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Overview

§ ‘C2’	and	models
§ The	model:	network	synchronisation
§ Data,	Model	Tuning	and	Validation
§ Introducing	AI	agents	in	a	C2	system:

– Smart	Information	Objects
– Adaptive	Control

§ Conclusions
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Command	and	Control	(C2)

“Command is the creative expression of human will 
necessary to accomplish the mission; control is the 
structures and process devised by command to enable 
it to manage risk. C2 is the establishment of common 
intent to achieve coordinated action.” (Pigeau-McCann)

“C2 is the system empowering designated personnel to 
exercise lawful authority and direction over assigned 
forces.” (ADF doctrine)

• Structure – Organisation
• Cognition
• Dynamics
• Distributed effort
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What	is	the	gap	for	modelling	C2?

Proto-
morphs1

OrgChart
Network
Workflow

Para-
morphs1

Computer
Simulation 

Models
eg Agent 
Distillation

Para-
morphs1

Dynamical 
System

Homeo-
morphs1

Experiments
War-games
Exercises

1. R. Harré (1970) Taxonomy of Models
This is where many of the complexity metaphors are 

defined
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Models	of	cognition

Gather Data
MISSION ANALYSIS

Problem Formulation

Analyse Data
COA

DEVELOPMENT

Formulate Solution
COA

ANALYSIS

Implement Solution
DECISION

Problem Solution

Rittel & Webber 1973 Wicked problems +
Lambert & Scholz 2005

Neisser 1976 – Perceptual 
Cycle

Boyd 1987 – OODA Loop

Endsley 1999 – ‘SA’

Ratcliff 1978 –
Diffusive 

Cognition

Activity Time
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Distributed	socio-technical	systems	
Stanton et al, 2006 
Distributed Situation Awareness

Social Network + Task network + 
Information Network

Eg how a submarine ops room brings vessel 
to periscope depth

Kalloniatis et al, ICCRTS 2016;
Applied Ergonomics, 2017
Situation Awareness Weighted Network

Eg how SA flows in an ops watch 
during a crisis

Valuable approach when analysing role of Artificial 
Intelligence (autonomous) agents in C2 systems.
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A	Mathematical	Model	(Kuramoto	1984)
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Measure of synchronisation:

Low s: “Loosely Coupled” High s: “Tightly Coupled”

Spontaneous synchronisation 
through network interactions

Socio/technical applications:
• Rhythmic applause (Neda et al 2000);
• Opinion dynamics (Pluchino et al 2006);
• Pedestrian crowds (Strogatz 2005);
• Decision making in animal groups (Leonard et al 2012);
• Planar vehicle coordination (Paley et al 2007);
• Control systems (Jadbabie et al 2004);
• Consensus protocol (Sarlette & Sepulchre 2009).

InteractionsCoupling
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Stochastic	Kuramoto model
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Let	L(t) be	given	by	Lévy	noise	(Kalloniatis	&	Roberts	2017)
* a=1.4

Typically uniform or normal (Gaussian) noise used.

For 100 instances

Gaussian
Lévy, parameter 0≤a≤2Pr(x<p)
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Validation	Methods		(Sargent	1984,	Rykiel 1996)
Type	of	Test Description
Face	Validity SME	asked if	the	model	and	its	behaviour	are	reasonable

Turing	Test SME	asked	if	they	can	discriminate	between	system	and	model	output

Visualisation	
Techniques

Time	series	plots, state	space	phase	plots	form	the	basis	for	comparisons	
between	system	and	model

Comparison	to	Other	
Models

The	output of	the	model	can	be	compared	to	other	similar	models

Event	validity A	qualitative or	quantitative	comparison	between	model	outputs	and	an	
actual	event

Historical	data	
validation

Using	historical data	to	test	if	the	model	behaves	as	the	system	does

Extreme	condition	tests The	model	output should	be	reasonable	for	any	extreme	and	unlikely	
combination	of	values	as	compared	to	the	system

Sensitivity analysis This checks	if	the	same	parameters	that	cause	the	greatest	effects	on	the	
model	output	are	the	ones	to	which	the	system	is	sensitive

Predictive	validation The model	is	used	to	forecast	behaviour	and	then	subsequently		checks	the	
system	to	see	if	the	behaviour	is	replicated

Statistical	validation The	statistical outputs	of	the	model	are	the	same	as	those	of	the	system	and	
the	errors	in	the	critical	variables	are	within	acceptable	limits
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Data

source sink

Watch Staff
Day workers

Information Objects

Routine
CrisisPeople

Products

Kalloniatis et al, ICCRTS 2014; 
Applied Ergonomics, 2017
Situation Awareness Weighted Network
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Tuning	the	model:	steady-state=equilibrium
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Box-whisker	charts:	
100	runs	at	each	time-step,	same	random	seed	for	each	

parameter	choice
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Crisis	scenario:	s=0.6,	Lévy	noise	a=1.4,	network	2

At coupling providing equilibrium for routine operations, crisis 
network leads to loss of synchrony with Pr=13%

– consequence of higher centralisation of network.

Contingency Theory: ‘network centric’ better in crises!
V A L I D A T I O N (crude but such is the data)
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Disentangling	cause-and-effect

J3W1
J3W2
J3WS
J2W1
J2W2

Who’s to ‘blame’?

J3WS: deg=2, 
Most poorly 
connected 
member of the 
‘crew’

Instances of “failed synchronisation”



14

Cognitive	architecture	for	‘HyCCo*’	AI	agents

Hieb, 21st ICCRTS, 2016

O            O            D                     A

*Hybrid Cognitive Collaborative
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On	AI,	Autonomy	and	OODA

From Proud, Hart, Mrozinski
2003,
Method for Determining Level 
of Autonomy to Design into 
Human Spaceflight Vehicle 
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Assumption:	difference	between	human	and	AI

Human AI

Slow-
Sticky-
Jumpy

Fast-
Sticky-
Smooth

‘Wrapped pdf’s’ for jump processes from Yeh, Harris, Jupp, Proc.Royal.Soc.A, 2013 



17

Interventions	I:	‘smart’	Information	Objects

w=1

w=2:rJ2

But not 
too fast 

…

Kalloniatis, ICCRTS 
2016
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Interventions	III:	Adaptive	lags
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Control	by	Adaptive	lags	
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! W = external driving frequency,
bi = (1,0) – select driven phases, or
r = density of driven phases=Nc/N

Which agents should be driven?
• Staff?
• Information Objects?
• Both?
• Subsets?

For range of (t,r,W) enables perfect synchronisation of 
majority of phases at frequencies .

(Brede & Kalloniatis, 2017)
w>W
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Origin	of	effect	– eg random	regular	graphs

Controlled

Uncontrolled

Adaptive lags 
allow micro-
mutual 
adjustment 
giving minimal 
splay and 
synch to 
driving freq.

When a is too 
large Lyapunov
instability follows:

W
w

)(ra

Uncontrolled 
self-synch to 
mean freq
through 
ordinary 
Kuramoto 
mechanism 
with large 
‘splay’.

UNSTABLE
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r=1 t=10, W=1

J3 J2

Disconnect 
btw people 
and 
information
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r=0.9 W=1

J3 J2
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r=0.6 W=1

J3 J2
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r=0.45 W=1

J3 J2

Good!
People at 
optimal freq, 
some 
information 
synched.
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IO only W=1

J3 J2

Not as good.
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IO+ 
r=0.8

W=1

J3 J2
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High	freq driver

W=1.5r=0.45

J3 J2

“Not bad” –
some people 
fast; reasonable 
sync with info. 
But J2 poor.
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Smart	IO	and	control

J3 J2

W=1.5
1=IOw



29

Smart	fast IO

J3 J2

W=1
2=IOw

Best 
overall on 
balance
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Smart	fast	IO	driven	fast

W=2
2=IOw

Best instance!
But exceptions 
worse
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Conclusions
§ Model	for	headquarters	staff	based	on	synchronising	decision	loops	calibrated	to	routine	business	

correctly	displays	probability	of	incoherence	in	a	Crisis,	consistent	with	Contingency	Theory	as	
consequence	of	higher	organisational	centralisation.

§ The	model	provides	a	natural	formalism	for	modelling	some	aspects	of	complex	human	decision	
making	in	socio-technical	systems:	self-synchronisation,	networks,	probabilistic	behaviours,	and	‘jumps’	
in	decision	processes	due	to	urgency	of	environment.

§ Many	key	behaviours	can	be	analytically	derived	using	fixed-point	analysis	close	to	synchrony:	
“organisational	theory	on	the	back	of	an	envelope”.

§ The	model	has	predictive	power:	human	and	technological	components	may	be	modelled	with	minimal	
explicit	parameters	or	via	probability	distributions.

§ AI	agents	may	be	straightforwardly	represented	at	the	same	level	of	fidelity	as	human	agents	with	
enough	characteristics	that	they	may	be	distinguished.

§ Therefore,	Whole-of-System	dynamics	may	be	tested.

§ Clear	evidence	that	AI	is	not	a	universal	panacea	– points	of	imbalance	in	relationship	to	human	
agents	may	be	detected	and	lead	to	clear	instabilities.	

§ Smart	enabled	information	objects	with	adaptive	control	mechanisms	help	achieve	such	a	balance.
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Appendix



33

Human	Organisation	and	Complexity
§ W.	Ross	Ashby,	Principle	of	Requisite	Variety	

(1958):	Control	of	‘complex	systems’;	Conant-
Ashby	theorem	(1970):	biological,	social	
systems

§ Herb	Simon,	Architecture	of	Complexity	(1962):	
value	of	hierarchy	as	‘nearly	decomposable	
systems’;	organisations	as	instances	in	span	
from	physical,	chemical,	biological,	social

§ Henry	Mintzberg,	The	Structuring	of	
Organizations	(1979):	empirical	theory	for	
range	of	structures	&	fitness-for-purpose

Key	concepts:	network	structures,	
heavy	tails,	bounded	rationality,	the	
role	of	environment



34

Use-case

C2	
Organisation
-May	be	ICT/AI	enhanced

Model:
Network	

synchronising	
‘OODA	loops’Recommendations

Threat

Parameters

Behaviours

Organisation and process of 
adversary

‘Noise’

* Organisation = network
* Process/ staggered battle-
rhythm
* Discipline/training = 
heterogeneity  

Stable?
Synchronising?
Staggering maintained?
Decision speed superiority?

Change structure?
Change process?
Tighter discipline/more training/better 
induction/new technology?

Network
Frequency distribution

Lags
Noise distribution
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Pr(x<p)

Stochastic	Kuramoto model
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Here:	L(t) = skewed	stable	Lévy	noise	(Kalloniatis	&	Roberts	PhysA 2017)
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Gaussian
Lévy, parameter 0≤a≤2,b=1

Noise	is	proxy	
for	complexity	
of	
environment
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Typically	(Bag	et	al	2007;	Khobasht et	al;	Esfahani et	al	2012):

Skewed jumps	↑

Skewed
Fat	tail
↓
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SAWN	for	Steady-State	activity:	Pull	

Sampled Desks

Desks/Roles
Products
Perception
Comprehension
Projection

Senior 
Officers in J3

Watch

Junior Officers 
in J3

Watch

Support Officers in J3

Support Officers 
in J3 Watch

Senior 
Officers in J2

Watch

Junior Officers in J2 Watch

Support Officers in J2

Analysts in J2

Ali, Kalloniatis et al 2015
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Sampled Desks

Desks/Roles
Products
Perception
Comprehension
Projection

Senior 
Officers in J3

Watch

Junior Officers 
in J3

Watch

Support Officers in J3

Support Officers 
in J3 Watch

Senior 
Officers in J2

Watch

Junior Officers in J2 Watch

Support Officers in J2

Analysts in J2

SAWN	for	Steady-State	activity:	Push	
Ali, Kalloniatis et al 2015
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Sampled Desks

Desks/Roles
Products
Perception
Comprehension
Projection

Senior 
Officers in J3

Watch

Junior Officers 
in J3

Watch

Support Officers in J3

Support Officers 
in J3 Watch

Senior 
Officers in J2

Watch

Junior Officers in J2 Watch

Support Officers in J2

Analysts in J2

SAWN	for	Crisis	activity:	Pull	
Ali, Kalloniatis et al 2015
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Sampled Desks

Desks/Roles
Products
Perception
Comprehension
Projection

Senior 
Officers in J3

Watch

Junior Officers 
in J3

Watch

Support Officers in J3

Support Officers 
in J3 Watch

Senior 
Officers in J2

Watch

Junior Officers in J2 Watch

Support Officers in J2

Analysts in J2

SAWN	for	Crisis	activity:	Push	
Ali, Kalloniatis et al 2015
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Key	properties	of	Lévy noise
Stable property

CLT: 

Lévy stable case:
• 1<a<2: in limit - finite mean, infinite variance
• 0<a< 1:in limit - infinite mean and infinite variance
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Pure	social	networks

Steady state

Crisis

Person	A Person	B

Information	
Object



42

Directed	Graphs	– Steady	State
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Directed	Graphs	– Crisis
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Interventions	II:	AI	– ‘noiseless’	WKs

Lowest ranked staff in shift work often those of lowest morale.

‘Sweet spot’: Interventions I + II –
smart I.O.s and AI lowest-ranked watch staff

Kalloniatis, ICCRTS 2016



45

Small 
World, 
p=0.2

Small 
World, 
p=0.6

J3

J3

J3

Barabasi
-Alberts, 
m=4

J3

Erdos-
Renyi, 
#edges
=180

Random 
Regular
av
deg=6

Random,
Appr. 
Deg dsn
2

J3

J3

Random,
Appr. 
Deg dsn
1

Barabasi
-Alberts, 
m=3

J3

J3



46

Beyond	Metaphors:	Are	they	‘critical’?	How	close	
to	‘chaos’?	Is	there	‘entropy’?

Computing “Fisher information” as 
function of coupling strength:
Kalloniatis, Zuparic, Prokopenko 
– in preparation

Phase profiles – based on Laplacian 
decomposition of dynamics
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Caveats
§ In	fact,	even	this	is	too	small,	too	

structured	to	truly	exhibit	
‘chaoticity’	(3-4	clusters	– periodic	
phase	space	orbits).

§ In	the	real	world,	it resides	in	a	
much	larger	(N=600+	people*)	quite	
hierarchical	structure		-
comparatively	large	critical	coupling	
– very	hard	to	completely	
synchronise.	

§ Even	with	moderately	large	N»150	
classical	organisation	structures	–
Machine,	Divisional,	Hierarchical	–
signal	for	‘phase	transition’	is	weak:

*
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Brede & Kalloniatis 2016

Interventions	III:	Adaptive	lags

Lags or ‘frustrations’:
Kuramoto-Sakaguchi model
But dynamical
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Box-whisker	plots

t1 t2 t3 t4

max

min

75% qntl

25% qntl
median

X

100 runs performed at each parameter setting

mean
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Origin	of	effect	– eg random	regular	graphs

Controlled

Uncontrolled

Adaptive lags 
allow micro-
mutual 
adjustment 
giving minimal 
splay and 
synch to 
driving freq.

Uncontrolled 
self-synch to 
mean freq
through 
ordinary 
Kuramoto 
mechanism 
with large 
‘splay’.

When a is too 
large Lyapunov
instability follows:

W
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