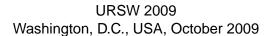
BeliefOWL: An Evidential Representation in OWL ontology


Amira Essaid essaid amira@yahoo.fr Boutheina Ben Yaghlane

boutheina.yaghlane@ihec.rnu.tn

Higher Institute of Management of Tunis

LARODEC Laboratory @=

- Motivation
- Uncertainty in OWL

- Motivation
- 2 Uncertainty in OWL
- 3 Our solution: BeliefOWL

- Motivation
- 2 Uncertainty in OWL
- 3 Our solution: BeliefOWL
- Conclusion and perspectives

- Motivation

The semantic web envisions

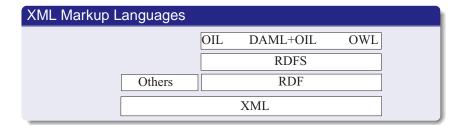
The semantic web envisions

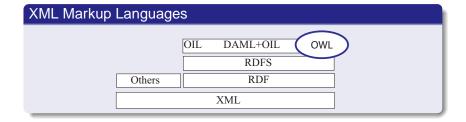
Interoperability between human and computers.

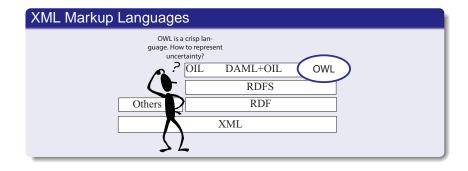
The semantic web envisions

- Interoperability between human and computers.
- Information exchange among web applications.

The semantic web envisions


- Interoperability between human and computers.
- Information exchange among web applications.


So...


A need to a powerful tool to capture knowledge about concepts and their relations.

WOUVALIO

- Motivation
- 2 Uncertainty in OWL
- Our solution: BeliefOWL
- Conclusion and perspectives

Our approach

We propose a new approach for representing uncertain information in an OWL ontology:

Our approach

We propose a new approach for representing uncertain information in an OWL ontology:

Ontology Tasks: Representation and Reasoning

Our approach

We propose a new approach for representing uncertain information in an OWL ontology:

- Ontology Tasks: Representation and Reasoning
- Formalism for the representation: Evidence Theory

Our approach

We propose a new approach for representing uncertain information in an OWL ontology:

- Ontology Tasks: Representation and Reasoning
- Formalism for the representation: Evidence Theory
- Formalism for the reasoning: Directed Evidential Network

Our approach

We propose a new approach for representing uncertain information in an OWL ontology:

- Ontology Tasks: Representation and Reasoning
- Formalism for the representation: Evidence Theory
- Formalism for the reasoning: Directed Evidential Network
- Only classes and the relations between them will be considered.

Probability Theory

Probability Theory

 Representation of probabilistic information using OWL or RDF(s) ontology(Fukushige, 2004).

Probability Theory

- Representation of probabilistic information using OWL or RDF(s) ontology(Fukushige, 2004).
- Extending DLs with bayesian networks (Ding, 2005), (Yang and Calmet, 2005)...

Probability Theory

- Representation of probabilistic information using OWL or RDF(s) ontology(Fukushige, 2004).
- Extending DLs with bayesian networks (Ding, 2005), (Yang and Calmet, 2005)...

Fuzzy Sets Theory

Our solution: BeliefOWL

• f-OWL (Stoilos et al., 2005)

Probability Theory

- Representation of probabilistic information using OWL or RDF(s) ontology(Fukushige, 2004).
- Extending DLs with bayesian networks (Ding, 2005), (Yang and Calmet, 2005)...

Fuzzy Sets Theory

Our solution: BeliefOWL

- f-OWL (Stoilos et al., 2005)
- FOWL (Gao and Liu, 2005)

Probability Theory

- Representation of probabilistic information using OWL or RDF(s) ontology(Fukushige, 2004).
- Extending DLs with bayesian networks (Ding, 2005), (Yang and Calmet, 2005)...

Fuzzy Sets Theory

Our solution: BeliefOWL

- f-OWL (Stoilos et al., 2005)
- FOWL (Gao and Liu, 2005)

But...

Not all the problems can be solved with one of these theories.

Dempster-Shafer theory vs probability theory

A generalization of the probability theory.

Dempster-Shafer theory vs probability theory

A generalization of the probability theory.

Ignorance

Models easily the partial and the total ignorance.

Dempster-Shafer theory vs probability theory

A generalization of the probability theory.

Ignorance

Models easily the partial and the total ignorance.

Beliefs Assignment

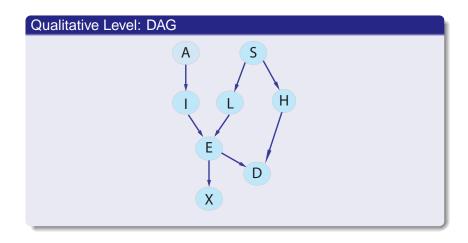
Beliefs can be assigned to sets of elements rather than to each element.

Dempster-Shafer theory vs probability theory

A generalization of the probability theory.

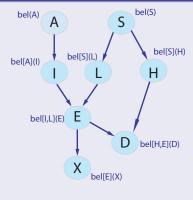
Ignorance

Models easily the partial and the total ignorance.


Beliefs Assignment

Beliefs can be assigned to sets of elements rather than to each element.

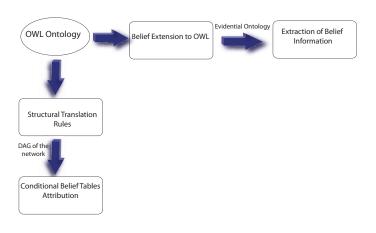
Dempster's combination rule [Shafer, 1976]


Demspter's combination rule is used to combine heterogeneous information.

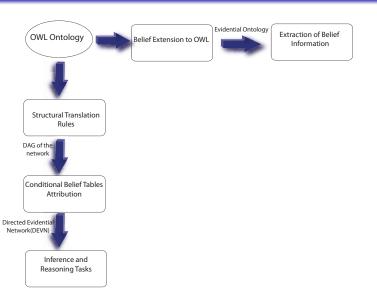
Directed Evidential Network

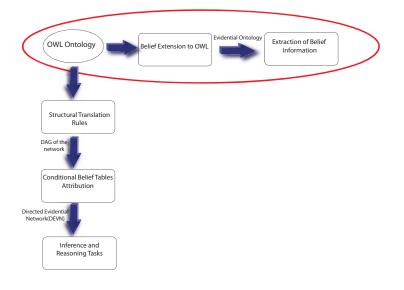
Directed Evidential Network

Quantitative Level: Conditional belief functions for each variable given its parents



- Motivation
- Uncertainty in OWL
- 3 Our solution: BeliefOWL
- Conclusion and perspectives





BeliefOWL Framework

The ontology taken as an example is from the Zhongli Ding's thesis (BayesOWL: A Probabilistic Framework for Semantic Web).

Prior Evidence

beliefDistribution>
 enumerates the different
 masses of the elements of
 the frame of discernment.
 It has an object property
 https://www.enas.pni.nem.enas.pn

The ontology taken as an example is from the Zhongli Ding's thesis (BayesOWL: A Probabilistic Framework for Semantic Web).

Prior Evidence

- < beliefDistribution>
 enumerates the different
 masses of the elements of
 the frame of discernment.
 It has an object property
 <hasPriorBel>
- <priorBelief> expresses
 the prior evidence and has
 a datatype property
 <massValue>.

The ontology taken as an example is from the Zhongli Ding's thesis (BayesOWL: A Probabilistic Framework for Semantic Web).

Prior Evidence

- < beliefDistribution>
 enumerates the different
 masses of the elements of
 the frame of discernment.
 It has an object property
 <hasPriorBel>
- < priorBelief> expresses the prior evidence and has a datatype property <massValue>.

```
Example
```

The ontology taken as an example is from the Zhongli Ding's thesis (BayesOWL: A Probabilistic Framework for

Semantic Web).

Conditional Evidence

Conditional Evidence

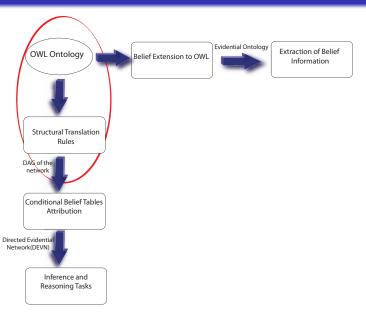
beliefDistribution>
 enumerates the different
 masses of the elements of
 the frame of discernment.
 It has an object property
 hasCondBel>

Conditional Evidence

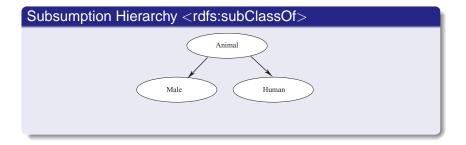
- < beliefDistribution>
 enumerates the different
 masses of the elements of
 the frame of discernment.
 It has an object property
 <hasCondBel>
- condBelief> expresses
 the conditional evidence
 and has a datatype
 property <massValue>.

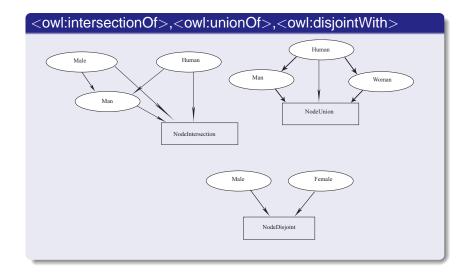
Conditional Evidence

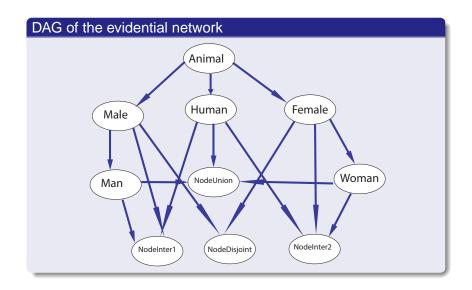
- < beliefDistribution>
 enumerates the different
 masses of the elements of
 the frame of discernment.
 It has an object property
 https://www.enascond.com/bel-
- < condBelief> expresses the conditional evidence and has a datatype property <massValue>.

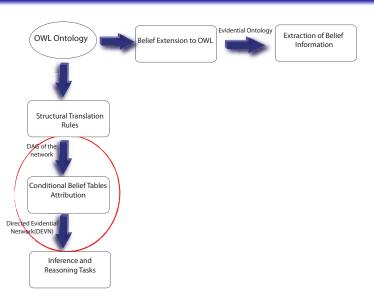

Example

```
<br/>
```

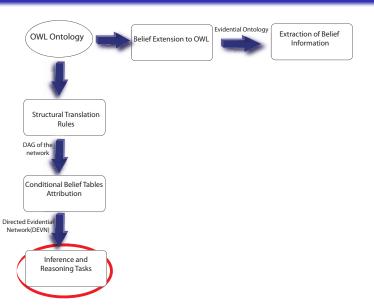

- <condBelief rdf:ID= "m[{a}]({m/})">
 <massValue>0</massValue>
- </condBelief>


</condBelief>


- <condBelief rdf:ID= "m[{a}]({ θ_m I})"> <massValue>0.5</massValue>
- </condBelief>



Step 3: Evidence Attribution


Step 3: Evidence Attribution

Assigning Masses

$$m(A) = \begin{matrix} a \\ \bar{a} \\ \theta_A \end{matrix} \begin{pmatrix} 0.4 \\ 0.5 \\ 0.1 \end{pmatrix} \qquad m[A](MI) = \begin{matrix} mI \\ \bar{m}I \\ \theta_{mI} \end{matrix} \begin{pmatrix} 0.5 & 0 \\ 0 & 0.6 \\ 0.5 & 0.4 \end{pmatrix} \qquad m[A](H) = \begin{matrix} h \\ \bar{h} \\ \theta_h \end{matrix} \begin{pmatrix} 0.1 & 0 \\ 0 & 0.5 \\ 0.9 & 0.5 \end{pmatrix}$$

$$m[A](F) = \begin{cases} a & \bar{a} \\ 0.8 & 0 \\ 0 & 0.6 \\ \theta_f \end{cases} \begin{pmatrix} 0.8 & 0 \\ 0 & 0.6 \\ 0.2 & 0.4 \end{pmatrix} \qquad m[F](W) = \begin{cases} w \\ \bar{w} \\ \theta_W \end{pmatrix} \begin{pmatrix} 0.75 & 0 \\ 0 & 0.5 \\ 0.25 & 0.5 \end{pmatrix} \qquad mM = \frac{\bar{m}}{\bar{m}} \begin{pmatrix} 0.75 & 0 \\ 0 & 0.5 \\ 0.25 & 0.5 \end{pmatrix}$$

Step 4: Inference in the network

Outline

- Motivation
- Uncertainty in OWL
- Our solution: BeliefOWL
- Conclusion and perspectives

Evidential extension to OWL is a new area of research.

- Evidential extension to OWL is a new area of research.
- All the works done in the field of extending OWL are based in probability theory or fuzzy sets.

- Evidential extension to OWL is a new area of research.
- All the works done in the field of extending OWL are based in probability theory or fuzzy sets.
- Including uncertainty in OWL is crucial

- Evidential extension to OWL is a new area of research.
- All the works done in the field of extending OWL are based in probability theory or fuzzy sets.
- Including uncertainty in OWL is crucial
- BeliefOWL is a new tool for extending OWL and constructing the directed evidential network for reasoning tasks.

- Evidential extension to OWL is a new area of research.
- All the works done in the field of extending OWL are based in probability theory or fuzzy sets.
- Including uncertainty in OWL is crucial
- BeliefOWL is a new tool for extending OWL and constructing the directed evidential network for reasoning tasks.

Future Work:

Include properties and instances in the translation process.

- Evidential extension to OWL is a new area of research.
- All the works done in the field of extending OWL are based in probability theory or fuzzy sets.
- Including uncertainty in OWL is crucial
- BeliefOWL is a new tool for extending OWL and constructing the directed evidential network for reasoning tasks.

- Include properties and instances in the translation process.
- Masses attributed automatically by a learning process.

Thanks For Attending