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Smart Yet Vulnerable Hardware

Subaru Cockpit [Image https://www.subaru.com/vehicles/outback/gallery.html]
Tesla Cockpit [Image https://www.tesla.com/tesla-gallery, Courtesy of Tesla, Inc.]



Key ldea

Intelligent machines sense, plan, and act in a changing
environment

Central Server/Control Node
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Smart Sensor Cluster Edge Sensing Edge Devices Edge Sensing

How to verify data or processes at the edge?

How to accelerate cryptography computation?

How to enable secure data aggregation and distributed learning?



Secure Sensing and Fusion at the
Physical Layer




Global Positioning System (GPS) Spoofing: Evidence

Crimea, 2021 ) Pokemon GO, 2016

Russia spoofed AlS data. Source://www.theregister.com/2021/06/24 /russia_ais_spoofing/



nchronization in Smart Grid

Phasor Units and Sy p
Data Flows in the North American Power Grid
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Source: North American SynchroPhasor Initiative



Crystal Oscillators

© Ubiquitous
Piezo-electric quartz crystal
© Intrinsically Unclonable

o Imperfect cutting

o Cutting variations
o Physically unclonable time offset

© Reliable Correct timing with temperature variation
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Fault in Our Clocks
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Key ldea

Measure drift (unclonable) against the received GPS signal
(untrusted) to detect spoofing



Results: Meaconing and Replay Attack
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(a) Spoofing attack at 5130 seconds (b) Estimation of the frequency offset (black curve) and the LL of the
frequency offset(red curve) and (c) Estimation of the frequency drift and the LL of the frequency drift.

Arafin, Anand, & Qu, GLSVLSI 2017. A low-cost GPS spoofing detector designed for Internet of Things
(loT) applications. p 161. [Best Paper Nomination]

[Joint work with NIST]
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Current Works & Capabilities

Physical Layer Security of Sensor Hardware

© Security of intelligent sensor processing units (ISPUs) from
side-channel (SC) and fault injection attacks.

© Novel SC attacks and countermeasures using probabilistic
modelling of logic computation.

SC and FI set-up in our lab with Chip-Whisperer (CWLITE) boards. 11



Current Works & Capabilities

Physical Layer Security of Sensor Hardware

Sensor security for Wireless Industrial Node

© 3D accelerometer + gyro-based inertial measurement units
© Ultra-low-power 3-axis accelerometer

© 3-axis magnetometer, and barometer etc.

Sensor evaluation platform in our lab using CWLITE and STEVAL-STWINBX1 Development Kit
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Secure Hardware Architecture for
Intelligent Systems




Post Quantum Cryptography (PQC) Accelerators

Simple error correction techniques (i.e., parity) can lead to

lightweight yet quantum-resistant cryptography.
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Fabricated device and basic matrix-vector computation

Arafin, Shen, Tehranipoor & Qu, GLSVLSI 2019. LPN-based Device Authentication Using Resistive Memory.
p9.

14



Current Works & Capabilities

© Hardware accelerator prototyping for post-quantum
cryptography (PQC) and fully-homomorphic encryption
(FHE).

© Applied cybersecurity issues in domain-specific computation.

© FPGA prototyping in Xilinx Ultrascale+ and Versal devices.

Xilinx Ultrascale+ platform in our lab for acceleration prototyping. 15



Current Works & Capabilities

© Hardware accelerator tape-out capability for PQC and FHE.
© Semiconductor manufacturing and security research.
© Secure system-on-chip design for medical applications.

© Experience in open-source Skywater 130nm technology.
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Low power RISC-V taped out by our lab on Skywater 130nm technology.*

*Fabrication support by Apple
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Hardware Security in the System
Level Information Fusion



Hardware Security of Al/ML Tools

Hardware Trojan

Sensor spoofing

Fault Injection
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Data poisoning Side-channel analysis

Xu, Arafin, Qu, ASP-DAC 2021, Hardware Security of neural networks from a hardware perspective: A
survey and beyond

YOLO v1 [CVPR16.Redmon.YOLO].
Funded by ARLIS
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Current Works & Capabilities

© Driving and sensor fusion using Robot Operating System
(ROS) and Autoware.

© Experimentation capabilities for secure vision pipeline.

Attack simulation on Autoware using ROS2 and
Jetson Orin with 3D-vision capability. Applo (CYSE 465 project).

19



Conclusions



Conclusions

We bring both experimental and theoretical hardware and system
security research capabilities in

© Side-channel, fault injection attacks on real targets;
© FPGA prototyping and remote SCA analysis;

© ASIC design;

© Secure sensor fusion;

© Semiconductor supply chain issues.
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Contributions and Accomplishments

. . . N
Device and Circuits
e PUFs [TC 2021 ¥, ASP-DAC 2017, ICCAD 2015]
e Approximate Computing [Computer 2017, GLSVLSI 2017&]
e Supply Chain Integrity [ISCAS 2017]
J
. N
Architecture
e Accelerators [ASPDAC 2021, SOCC 2020, GLSVLSI 2019]
e In-memory Computation [ASPDAC 2022, TVLSI 2018]
e Vulnerability [GLSVLSI 2020]
J
R\
) Systems
e ROT [CISS 2021, IOTSMS 2020, ASIAN-HOST 2018 E’:]
e ML Security [ASPDAC 2021, ASIAN-HOST 2020]
e Hardware Reverse Engineering
J
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Modeling a Clock

State Space Model

xn — ann—l ol Wn (4)
§n — ann 2 Vn (5)
Clock state X =[x,y, D]
Time offset X

Frequency offset
Frequency drift
State transition matrix
Process noise

S MO
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Energy-Efficient In-Memory Architecture for Cryptography
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Lu, Arafin, & Qu, ASP-DAC 2021. RIME: A scalable and energy-efficient processing-in-memory architecture
for floating-point operations. p. 120.
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Energy-Efficient In-Memory Architecture for Cryptography
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Implementation of a 4-bit Wallace-tree multiplier in
RIME.

Lu, Arafin, & Qu, ASP-DAC 2021. RIME: A scalable and energy-efficient processing-in-memory architecture
for floating-point operations. p. 120.
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Hardware Lottery

We are moving away from processor-centric to data-centric

architecture
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Patterson, ISCA 2018 A New Golden Age for Computer Architecture: Domain-Specific Hardware/Software

Co-Design. p. 1.
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What We Do

Hardware Security

© Security is a full-stack, cross-layered problem

© Hardware: the weakest link



What We Do

Hardware Security

© Security is a full-stack, cross-layered problem
© Hardware: the weakest link

© Hardware: the strongest link
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