined not as real numbers, but as elements of a real closed field. An axiom schema 
is added to the standard axioms of the probability calculus to give “logical teeth” to 
the idea that probability zero events do not happen. The semantics proposed here 
connects naturally to algorithmic notions of randomness as proposed by Kolmogorov 
and Martin-Löf [6], [7], as well as to Dawid’s [8] calibration criterion.  

2   First-Order Probability 

We begin with a first-order language L used to make assertions about a domain. L 
includes the usual logical symbols (variables, logical connectives, universal and 
existential quantifiers), together with a set of domain-specific predicate, function and 
constant symbols. Without loss of generality, L is taken to be a traditional, untyped 
first-order language.1 To operationalize the requirement that assertions be expressible 
as a finite computational structure, a knowledge base (KB) is taken to be an axiomatic 
theory of L. That is, a KB contains a consistent, recursive set A of sentences of L. 
The logical consequences of these axioms comprise a recursively enumerable set TA = 
Cn(A), called the theory of A. Gödel’s completeness theorem implies that TA is equal 
to the set {σ : A ⊢ σ} of sentences provable from A. 

In general, a KB may be incomplete – it need not imply a definite truth-value for 
every sentence. In fact, a sufficiently powerful theory is necessarily incomplete. It is 
useful for a reasoner to grade the plausibility of propositions it can neither prove nor 
disprove. Probability is a natural candidate for this purpose.  

It seems reasonable to define probability as a function mapping each sentence to a 
real number between zero and 1, in a manner that satisfies the standard identities of 
probability theory, and so that sentences provable (disprovable) from A are assigned 

                                                           
1 It is well known that a typed first-order logic can be re-expressed via a syntactic 

transformation as an untyped logic (cf., [7]). 



probability 1 (0). This approach, natural as it seems, runs into difficulty. The first 
roadblock is that in standard first-order logic, arguments of functions must be ele-
ments of the domain, not sentences or propositions. The second roadblock is that the 
theory of the real numbers cannot be fully characterized as an axiomatic first-order 
theory. Several authors have shown that formalizing probabilities as a real numbers in 
the unit interval results in a theory that cannot be axiomatized, and that does not admit 
a complete proof theory (cf., [10], [11]). On the other hand, by abandoning the re-
quirement that probabilities be real-valued, Bacchus [12] developed axiomatic 
probability logics that have a complete proof theory. 

Given the mathematical impossibility of both an axiomatic first-order theory and a 
function mapping sentences to real numbers, which should be preferred?  To answer 
this question, we step back to first principles, and consider fundamental requirements 
for a computational probabilistic logic. First, a computational logic should explicitly 
represent all mathematical and logical assumptions as finite computational structures 
accessible to an automated reasoner. Second, it should be possible for a reasoner to 
discover contradictions in a knowledge base, to identify when observations are 
inconsistent with a theory, and to prove any consequence entailed by a theory. Third, 
a logic for plausible reasoning must be able to associate measures of plausibility with 
propositions, to express degrees of plausibility intermediate between proof and 
disproof, and to do so in a logically coherent manner. All these requirements are met 
by the proposed formalism. Furthermore, the first two requirements are automatically 
satisfied if probability is formalized as a traditional first-order axiomatic theory, while 
the final requirement can be met without demanding either that probability be 
formalized as a function on sentences, or that probability values be real numbers. 
Hence, a first-order axiomatic theory is a fundamental requirement, whereas a 
function from sentences to real numbers is dispensable. 

If probability is not a function mapping sentences to real numbers, then what is it? 
We formalize probability as a function mapping Gödel numbers to elements of a real-
closed field (RCF). A RCF is the closest one can come to formalizing the real 
numbers within first-order logic. The real numbers are uniquely characterized up to 
isomorphism as an ordered field with the least upper bound property. The ordered 
field axioms formalize familiar properties of the real and rational numbers: addition, 
multiplication, additive and multiplicative inverses (hence, subtraction and division), 
distribution of multiplication over addition, and complete ordering. These axioms can 
be formalized fully in FOL. The defining property of the real numbers, that every 
bounded non-empty set of real numbers has a least upper bound, is not a first-order 
property. In a RCF, the least upper bound property holds for all definable relations. 
The RCF axioms are sufficient to characterize all first-order properties of the real 
numbers (cf., [13]). Thus, we assume probabilities are elements of a RCF. 

Gödel showed that, given a sufficiently powerful formal system, domain elements 
(e.g., numbers) can be associated with sentences, formulas, and proofs. This device 
allows indirect expression of and reasoning about logical notions such as proof and 
consistency, while complying with FOL’s prohibition against direct reference to sen-
tences. Defining probabilities as a mapping from Gödel numbers to elements of a 
RCF allows us to develop a fully first-order axiomatization of probability. We argue 
later that our axioms capture the essential requirements for a computational logic of 
plausible reasoning. 



3   The Probability Axioms 

The original language L and axioms A are augmented with additional symbols and 
axioms to provide the necessary logical apparatus for probabilistic reasoning.  The 
augmented language and axioms are called L* and A*, respectively.  

3.1   The Language 

The language L* has numerical constants 0 and 1; arithmetic ordering predicate ≤; 
arithmetic operators + and ×; one-place predicate symbols R and N to represent real 
and natural numbers; and the two-place function symbol P to represent probability. In 
addition, there is a predicate D to represent elements of the domain; and a countable 
collection L1, L2, … of labels as names for individuals. If L already has mathematical 
symbols and mathematical axioms consistent with our probability axioms, we can 
make use of the existing logical machinery; otherwise new symbols are added.  

3.2   The axioms 

Domain axioms. Our first step is to relativize the domain axioms to D. This is 
achieved through a standard syntactic translation, e.g., ∀x ϕ(x) becomes ∀x 
D(x)→ϕ(x), and the sentence ∃x ϕ(x) becomes ∃x D(x)∧ϕ(x) (c.f., [9]). 

Integer arithmetic. We require enough integer arithmetic to allow Gödel 
numbering and reasoning about provability. The following axioms, together with the 
RCF axioms defined below (which apply to natural numbers by virtue of inclusion) 
serve this purpose: 

N1. ∀x N(x)→ R(x) 
N2. N(0) 
N3. ∀x N(x)→ N(x+1) 
N4. ∀x ∀y N(x) ∧ N(y) → ((x < y+1) → (x ≤ y)) 
N5. ∀x N(x)→ ¬(x < 0) 
N6. All universal closures of formulas N(x)→ (ϕ(0)∧∀x(ϕ(x) → ϕ(x+1))) →  

∀x ϕ(x), where ϕ(x) has x (and possibly other variables) free. 

Real closed field axioms. As described above, probabilities are formalized as 
elements of a real closed field (RCF), the first-order theory of the real numbers. 
Axioms for a real closed field can be found in [13]. Note that by virtue of being 
natural numbers, the constants 0 and 1 are also real numbers.  

R1. Additive and multiplicative closure: ∀x ∀y R(x)∧R(y) → R(x+y) ∧ R(x ⋅ y) 
R2. Commutativity: ∀x ∀y R(x)∧R(y) → (x+y = y+x) ∧ (x ⋅ y = y ⋅ x) 
R3. Associativity: ∀x∀y∀z R(x)∧R(y)∧R(z)  →  (((x+y) + z = x + (y + z))  

∧ ((x ⋅ y) ⋅ z = x ⋅ (y ⋅ z))) 
R4. Identity: R(0) ∧ R(1) ∧ 0≠1 ∧ ( ∀x R(x) → ((x+0 = x) ∧ (x ⋅ 1 = x)) ) 
R5. Inverses: ∀x R(x) → ( ∃y (x + y = 0) ∧ (x≠0 → ∃y (xz = 1) ) ) 
R6. Distributive Law: ∀x∀y∀z R(x)∧R(y)∧R(z)  → (x ⋅ (y + z) = (x ⋅ y) + (x ⋅ z)) 



R7. Total order: ∀x∀y∀z R(x)∧R(y)∧R(z)  → (( x ≤ y ∨ y ≤ x ) ∧ (x ≤ y ∧ y ≤ x 
→ x=y) ∧ (x≤y ∧ y≤z → x≤z)) 

R8. Agreement of ordering with field operations: : ∀x∀y∀z R(x)∧R(y)∧R(z)  → 
( (x≤y → x+z ≤ y+z) ∧ ((0 ≤ x ∧ 0 ≤ y) → 0 ≤ x ⋅ y) ) 

R9. First-order closure: The following axiom schema holds for all one-place 
formulas ϕ(x): ∀x (ϕ(x) → R(x)) ∧ ∃x ϕ(x) ∧ ∃y (R(y) ∧ ∀x (ϕ(x) → x ≤ y) ) 
  →  ∃y (R(y) ∧ ∀x (ϕ(x) → x ≤ y) ∧ ∀z (R(z) ∧ ∀x (ϕ(x) → x ≤ z)  ↔ y ≤ z) 

Axiom schema R9 is the first-order “image” of the least upper bound axiom. It 
states that if ϕ(x) represents a non-empty subset of the real numbers and ϕ(x) has a 
real upper bound, then ϕ(x) has a real least upper bound. Tarski [14] showed that the 
theory of real closed real fields can be characterized as an ordered field in which 
every element has a square root and every polynomial of odd degree has a root. R9 
covers not only relations definable in the language of the real numbers, but also any 
real relation definable in L*. Thus, the above axioms are stronger than the standard 
RCF axioms.  

Probability axioms. Good [4] stresses that probability is properly a two-place func-
tion P(E|H), taken to mean the probability that would be assigned to the proposition E 
if the proposition H were known to be true. Good introduces the symbol H* to denote 
“the usual assumptions of logic and pure mathematics,” which must be taken as given 
in all probability assessments. He makes no attempt to decide exactly what should be 
assumed as part of H*, and says it is conceivable that H* cannot be expressed in a 
finite number of words. Because our concern is reasoning by computational agents, 
we depart from Good and insist that the underlying assumptions be formalized as a 
first-order axiomatic theory. We require that H* be expressed as a finite comp-
utational structure, with an effective procedure for generating the axioms explicitly, 
and an effective procedure for checking whether any given sentence is an axiom. In 
particular, we assume that H* includes the axioms N1-N5, R1-R9, and P1-P6 (below). 

We introduce into L* the two-place function symbol P. The value of P represents 
a meaningful probability whenever the following conditions are met  (i) the first 
argument of P is the Gödel number #σ of a sentence σ of L*; (ii) the second 
argument of P is the Gödel number #ϕ(x) of a one-place open formula ϕ(x) defining a 
relation representable in TA* = Cn(A*); and (iii) the relation represented by ϕ(x) 
contains the Gödel numbers of all axioms in A*. The formula ϕ(x) is used to represent 
the set of sentences whose Gödel numbers satisfy ϕ. P(#σ, #ϕ(x)) represents the 
probability of σ, given that all sentences in the set represented by ϕ(x) are true.  
Condition (iii) says that the domain axioms and probability axioms are taken as given. 
For readability, we write P(σ | ϕ) for P(#σ, #ϕ(x)) and P(σ | τ, ϕ) for P(#σ, #ψ(x)), 
where #ψ(x) represents the union of the relation defined by ϕ and {#τ}. That is, P(σ | 
τ, ϕ) represents the likelihood of σ under the assumption that τ and all sentences in 
the set represented by ϕ(x) are true. 

With this preamble, we now present the probability axioms. The axioms are stated 
informally for readability; stating them formally is straightforward. The axioms are 
universally quantified over (Gödel numbers of) sentences σ and τ, and formulas ϕ.  

P1. 0 ≤ P(σ | ϕ) ≤ 1. 
P2. If A* ⊢ σ, then P(σ | A*) = 1. 



P3. If P(σ∧τ | ϕ) = 0, then P(σ∨τ | ϕ) = P(σ | ϕ) + P(τ | ϕ). 
P4. P(σ∧τ | ϕ) = P(σ | τ, ϕ) × P(τ | ϕ) 
P5. If σ↔τ, then P(σ | ϕ) = P(τ | ϕ), and P(γ | σ, A*) = P(γ | τ, A*) for all γ. 

The first three axioms are the usual axioms for finitely additive probability. P4 
formalizes Bayesian conditioning. P5 is taken from Good [4], and formalizes the 
notion that logically equivalent propositions should be interchangeable with regard to 
rational degrees of belief.  

Some authors (including Good and de Finetti) regard finite additivity as sufficient 
to formalize rational degrees of belief. Other authors consider countable additivity to 
be essential. Because countable additivity is typically taken for granted in 
applications, we regard it as essential. However, full formalization of countable 
additivity is not possible within FOL, because FOL cannot express the notion of an 
arbitrary infinite sequence of Gödel numbers. To formalize countable additivity, we 
adopt a condition introduced by Gaifman [15]. Gaifman’s condition can be formalized 
as a first-order axiom schema. Informally, it is stated as: 

P6. P(∀x ψ(x) | ϕ)  is the supremum of the values P(ψ(κ1)∨…∨ψ(κn) | ϕ), for all 
finite conjunctions ψ(κ1)∨…∨ψ(κn) of sentences, formed by substituting 
constant terms of L* into ψ(x). 

The constants κi  may be constants of the original language L, numerical constants 
(0 or 1), or label constants (one of the Li).  The label constants provide enough con-
stants to cover individuals that might not otherwise be referenced explicitly.  

3.3  Terminology 

The following definitions provide some necessary terminology. 
Definition 1: Let L be a first-order language. A p-language L* for L is a language 

that augments L with symbols for domain elements, real and natural number 
arithmetic, and probability, as described in Section 3.1 above.  A p-theory TA* for an 
axiomatic theory TA in L augments the axioms A of TA as described in Section 3.2 
above, to include: (i) axioms relativizing axioms in A to elements of the original 
domain; (ii) axioms N1-N5, R-1R9, and P1-P6; and (iii) additional axioms defining a 
domain-specific probabilistic theory. A p-theory TA* containing only N1-N5, RCF, 
and P1-P6, with no domain axioms, is called the base p-theory for L. 

Definition 2: Let L be a first-order language; let L* be a p-language for L. An 
axiomatic theory TA* of L* is probabilistically complete if it assigns a unique prob-
ability P(σ | A*) to every sentence σ of L. That is, TA* is probabilistically complete if 
for every sentence σ there is a unique real number pσ such that TA* |− P(σ | A*) = pσ. 

A probabilistically complete p-theory assigns a single RCF element to each 
sentence. Incomplete p-theories give rise to interval probabilities. Some writers have 
advocated founding the theory of probability on interval rather than point-valued 
probabilities (e.g., [4]). The possibility of incomplete p-theories is attractive when the 
KB designer is not able to specify a probability for every sentence. With the advent of 
first-order languages based on graphical probability models, it is now possible to 



define probabilistically complete p-theories suitable for many interesting problems, to 
develop workable knowledge engineering procedures for specifying p-theories, and to 
devise tractable inference and learning algorithms for p-theories. 

Definition 3: Let L be a first-order language; let T be a theory of L; and let L* be 
a p-language for L. An axiomatic theory TA* of L* corresponds to T if T |− σ implies 
TA* |− P(σ | A*) = 1 for any sentence σ of L. TA* corresponds strongly to T if T |− σ if 
and only if TA* |− P(σ | A*) = 1. 

Clearly, if the axioms A of TA are included among the axioms A* of TA*, then TA* 
corresponds to TA. In general, augmenting A with N1-N5, RCF, and P1-P6, will not 
determine a unique p-theory. If it is assumed that A incorporates all objective, 
incontrovertibly true domain knowledge, then adding probabilistic axioms to com-
plete a p-theory brings subjectivity into the KB.   

Of course, in actual applications, it is rarely the case that all logical axioms are 
incontrovertibly true assertions. More realistically, some axioms will be highly 
questionable; others, though quite useful, may be downright false. Axioms in real 
KBs are carefully engineered to be “good enough for the task.” A great deal of 
subjective judgment goes into developing a “good enough” KB. In short, the logical 
axioms of a KB are often as subjective as the probabilities, and sometimes more so. 

Definition 4: Let L be a first-order language, L* a p-language for L; and TA* a 
probabilistically complete axiomatic theory of L*. Let ϕ(x,y) be a formula of L* that 
functionally represents a recursive sequence of Gödel numbers of sentences of L* 
(i.e., for each natural number n, there is exactly one sentence σn such that ϕ(n, #σn) is 
provable from A*). We say the sequence σ1, σ2, … of sentences is negligible if for 
every RCF element u > 0 there is a natural number n such that P(σ1 ∧ … ∧ σn | A*) < 
u. The sequence σ1, σ2, … is certain if for every RCF element u > 0 there is a natural 
number n such that P(σ1∧…∧σn | A*) > 1- u. 

A negligible sequence is vanishingly improbable. That is, the probabilities of its 
finite-length leading segments tend to zero as their lengths increase without bound. 
Clearly, any sequence containing a zero-probability sentence is negligible. We can 
define negligible or certain individual sentences or finite-length sequences of 
sentences in the obvious way, by appending infinitely many copies of a tautology to 
the end of the sequence. An individual sentence is certain if it has probability 1 and 
negligible if it has probability zero. 

Defintion 5: Let L be a first-order language; let L* be a p-language for L; let T* 
be a theory of L*. The core of T* is the set of sentences {σ : σ is certain under T*}. 

4   Semantics 

This section defines semantics for p-theories.  
Standard first-order semantics. The logic set forth in this paper is a standard, 

untyped first-order logic. As such, it can be given standard first-order model-theoretic 
semantics.   

A first-order structure for a theory in L* is a pair (D, m), where D is a non-empty 
set called the domain of interpretation, and m assigns to each function, constant, and 



relation symbol of L* a function, constant or relation of the correct arity on D. A 
structure (D, m) implies a truth-value for each sentence of L*. (D, m) is called a 
model of T* if every sentence in T* is true in (D, m). Models of T* are sometimes 
called possible worlds for T*. A sentence σ is implied by A* if it is true in all models 
of A*, and satisfiable if it has a model. 

Standard semantics for p-theories gives rise to a seeming conflict between logical 
truth and probabilistic certainty: there may be logically possible sentences that have 
probability zero. For example, we might represent successive tosses of a symmetric 
die as independent and identically distributed with probability 1/6 of landing on each 
face. In a hypothetical infinite sequence of tosses, the frequency of tosses that land on, 
say, the number 2 is certain to be 1/6. Any sequence of outcomes that does not have a 
limiting frequency of 1/6 is negligible, in the sense of D4. Nevertheless, every 
sequence of outcomes is logically possible. Standard first-order semantics cannot 
distinguish between typical realizations of this probabilistic process (i.e., “random 
looking” sequences with limiting frequency 1/6) and highly atypical realizations (e.g., 
sequences that have the incorrect limiting frequency, or exhibit some other unusual 
regularity, such as a 2 on every sixth toss). Suppose the sentence σ1 asserts that the 
limiting frequency is 1/6 that the die lands on 2; the sentence σ2 asserts that every toss 
comes up 2; and the sentence σ3 asserts that a 2 occurs on the first two tosses. The 
sentence σ1 has probability 1; σ2 has probability zero; and σ3 has probability 1/36. 
None of these sentences is either implied by or inconsistent with the logical axioms. 
Traditional first-order semantics seems to provide no way to differentiate among 
them. For this reason, many authors have considered standard first-order semantics 
inadequate for probabilistic theories, and have turned to alternative semantics. 

Measure models. A common approach to giving semantics to probabilistic logics is 
through a probability measure on structures. Using results from measure theory, 
Gaifman [15] showed that a coherent probability assignment to quantifier-free 
sentences can be extended to a countably additive probability measure on a σ-algebra 
of subsets of {(D, m)}, the set of all structures on D = {L1, L2, …}.2 In measure 
model semantics, a sentence is assigned probability equal to the measure of the set of 
models of the sentence. 

Just as traditional first-order semantics is defined in terms of set theory, measure 
model semantics is defined in terms of measure theory. Measure theory is the branch 
of real analysis used to formalize probability. In measure model semantics, it is 
generally taken for granted that probabilities are interpreted as real numbers. As noted 
above, the semantic condition that probabilities must be interpreted as real numbers 
results in a non-axiomatizable logic that lacks a complete proof theory. On the other 
hand, axiomatic set theory provides sufficient mathematical machinery to prove the 
standard results of measure theory. If A* contains set theory axioms, then the results 
of measure theory hold in all models of A*.  Therefore, a probabilistically complete p-
theory that includes set theory axioms has a unique measure model. A probabil-
istically incomplete p-theory has a family of measure models, one for each 

                                                           
2  Gaifman’s domain of interpretation included the constants of the original language as well as 

the added constants; the original constants are then self-interpreted. This requires that no two 
constants be equal, an assumption we do not make. 



distribution consistent with TA*. Any measure model assigns probability zero to the set 
of models of negligible sequences. 

Under measure model semantics, the logical and probabilistic aspects of a theory 
remain semantically distinct.  Provable sentences are true in all ordinary models of 
TA*, and hence have probability 1 in any measure model of TA*. Unsatisfiable sen-
tences are false in all models and hence have probability zero in any measure model. 
Other than P1-P6, probabilities for other sentences are unrestricted. In particular, a 
sentence may provably have probability 1 and yet be false in some models.  

Certainty restriction semantics. If a sentence has probability 1, then conditioning 
on the sentence does not change its probability or the probability of any other 
sentence. Furthermore, because there are only countably many sentences, we can 
condition on all certain sentences – the core of the p-theory – without changing any 
probabilities. We can use this fact to rule out negligible sentences as models of a p-
theory. Note that a p-theory TA* has enough logical machinery to define a provability 
predicate. We can thus introduce an axiom schema that infers σ from TA* |− P(σ | A*) 
= 1. Adding this axiom schema excludes provably negligible sentences as models of 
TA*. We call this axiom schema the certainty restriction. Adding the certainty 
restriction schema to TA* reduces the set of models of TA* without changing either the 
probability of any sentence or any of the measure models consistent with TA*. 

A rational agent makes no practical distinction between propositions with 
probability one and those provable from its knowledge base.  Many texts use limiting 
frequencies (as well as other certain events) to define the meaning of probability 
statements (e.g., that “fair die” means that the limiting frequency of tosses landing on 
each face is 1/6). This suggests that the certainty restriction captures some aspect of 
the intuitive semantics of probability as it is commonly applied and understood. 

Strong probabilistic semantics. The certainty restriction and the conditioning 
restriction can be formulated in first-order logic. This means that these conditions can 
be imposed as satisfaction criteria for p-theories without any change to first-order 
semantics. However, these conditions cannot capture the stronger semantic notion that 
infinite-length negligible sequences should not occur in models of a probabilistic 
theory. Strong probabilistic semantics requires that no model of a p-theory may 
contain all sentences in a negligible sequence of sentences.  

Each negligible sequence can be identified with an effectively null binary string, as 
defined by Martin-Löf [6]. Martin-Löf randomness has been studied extensively (c.f., 
[7]), and is popular as a characterization of what it means for a sequence to be a 
typical realization of a probability distribution on sequences. Dawid’s [8] calibration 
criterion is closely related to Martin-Löf randomness: the set of uncalibrated 
sequences for a given probability distribution is effectively null for that distribution. 

If the axioms A* of our p-theory are strong enough to formalize measure theory, 
then we can prove that the set of negligible sequences has probability zero under the  
measure model for A*. Thus, negligible sequences can be excluded as models of A* 
without changing any probabilities. However, excluding the negligible sentences as 
models means abandoning traditional first-order semantics, because the proposition 
that a sequence is negligible cannot be formalized as a recursive first-order axiom 
schema. As a consequence, there is no complete proof system for probabilistic logic 
with strong probabilistic semantics. 



Frequency probability. Some authors have argued that fundamentally different 
kinds of probability are required to formalize different metaphysical notions such as 
subjective degrees of belief, long-run frequencies, physical randomness, or 
algorithmic randomness. Others argue that a single kind of probability is adequate for 
all these metaphysical positions. Good ([4], [16]) and Barnett [17] discuss the 
different viewpoints on this issue.  

Because the same mathematics is applied to reason about all these kinds of 
probability, and a proliferation of different logics complicates knowledge 
representation and knowledge interchange, it seems reasonable to investigate whether 
a single computational logic might be applicable to different notions of probability.  

We have argued above that p-theories can represent subjective degrees of belief 
about propositions that can neither be proven nor disproven. We argue that p-theories 
can represent long-run frequencies and physical randomness. The basic idea derives 
from a theorem of de Finetti [18] stating that an infinitely exchangeable sequence of 
events is mathematically equivalent to one a frequentist or proponent of physical 
propensity would model as independent and identically distributed (iid) given an 
unknown parameter, together with a subjective probability distribution on values of 
the parameter. To the frequentist, the parameter corresponds to the unknown long-run 
frequency. To the propensity theorist, the parameter corresponds to the unknown 
propensity. To the strict subjectivist, the parameter is a modeling fiction that provides 
a parsimonious representation for an exchangeable sequence.  

Infinitely exchangeable sequences in p-theories are represented as first-order 
axiom schemas stating that different orderings of finite-length initial segments of a 
sequence are equally probable. P-theories can also represent iid propositions with 
unknown parameters. Incomplete p-theories can be used if no subjective distribution 
is available (perhaps due to philosophical aversion to subjective probability) for the 
unknown parameter. Thus, frequency and propensity probability as well as degree of 
belief probability can be represented with p-theories. 

Summary: Semantics for p-theories. With no change to standard first-order 
semantics, a complete p-theory assigns probabilities consistently to sentences of L* 
such that the axioms A* have probability 1. By including the certainty restriction 
axiom schema in A*, we can identify probability 1 with provability from A*. If A* 
includes set theory axioms, there is a unique measure model (probability measure 
over models) for each complete p-theory. Requiring that all models of a p-theory be 
non-negligible in the sense of Martin-Löf would take us out of the realm of first-order 
model theory. 

5  Learning and Dogmatism 

An attractive feature of probability theory is its inbuilt support for learning from 
observation. We can add any new non-negligible axiom to a p-theory, and Bayesian 
conditioning can be used to obtain an updated p-theory with the evidence as an axiom. 
As new observations accrue, we obtain a sequence of p-theories, each containing 
additional axioms representing new information obtained since the previous p-theory 
in the sequence. 



Fundamental to the scientific attitude is lack of dogmatism. In our context, non-
dogmatism means assigning probability zero only to propositions known in-
controvertibly to be false. A dogmatic theory will be overturned if it makes definite 
empirical predictions that turn out to be false. However, a theory can be dogmatic 
without ever being proven false. For example, if a theory starts out certain that a coin 
is fair, it can never learn that the coin is biased, no matter how many trials are 
observed. A theory that allows for bias will eventually become convinced that a 
biased coin is biased, even if it begins with a high likelihood that the coin is fair. 

If we begin with an axiomatic theory TA of L, and assume that the axioms A 
represent a set of sentences known incontrovertibly to be true (whether by definition 
or by meticulous empirical observation), we would like to be able to represent a p-
theory that assigns probability zero to exactly those sentences that can be disproven 
from A. We say such a p-theory corresponds non-dogmatically to TA. There are many 
reasons, including tractability, convenience of specification, economy of commu-
nication, and the like, that we might choose to represent and reason with a dogmatic 
theory, as long as it is judged “good enough” for the task at hand. But as a matter of 
principle, we want the capability to represent a non-dogmatic theory, even if 
reasoning with it is impractical. 

A result of Gaifman and Snir [11] would seem to doom any hope of finding a non-
dogmatic theory. They proved that, under measure-model semantics, every axiomatiz-
able theory is dogmatic. On the other hand, Laskey [19] described how to specify a 
non-dogmatic p-theory corresponding to any consistent, finitely axiomatizable first-
order theory.  This apparent inconsistency is resolved by noting that Gaifman and Snir 
assume that all true sentences of natural number arithmetic are base axioms of the 
logical language, which is therefore not axiomatizable. Gaifman and Snir’s no-go 
result does not apply to axiomatic first-order probability logics. An inevitable price of 
the axiomatic first-order approach, implied by Tarski’s undefinability theorem, is that 
any complete p-theory must assign probability intermediate between 0 and 1 to some 
sentences in the language of arithmetic.  This is natural if we view probability as a 
degree of provability. No first-order axiom system can prove all true sentences of 
arithmetic; therefore, no axiomatic first-order probability logic can assign probability 
1 to all true sentences of arithmetic. 

6   Conclusion 

As probabilistic languages find increasing application to the Semantic Web (e.g., 
[20]), there is a need for a logical foundation that integrates traditional SW logics with 
probability logic.  The logic presented here formalizes probability as a standard 
axiomatic first-order theory, with no alteration to traditional first-order model 
theoretic semantics. Advantages of this approach are the ability to represent p-theories 
as finite computational structures amenable to machine processing, the availability of 
a complete proof system, and compatibility with semantics of traditional logic-based 
languages. While this paper focuses on expressive power of the logic, SW 
applications require tractability and scalability. Future work will consider tractable 
restrictions of the logic, as well as fast approximate inference methods. 
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