Evidential Nearest-Neighbors Classification for Inductive ABox Reasoning

Nicola Fanizzi <u>Claudia d'Amato</u> Floriana Esposito

Department of Computer Science University of Bari

URSW 2009 \$\phi\$ Washington, D.C., October 26, 2009

Contents

- Introduction & Motivation
- 2 Background
 - Dempster-Shafer Theory
 - Classification by the Nearest Neighbor Approach
- 3 Evidential Nearest Neighbor Procedure (ENN)
- 4 ENN for the Semantic Web
 - Prediction of Class-Membership Assertions
 - Prediction of Datatype Fillers
 - Prediction of Relationships among Individuals
- Conclusions and Future Works

Introduction & Motivations

In the SW context:

- purely deductive-based methods may fail when data sources are distributed and, as such, potentially incoherent
- due to the OWA, a very large number of assertions can
 potentially be true but often only a small number of them is
 known to be true or can be inferred to be true
- information is, most of the time, inherently uncertain

- a growing interest is being committed to alternative reasoning procedures also to deal with the various facets of uncertainty
 - here, inductive reasoning is adopted

Paper Contributions

- ABox reasoning based on the evidence and the analogical principle of the nearest-neighbor approach
 - extension of a framework for the classification of individuals through a prediction procedure based on evidence theory and similarity
- prediction of the values related to class-membership or datatype and object properties

Basics of Dempster-Shafer Theory...

- A frame of discernment Ω is defined as the set of all hypotheses in a certain domain
- A basic belief assignment (BBA) is a function $m: 2^{\Omega} \mapsto [0,1]$ verifying: $\sum_{A \in 2^{\Omega}} m(A) = 1$
 - Given a certain piece of evidence, the value of the BBA for a given set A expresses a body of evidence that is committed exactly to A
 - The quantity m(A) pertains only to A and does not imply any additional claims about any of its subsets

...Basics of Dempster-Shafer Theory...

The BBA m define a body of evidence, from which a belief function Bel and a plausibility function PI can be derived as mappings from 2^{Ω} to [0,1]

• For a given $A \subseteq \Omega$, the belief in A, denoted Bel(A), represents a measure of the total belief committed to A given the available evidence. Bel is defined as:

$$\forall A \in 2^{\Omega}$$
 $Bel(A) = \sum_{\emptyset \neq B \subseteq A} m(B)$ (1)

 Analogously, the plausibility of A, denoted PI(A), represents the amount of belief in A, if further information became available. PI is defined as

$$\forall A \in 2^{\Omega}$$
 $PI(A) = \sum_{B \cap A \neq \emptyset} m(B)$ (2)

...Basics of Dempster-Shafer Theory

- The Dempster-Shafer rule of combination aggregates independent bodies of evidence, defined within the same frame of discernment, into one body of evidence.
 - Let m_1 and m_2 be two BBAs. The new BBA obtained by combining m_1 and m_2 using the rule of combination, m_{12} is the orthogonal sum of m_1 and m_2 .

$$\forall A \in 2^{\Omega}$$
 $m_{12}(A) = (m_1 \oplus m_2)(A) = \sum_{B \cap C = A} m_1(B) m_2(C)$

Generally, the normalized version of the rule is used:

$$\forall A \in 2^{\Omega} \setminus \{\emptyset\} \ \ m_{12}(A) = (m_1 \oplus m_2)(A) = \frac{\sum_{B \cap C = A} m_1(B) \, m_2(C)}{1 - \sum_{B \cap C = \emptyset} m_1(B) \, m_2(C)}$$

(and
$$m_{12}(\emptyset) = 0$$
)

Nearest Neighbor Classification

classes: a, b k = 5

a. a.
b. a.
a. x_q b. a.
a. b.
b. b.
a. b.

$$class(x_q) \leftarrow ?$$

Nearest Neighbor Classification

classes: a, b k = 5

$$class(x_q) \leftarrow \mathbf{a}$$

Evidential Nearest Neighbor Procedure...

- Let X be the finite set of instances and $V \subseteq \mathbf{Z}$ a finite set of integers $V \subseteq \mathbf{Z}$ to be used as labels
- The training set is $TrSet = \{(x_1, v_1), \dots, (x_M, v_M)\} \subseteq Ind \times V$ where X = Ind(A) is the set of individual names occurring in the ontology
- ullet The frame of discernment Ω w.r.t. the classification problem is the set of all possible classes
- x_q is a new individual to be classified on the basis of its nearest neighbors in TrSet.
 - Let $N_k(x_q) = \{(x_{o(j)}, v_{o(j)}) \mid j = 1, ..., k\}$ be the set of the k nearest neighbors of x_q in TrSet
 - an appropriate metric d is applied to ontology individuals (e.g. one of the measures in the family defined in [d'Amato et al.
 © ESWC 2008]

...Evidential Nearest Neighbor Procedure...

- Each pair $(x_i, v_i) \in N_k(x_q)$ constitutes a distinct item of evidence w.r.t the value to be predicted for x_q
- Consequently, each $(x_i, v_i) \in N_k(x_q)$ may induce a BBA m_i over V which can be defined as **Denoeux'95**:

$$\forall A \in 2^{V} \qquad m_{i}(A) = \begin{cases} \lambda \sigma(d(x_{q}, x_{i})) & A = \{v_{i}\} \\ 1 - \lambda \sigma(d(x_{q}, x_{i})) & A = V \\ 0 & \text{otherwise} \end{cases}$$
(3)

where $\lambda \in]0,1[$ is a parameter and $\sigma(\cdot)$ is a decreasing function such that $\sigma(0)=1$ and $\lim_{d\to\infty}\sigma(d)=0$ (e.g. $\sigma(d)=\exp(-\gamma d^n)$ with $\gamma>0$ and $n\in \mathbf{N}$). The values of the parameters can be determined heuristically.

...Evidential Nearest Neighbor Procedure...

• Considering each training individual in $N_k(x_q)$, k BBAs m_j are obtained. These can be aggregated in the final belief:

$$\bar{m} = \bigoplus_{j=1}^k m_j = m_1 \oplus \cdots \oplus m_k$$

Functions \overline{Bel} and \overline{Pl} can be derived from \overline{m}

 x_q is assigned the value in V that maximizes the belief or plausibility:

$$v_q = \underset{(x_i, v_i) \in N_k(x_q)}{\operatorname{argmax}} \overline{\textit{Bel}}(\{v_i\}) \quad \text{or} \quad v_q = \underset{(x_i, v_i) \in N_k(x_q)}{\operatorname{argmax}} \overline{\textit{Pl}}(\{v_i\})$$

- Selecting the hypothesis with the greatest degree of belief i.e. the most credible corresponds to a skeptical viewpoint
- Selecting the hypothesis with the lowest degree of doubt i.e. the most plausible, is more credulous
- The degree belief (or plausibility) of the predicted value provides also a way to compare the answers of an algorithm

... Evidential Nearest Neighbor Procedure...

- It is possible to *combine* the two measures *Bel* and *PI*
- A single measure of *confirmation* C, ranging in [-1, +1], can be defined **[Klir'06]**

$$\forall A \subseteq \Omega$$
 $C(A) = Bel(A) + Pl(A) - 1$ (4)

• denoted with \overline{C} the combination of \overline{Bel} and \overline{Pl} , the resulting rule for predicting the value for x_q can be written as:

$$v_q = \underset{(x_i, v_i) \in N_k(x_q)}{\operatorname{argmax}} \overline{C}(\{v_i\})$$
 (5)

... Evidential Nearest Neighbor Procedure

$$ENN_k(x_q, \text{TrSet}, V)$$

- **1** Compute the neighbor set $N_k(x_q) \subseteq \text{TrSet}$.
- **2** for each $i \leftarrow 1$ to k do

Compute m_i (Eq. 3)

3 for each $v \in V$ do

Compute \overline{m} and derive \overline{Bel} and \overline{Pl} (Eqs. 1–2)

Compute the confirmation \overline{C} (Eq. 4) from \overline{Bel} and \overline{Pl}

• Select $v \in V$ that maximizes \overline{C} (Eq. 5).

Figure: The evidence nearest neighbor procedure.

Prediction of Class-Membership Assertions

Given:

- a (query) concept Q
- ullet a set of values $V_Q=\{+1,-1\}$ denoting, resp., membership and non-membership w.r.t. the query concept
 - the values of the labels v_i for the training examples can be obtained through deductive reasoning (instance-checking)
- ullet the related training set $\operatorname{TrSet}_Q\subseteq\operatorname{Ind}(\mathcal{A}) imes V_Q$
- to predict the class-membership value v_q for some individual x_q w.r.t. Q, it suffices to call $ENN_k(x_q, TrSet_Q, V_Q)$
 - the conclusion will be $\mathcal{K} \succcurlyeq Q(x_q)$ or $\mathcal{K} \succcurlyeq \neg Q(x_q)$ depending on the value that maximizes \overline{C} (resp., $v_q = +1$ or $v_q = -1$)
 - the value which determined v_q can be exploited for ranking the hits by comparing the strength of the inductive conclusions

Prediction of Class-Membership Assertions: Extensions

- Ternary classification problems $V_q = \{-1, 0, +1\}$ are admitted, where 0 explicitly denote an indefinite (uncertain) class-membership [d'Amato et al. @ ESWC'08]
 - ullet it can happened that the most likely value is $v_q=0$
 - the choice could be forced (among the values of \overline{C}) for $v_q=-1$ and $v_q=+1$, e.g. when the confirmation degree exceeds a some threshold
- The inductive procedure can be exploited for performing the inductive retrieval of a certain concept
 - given a concept Q, it would suffice to find all individuals $a \in \operatorname{Ind}(A)$ that are s.t. $\mathcal{K} \approx Q(a)$
 - the hits could be returned ranked by the respective confirmation value $\overline{C}(+1)$

Prediction of Datatype Fillers

- Given a functional datatype property P the problem is to predict the value of P for a certain test individual a that is in the domain of P
- V_P correspond to the *discrete and finite range* of P or to its restriction to the observed values for the training instances: $V_P = \{v \in range(P) \mid \exists P(a, v) \in A\}$
- the training set will be $TrSet_P \subseteq domain(P) \times V_P$, where $domain(P) \subseteq Ind(A)$ is the set of individual names that have a known P-value in the KB
- to predict the value in V_P of P for some individual a the procedure with $ENN_k(a, \text{TrSet}_P, V_P)$ has to be called
 - thus, if v_q is the value that maximizes Eq. 5 then $\mathcal{K} \approx P(a, v_q)$ can be written

Prdition of Datatype fillers: Extensions

- Different settings may be devised allowing for special value(s) denoting the case of a yet unobserved value(s) for that property
- the ENN procedure can be exploited for performing alternate forms of retrieval, e.g. finding all individuals with a certain value for the given property
 - given a certain value v, all individuals $a \in \operatorname{Ind}(A)$ that are such that $\mathcal{K} \approx P(a, v)$ have to be found
- the hits could be returned ranked according to the respective confirmation value $\overline{C}(+1)$

Prediction of Relationships among Individuals

The ENN procedure can be used to establish if a test individual is related through some object property with some others

• the problem is decomposed into smaller ones aiming at verifying whether $\mathcal{K} \approx R(a, b)$ holds:

```
\begin{array}{l} \textbf{for each } b \in \mathsf{Ind}(\mathcal{A}) \ \textbf{do} \\ \textbf{for each } a \in \mathsf{Ind}(\mathcal{A}) \ \textbf{do} \\ \mathsf{TrSet} \leftarrow \{(x,v) \mid x \in \mathsf{Ind}(\mathcal{A}) \setminus \{a\}, \textit{if } \mathcal{K} \models R(x,b), \textit{then } v \leftarrow +1 \\ & \textit{else } v \leftarrow -1\} \\ v_b^R \leftarrow \mathit{ENN}_k(a,\mathsf{TrSet},\{+1,-1\}) \\ \textbf{if } v_b^R = +1 \ \textbf{then} \\ \textbf{return } \mathcal{K} \bowtie R(a,b) \\ \textbf{else} \\ \textbf{return } \mathcal{K} \bowtie \neg R(a,b) \end{array}
```

Prediction of Relationships among Individuals: Extension

- ullet a ternary value set $V_R = \{-1,0,+1\}$ could be alternatively considered
 - it allows for an explicit treatment of those individuals a for which R(a, b) is not derivable (or absent from the ABox)
 - a threshold of confirmation for accepting likely assertions can be used

Conclusions & Future Work

Conclusions:

- Proposed and inductive method for approximate ABox reasoning based on the nearest-neighbors analogical principle and the teory of evidence
- shown how to exploit the procedure for assertion prediction problems

Future works:

- prediction of values for non-functional datatype properties
- investigation on the possibility of considering infinite sets of values V
- setting up an extension of prediction procedure towards the consideration of sets of values instead of singletons

That's all!

Questions?