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Abstract—Performing high accurate pose estimation has been
an attractive research area in the field of computer vision; hence,
there are a plenty of algorithms proposed for this purpose.
Starting with RGB or gray scale image data, methods utilizing
data from 3D sensors, such as Time of Flight (TOF) or laser
range finder, and later those based on RGBD data have emerged
chronologically. Algorithms that exploit image data mainly rely
on minimization of image plane error, i.e. the reprojection error.
On the other hand, methods utilizing 3D measurements from
depth sensors estimate object pose in order to minimize the Eu-
clidean distance between these measurements. However, although
errors in associated domains can be minimized effectively by such
methods, the resultant pose estimates may not be of sufficient
accuracy, when the dynamics of the object motion is ignored.
At this point, the proposed 3D rigid pose estimation algorithm
fuses measurements from vision (RGB) and depth sensors in
a probabilistic manner using Extended Kalman Filter (EKF).
It is shown that such a procedure increases pose estimation
performance significantly compared to single sensor approaches.

I. INTRODUCTION

Many computer vision related problems can be solved

effectively with the aid of 3D object tracking. In robotic appli-

cations, knowing the exact metric location of entities relative

to each other enables user defined actions to be performed

by automatic systems. For instance, estimation of the relative

orientation between Unmanned Aerial Vehicle (UAV) and

tanker reference frames gains autonomous refueling capability

to UAVs. Considering monetary as well as human health

issues, highly accurate position estimation is critical for the

reliability of such systems. As a military system, on May 2012,

DARPA and Northrop Grumman Corp. announced completion

of an autonomous refueling system between two high altitude

UAVs [1].

Augmented Reality (AR) is also an attractive application

of pose estimation. AR simply aims insertion of artificial

objects to a real scene observed by a camera. To this aim, the

relative orientation between capturing camera and the scene

should be discovered. The challenge in such applications is to

obtain consistent pose estimates at consecutive time instants

in order to avoid jitter. In a practical system an automobile

company aims to assist technical staff during car maintenance

by insertion of synthetic information onto the observed motor

video [2].

Fig. 1: 3D scene map [4]

In some applications, in which the object is represented as

a point cloud model (PCM), estimation of orientation between

camera and object reference frames enables 3D mapping of the

object. For instance, the map shown in Figure 1 is obtained

by tracking the object for more than 1000 frames and for

such cases that may suffer from error accumulation over time,

pose estimation accuracy becomes critical in order to generate

pleasant 3D maps. There are commercial solutions that aim to

bring such a technology into our homes [3].

Recent advances in sensor technology, created sensors, such

as SwissRanger Sr-4000 [5], Microsoft Kinect [6] and Asus

Xtion [7], that can capture high resolution and high frame

rate 3D as well as 2D visual data. Among these sensors,

Kinect and Xtion are widely used among computer vision

researchers, since they are affordable as well as providing

time synchronous RGB and 3D data. Figure 2 shows typical

registered RGB and depth images that are captured by Kinect.

In this paper, our aim is to increase the accuracy of 3D

pose estimation by simultaneous utilization of visual and depth

data provided by the sensors. Figure 3 illustrates the object and

sensor reference frames. Following variables define the overall

system:




Xoi

Yoi

Zoi



: 3D coordinates of ith object point with respect

to the object reference frame,
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(a) RGB image (b) Depth image

Fig. 2: Typical RGB and depth images captured by Kinect [8].

Fig. 3: Object and sensor reference frames.





Xodi

Yodi

Zodi



 : 3D coordinates of ith object point measured by

the depth camera with respect to the depth camera reference

frame,
[

xovi

yovi

]

: 2D pixel coordinates of ith object point mea-

sured by the vision sensor,

Rdo = R(ρdo, θdo, φdo) : Rotation matrix between the

object and the depth camera reference frames defined by

angles ρdo, θdo and φdo in x, y and z directions, respectively,

tdo = [txdo
, tydo

, tzdo ]
T : Translation vector between the

object and the depth camera reference frames in x, y and z
directions, respectively,

Rvd = R(ρvd, θvd, φvd) : Rotation matrix between the

depth and the vision sensor reference frames defined by angles

ρvd, θvd, and φvd, in x, y and z directions, respectively,

tvd = [txvd
, tyvd

, tzvd
]T : Translation vector between the

depth and the vision sensor reference frames in x, y and z
directions, respectively.

Problem is defined as recovering the transformation between

object and depth camera reference frames, i.e. Rdo and tdo.

We assume that external calibration between vision and depth

sensors, i.e. Rvd and tvd, is already estimated and remains

fixed in time. Please refer to [9] for a discussion on external

calibration of the sensors.

3D object coordinates and measurements of the depth sensor

are related as follows (Time index is omitted for the sake of

simplicity):





Xodi

Yodi

Zodi



 = Rdo





Xoi

Yoi

Zoi



+ tdo (1)

Note that once 3D-3D correspondences between object

coordinates and depth sensor measurements are known or

estimated, it is possible to recover desired transformation

parameters. Methods utilizing depth only measurements are

examined in Section II.

Similarly, ignoring lens distortions [10] ,vision sensor mea-

surements can be related to the object coordinates:

αi





xovi

yovi
1



 = Kv



Rvd



Rdo





Xoi

Yoi

Zoi



+ tdo



+ tvd





(2)

where αi is the scale factor and Kv is the internal calibration

matrix of the vision sensor. Kv is related with the physical

construction of the vision sensor and according to pin-hole

camera model it can be written as follows [10]:

Kv =





fx s px
fy py

1



 (3)

where fx and fy represent focal lengths, px and py represent

principal point coordinates (all in pixels) and s is the skew

parameter. Rewriting (2), we obtain the following relation for

vision sensor measurements:

αi





xovi

yovi
1



 = Kv



Rvo





Xoi

Yoi

Zoi



+ tvo



 (4)

where

Rvo = RvdRdo

tvo = Rvdtdo + tvd
(5)

Similar to (1), once 2D-3D correspondences are estab-

lished, it is possible to recover Kv , Rvo and tvo, and hence,

the required transformation [Rdo, tdo]. In the literature, the

estimation of Kv and [Rvo, tvo] from correspondences are

referred as internal camera calibration and pose estimation,

respectively. Although these two problems are coupled and can

be solved simultaneously, throughout this paper, we assume

that Kv is calculated offline and remains fixed. The algorithms

proposed for pose estimation using 2D-3D correspondences

are reviewed in Section II.

Although it is possible to estimate the object pose using

single sensor approaches, in this paper we show that by fusing

both sensor measurements in a probabilistic manner, it is

possible to increase the accuracy of pose estimation. To this

aim, EKF is adopted as the probabilistic framework due to its

ability to model the dynamics of the object motion.
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II. RELATED WORK

For pose estimation using 2D-3D correspondences, many

solutions have been proposed. Similar to the classification

mentioned in [11], in a more general manner, these algorithms

can be grouped into two categories as follows:

1) Algorithms directly utilizing 2D-3D correspondences to

minimize errors, such as reprojection error, object space

linearity error, etc.

2) Algorithms relying on the estimation of object coordi-

nates with respect to the camera reference frame.

In one of the earliest approaches falling into the first

category, a method named POSIT (Pose from Orthography and

Scaling with Iterations) is proposed [12]. In POSIT, by updat-

ing the initial scale factor through the iterations, the perspec-

tive projection is estimated by scaled orthographic projection,

until convergence. The extended version called SOFTPOSIT

[13] solves the assignment, i.e. matching between 2D image

and 3D object coordinates, and pose estimation problems

simultaneously. The assignment problem is solved by the soft-

assign algorithm of [14]. SOFTPOSIT algorithm is observed

to be sensitive to initial conditions; hence, may diverge if not

properly initialized.

The Direct Linear Transformation (DLT) [15] method es-

timates the 4 × 3 transformation matrix between 3D object

coordinates and 2D image coordinates directly without forcing

the rigid body transformation model and then the transfor-

mation matrix is decomposed into internal camera, rotation

and translation matrices using RQ decomposition. Since this

simple method is not accurate, it is generally utilized as

an initial estimate in iterative approaches. However, due to

inherent sensor noise, it is not trivial to decompose projection

matrix in order to get an orthogonal rotation matrix and error

is introduced during this decomposition. With this motivation,

the algorithm proposed by the authors in [16] utilizes orthog-

onal iterations (OI) method, which guarantees an orthogonal

rotation matrix R through iterations and decreases the object

reference frame space error unless a solution is reached. The

image points are utilized as hypothesized scene points in order

to obtain an initial estimate and this initialization is stated to

result with a pose estimation better than a weak-perspective

initialization.

Finally, the author of [17] proposes an efficient linear

solution for the exterior orientation estimation problem. Or-

thogonal decomposition is first used to isolate the unknown

depths of feature points with respect to the camera reference

frame. This approach allows the problem to be reduced to an

absolute orientation with scale problem, which is solved using

the Singular Value Decompositon (SVD).

The algorithms in the second category stem from the

Perspective-n-Points (PnP) approach (specifically P3P ap-

proach) developed by Grunert in 1841 [18], which is still

a highly popular method in pose estimation literature. The

method utilizes the relative distances between the coordinates

of features in object reference frame and provides a closed

form solution to the corresponding 3D coordinates in the

camera reference frame. Finally, the two reference frames are

related by solving the absolute orientation problem. In [19],

possible P3P solutions are analyzed.

The P3P method is quite sensitive to noise, since it depends

on the solution of higher order polynomials for determination

of the camera coordinates. Moreover, P3P algorithm may yield

up to 4 real solutions. Hence, in [20], the authors propose a

linear method, which is based on solving many P3P equations

from n (n > 3) points, using SVD. However, this approach

is not stable when there are outliers and a positive solution

is not guaranteed. Therefore, the authors of [21] propose a

PnP solution utilizing Gauss-Newton iterations based on the

initial estimates of [20]. The iterated manner, however, may

decrease efficiency. An efficient non-iterative PnP algorithm,

which is based on expressing the 3D feature points as a

weighted sum of four virtual control points and estimating

the coordinates of these control points in the camera reference

frame, is proposed in [22]. The method is stated to be efficient

with O(n) complexity.

Moreover, although their accuracies are generally lower than

mentioned methods, there are numerous algorithms utilizing

pattern recognition techniques [23] in the literature of pose

estimation. For instance, the head pose estimation algorithm

proposed in [24] utilizes spectral regression discriminant anal-

ysis with automatic regularization parameter estimation. The

method is claimed to yield promising pose estimation results.

There are also multi-view approaches proposed for pose esti-

mation. In [25], data fusion is performed by back-projections

from single images of the multi-view set onto the estimated

3D model. Then, the model pan angle is estimated by utilizing

a particle filter. Furthermore, in [26], a neural network-based

multi-view pose estimation scheme is proposed.

The algorithms utilizing pure range data are based on the

registration of 3D point clouds, especially when the 3D-3D

correspondences are not known. For instance in [27], in offline

phase, a triangular mesh model of the object is formed using

range sensors. In the online stage, the mesh model of the

object is aligned with the captured range data using Iterative

Closest Point (ICP) approach. Proposed in [28], ICP algorithm

first matches the closest points between two point sets and

calculates pose based on this association. Then aligns points

using this pose estimate and in an iterative manner continues to

match nearest points and estimate pose. For pose estimation,

quaternion-based approach, which represents rotation matrix

using a 4 × 1 unit norm vector, is used. The quaternions are

calculated by minimizing a mean square objective function

that calculates the difference between original and transformed

3D points. The authors of [27] modify ICP so that it can

be implemented in real-time. The main drawback of ICP

algorithm is its sensitivity to initial object pose. Since ICP

requires a good initial estimate to converge, many algorithms

exploit ICP after a coarse registration. In [29], using the limits

of object velocity and the sensor frame rate, the interframe

transformation space is reduced considerable and the pose

space is quantized; hence the problem of pose estimation

is converted to a classification problem. Following discrete
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pose classification step, ICP algorithm is utilized to fine-tune

pose estimates with a few iterations. Furthermore, utilizing

parallel processing on GPUs, in [30] an ICP based 3D tracking

algorithm is proposed. The system tracks all pixels in a

640x480 image and the performance is quite satisfactory due

to dense tracking. However, the huge computational burden

makes it impossible to run the algorithm on conventional

desktop platforms.

In order to perform 3D-3D registration a descriptor based

approach is proposed in [31]. First of all, for each data

point, a descriptor based on local geometry is computed. Then

distinctive features are selected among data points based on

the uniqueness of their descriptors. Then, a distance matrix

storing the descriptor distances between model and data points

is formed. Optimal set of correspondences, which brings the

sets to a coarse alignment, is established using the branch-

and-bound algorithm. The pose is refined further using ICP

method. However, in the case of noisy measurements, a

descriptor-based method may not yield satisfactory results.

One of the main drawbacks of working with range data is

the inherent sensor noise and low resolution. Hence, in order to

overcome such limitations, many researches propose to utilize

range sensors and vision sensors together. In [32], the 2D-3D

correspondences between range and vision data are utilized

for RANSAC [33] and LM [34] based pose estimation. Sensor

fusion is only utilized to calculate covariance matrices of 3D

measurements and pose tracking is instantaneous. To handle

such drawbacks, in [35], first the object is transformed using

the initial state estimate of EKF. Then, the proposed articulated

ICP is used to align point clouds. Finally, measurement update

is performed to correct the pose estimate of the articulated

ICP. Moreover, the pose estimates of EKF and ICP based

methods corrects each other at each iteration. Similarly, the

authors of [36] maximize photo consistency by linearizing the

cost function to register all pixels of consecutive frames. The

authors of [37] propose a probabilistic optimization framework

in order to register RGBD images and track pose. The joint

shape and color distributions are represented as a tree structure,

where each node stores statistics on the joint spatial and color

distributions of the points within its volume. The graphs at

different time instants are associated by finding the transforma-

tion (represented by unit quaternions and a translation vector)

that maximizes their matching likelihood. Although method is

accurate, it is computationally involved.

Although not pointed by the above algorithms, the motion

of a free moving object can be modeled using a dynamic

system framework, such that the current pose of the object is

constrained with the previous time instant pose and the under-

lying motion model. This formulation enables time consistent

tracking results; hence, reduces jitter. By this motivation, the

algorithm of [35] performs a weighted combination of object

pose imposed by motion model and that estimated using an

ICP variant operating on RGBD images. However, in this

approach a higher level fusion of estimated pose parameters

is proposed and underlying noise statistics inherent in the

measurements of vision and depth sensors is ignored.

III. PROBABILISTIC FUSION OF RGBD DATA

As illustrated in Figure 3, the joint utilization of vision

and depth sensors enables two sets of measurements for each

object point i, namely [Xodi
, Yodi

, Zodi
]T from depth sensor

and [xovi
, yovi ]

T from vision sensor. In order to increase the

accuracy of 3D pose estimation, one should devise an algo-

rithm exploiting these two types of data as much as possible.

Researchers involved in probabilistic robotics research mainly

deal with solving similar problems. The robot needs to make

an estimate of the state using measurements acquired by its

sensors. The term state stands for any property of the robot or

the environment of interest, such as the velocity or position of

the robot and the locations of features around the robot [38].

The states change in time according to a system model. For

instance, if you apply this much power to the wheel motors,

the velocity of the robot changes that much. These states

cannot be directly observed by the robot but through some

sensor measurements, such as the readings of an odometer

sensor or the images captured by a vision sensor. Similarly,

these measurements are mathematically related with the states.

To sum up, two relations govern the overall state estimation

procedure:

1) State Update Equations: What is the state xt at time

t, if a sequence of control inputs u1:t are applied, a

sequence of states x0:t−1 are resulted and a sequence of

measurements z1:t−1 are observed?

2) Measurement Equations: What is the measurement zt
at time t, if a sequence of control inputs u1:t are applied,

a sequence of states x0:t are resulted and a sequence of

measurements z1:t−1 are observed?

States and measurements evolve in time according to prob-

abilistic laws [38]. State and measurement equations are

governed by following probability distributions, respectively:

p(xt|x0:t−1, z1:t−1, u1:t)

p(zt|x0:t, z1:t−1, u1:t)
(6)

Although the robot cannot directly observe states, it can

have a belief regarding the states through measurement and

control input sequences:

bel(xt) = p(xt|z1:t, u1:t) (7)

Defined formally, belief is the robot’s internal knowledge of

the state. A two step approach gives the belief. First, before

utilizing the current measurement zt, a prediction bel(xt) is

made:

bel(xt) = p(xt|z1:t−1, u1:t) (8)

Then after incorporating zt, bel(xt) is obtained from bel(xt)
by measurement update. Bayes filter algorithm is the most

general method for calculating beliefs [38]. In a Markov

process, the prediction and measurement update steps of the

algorithm are respectively as follows:
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bel(xt) =

∫

p(xt|xt−1, ut)bel(xt−1)dx

bel(xt) = ηp(zt|xt)bel(xt)

(9)

where η is the normalizing scalar. Please note that, once

the dynamical system model, defined by state update and

measurement equations, is known, it is possible to obtain the

probabilities p(xt|xt−1, ut) and p(zt|xt); hence, the belief,

using Bayes filter approach. For the 3D pose estimation prob-

lem of concern, in which the object makes free movements

and associated measurements are acquired by sensors, Bayes

algorithm stands as a powerful tool to estimate pose, since

it makes time consistent estimations in a well-defined prob-

abilistic framework. The mathematical derivations of Bayes

algorithm are not in the scope of this manuscript. Refer to

[38] for further discussions.

Kalman Filter (KF) is proposed for the solution of Bayes

algorithm in linear systems, for which the state transition

(p(xt|xt−1, ut)) and measurement (p(zt|xt)) probabilities are

linear in terms of their arguments with additive Gaussian

noise [39]. However, as introduced in Section I, geometric

relations involved in model-based 3D tracking have non-linear

characteristics. Therefore, KF formulation does not directly

suit our needs. At this point, Extended Kalman Filter (EKF)

proposed for non-linear systems comes as a solution, for

which state update and measurement equations are governed

by functions g and h, respectively:

xt = g(ut, xt−1) + ǫt

zt = h(xt) + εt
(10)

where ǫt and εt are zero mean random Gaussian vectors stand-

ing for randomness in state transition and measurements with

covariance matrices Rt and Qt respectively. Consequently, the

EKF algorithm estimates the belief as follows [38]:

µt = g(ut, µt−1)

Σt = GtΣt−1G
T
t +Rt

Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1

µt = µt +Kt(zt − h(µt))

Σt = (I −KtHt)Σt

bel(xt) = N(xt;µt,Σt)

(11)

where Gt and Ht stand for Jacobians and N is the Gaussian

distribution. The underlying motion model of the proba-

bilistic system defines the state update equation, and hence

the transition between adjacent states. Although in robotic

applications, there are a variety of motion models depending

on the type of the robot and the kinematics of its moving

parts, in our case of a single independently moving object,

the underlying motion model is relatively easily defined. The

object moves with respect to either constant position, constant

velocity or constant acceleration model. In vision literature,

constant velocity motion model is usually utilized to model

motion of free moving hand-held cameras and rigid objects

[40], [35], [41], [42]. In constant velocity motion model, the

state is composed of position and velocity of the object. The

velocity between consecutive time instants is the same up to an

additive noise term. This noise term accounts for any possible

acceleration caused by system dynamics or external influences.

On the other hand, the position is updated by simple addition

of previous position, change in position (velocity times delta

time) and a noise term.

The aim of the Bayes filter (actually the EKF) is to estimate

the states, i.e. Rdo, tdo and associated velocities, by using the

observations [Xodi
, Yodi

, Zodi
]T and [xovi

, yovi ]
T . In constant

velocity motion model, the state update equations, relating

consecutive states, can be written as follows:

















ρdo
θdo
φdo

txdo

tydo

tzdo

















t

=

















ρdo
θdo
φdo

txdo

tydo

tzdo

















t−1

+

















ρ̇do
θ̇do
φ̇do

ṫxdo

ṫydo

ṫzdo

















t−1

×∆t+ ǫit

















ρ̇do
θ̇do
φ̇do

ṫxdo

ṫydo

ṫzdo

















t

=

















ρ̇do
θ̇do
φ̇do

ṫxdo

ṫydo

ṫzdo

















t−1

+ ǫiit

(12)

The first line of (12) performs position update by adding

previous position and position update, whereas the second line

stands for the conservation of velocity up to an additive noise

term. It should be noted that time difference (∆t) between

consecutive updates is 1 frames.

On the other hand, measurement equations relating current

states and current measurements are exactly same as (1)

and (2), except an additive noise term to account for the

measurement noise. For N object points, 5N×1 measurements

are obtained by concatenating each sensor measurements:





Xodi

Yodi

Zodi





t

= [Rdo]t





Xoi

Yoi

Zoi



+ [tdo]t + εit

αi





xovi

yovi
1





t

= Kv



Rvd



[Rdo]t





Xoi

Yoi

Zoi



+ [tdo]t



+ tvd



+ εiit

(13)

where [Xoi , Yoi , Zoi ]
T represents 3D coordinates of ith object

point with respect to object reference frame and subscript

t denotes time. As a final remark, instead of a 5N × 1
measurement vector, a possible combination that yields a 5×1
measurement vector could be considered. In [43], it is shown

for the linear Kalman case that the former approach is more

flexible and computationally more efficient for time-varying

noise characteristics and increased number of measurements.

Although, the noise on measurements are highly dependent on

used vision and depth sensors, the scene characteristics and the

feature matching algorithm used, without loss of generality,
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the measurement noise covariance matrix Qt is designed in

the form of a diagonal matrix of size 5N × 5N where each

entry specifies variance of associated measurement:

Qt = diag(σ2

XY Z , σ
2

pix) (14)

A general discussion on the noise model for the Kinect

sensor can be found in [44]. Finally, the measurements can be

associated between consecutive time instants using the feature

tracking algorithm in [4].

IV. TEST RESULTS

The performance of the proposed RGBD data based pose

estimation algorithm is compared to that of methods utilizing

single sensor approaches. Please remember that, as detailed in

Section I, the method using 3D measurements estimates object

pose using (1). To this aim quaternion based approach [45],

which is widely used in the associated literature, is adopted.

The algorithm minimizes the 3D error that is the difference

between transformed object coordinates and 3D measurements

by the depth sensor [Xodi
, Yodi

, Zodi
]T :

e3D = ‖





Xodi

Yodi

Zodi





t

−



[Rdo]t





Xoi

Yoi

Zoi



+ [tdo]t



‖ (15)

On the other hand, the approach depending on 2D measure-

ments to estimate pose uses (2) and minimizes the reprojection

error between pixel measurements [xovi
, yovi ]

T and object

coordinates [Xoi , Yoi , Zoi ]
T projected on the image plane:

e2D = ‖

[

xovi

yovi

]

t

−

[

xovi

yovi

]

t,P

‖ (16)

The approach finds initial pose estimate using PnP algorithm

[21] and refines it further using LM optimization [34]. Note

that these single sensor algorithms are selected based on the

observation that many end-to-end 3D trackers utilize these

methods as the core pose estimation routine.

In order to analyze the performance of the methods, an

artificial test scenario is designed. To this aim, the Face data

set, with the 3D model shown in Figure 4, is used. Since the

model is composed of thousands of points, random 20 points

are selected as [Xoi , Yoi , Zoi ]
T and utilized for tracking.

The initial states at time t0 are selected as follows:
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
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


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















t0

=
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










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1× 10−4 rad
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












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












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ṫzdo

















t0

=

















1× 10−4 rad/frame
25× 10−3 rad/frame
1× 10−4 rad/frame
1× 10−4 mm/frame
1× 10−4 mm/frame
1× 10−4 mm/frame

















(17)

Fig. 4: 3D model of the Face sequence.

The states at consecutive time instants are obtained accord-

ing to (12). Similarly, (13) is used to generate the measure-

ments [Xodi
, Yodi

, Zodi
]T and [xovi

, yovi ]
T at each time instant

for the points selected from the model. The measurement noise

variances σ2

XY Z and σ2

pix are 10 mm and 0.5 pixels for 3D

and 2D measurements, respectively. The sequence consists of

100 frames, therefore, we simulate a movement of the head

from left to right with a dominant motion in the y-axis. The

results are obtained by Monte Carlo simulations composed of

50 trials. The sensors are calibrated internally and externally

by using the procedure detailed in [9]. Moreover, the initial

state is assumed to be known for all methods.

Proposed method and single sensor approaches are com-

pared in terms of 2D reprojection error (16), 3D error (15) and

deviation from groundtruth pose parameters available. Mean

error values are obtained by averaging associated values for

all tracked object points in a frame. 2D reprojection errors for

methods are shown in Table I.

TABLE I: Mean reprojection errors (in pixels).

Method Fusion 2D only 3D only

Error 0.88 0.82 0.92

By construction, the algorithm utilizing vision sensor min-

imizes the reprojection error. Therefore, in terms of reprojec-

tion error it gives the best performance. On the other hand,

3D errors are obtained as shown in Table II.

TABLE II: Mean 3D errors (in mm).

Method Fusion 2D only 3D only

Error 4.96 30.72 4.77

Similarly, method utilizing mere depth sensor measurements

minimizes 3D error; and hence it gives best performance

in terms of this metric. Finally, mean pose estimation error

values are tabulated in Table III. The sensor fusion approach

minimizes 2D and 3D errors simultaneously and performs

more accurate pose estimation. Therefore, the proposed fusion-

based method is much more reliable compared to single sensor

based algorithms.
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TABLE III: Mean tracking errors.

Method Fusion 2D only 3D only

rotation-x (mrad) 6.14 48.34 23.76

rotation-y (mrad) 2.83 35.48 15.96

rotation-z (mrad) 6.45 28.48 22.61

translation-x (mm) 1.60 29.37 10.98

translation-y (mm) 2.73 27.77 9.38

translation-z (mm) 1.71 29.16 8.40

Instead of PnP and quaternion based algorithms, EKF is also

utilized to perform pose estimation using single sensor inputs.

The state update equation is exactly same as (12), however

2N×1 and 3N×1 measurement vectors for methods utilizing

2D-3D and 3D-3D correspondences are obtained using the

first and second lines of (13) respectively. The pose estimation

accuracies are as follows:

TABLE IV: Mean tracking errors for single sensor methods.

Method 2D only EKF 3D only EKF

rotation-x (mrad) 15.11 7.08

rotation-y (mrad) 9.39 3.01

rotation-z (mrad) 10.96 8.41

translation-x (mm) 6.92 1.68

translation-y (mm) 7.84 2.76

translation-z (mm) 7.70 1.79

It is clear from Table IV that, although the methods are

much more accurate than their instantaneous counterparts

depicted in Table III, they cannot perform better that the

proposed sensor fusion approach.

Figure 5 illustrates the pose estimation errors and associated

variance estimates by the filter (please note that only values

for dominant y-directional rotation estimate is given for space

restrictions). As the filter is updated error values converges

towards zero, also the variance of the estimate is decreases,

as expected. Therefore, we can conclude that variances can

be utilized as a figure of merit for deduction of qualities of

estimates. Finally, it is observed that the filter can tolerate up

to 5% error during initialization and cannot converge after that

point.

V. CONCLUSION

Depth and vision sensors provide data having completely

different statistics and an optimal tracking method should

handle this issue by considering the underlying noise models.

Moreover, in 3D object pose estimation, the pose estimates

need to be temporally consistent in order to reduce jitter

and generate visually more pleasant tracks. Considering these

preconditions, EKF comes as a powerful solution that can fuse

RGBD data in order to solve nonlinear pose estimation prob-

lem. Hence, in this paper, starting from the basic state update

and measurement equations, the proposed sensor fusion ap-

proach that adopts constant velocity motion model is detailed.

The performance of the proposed formulation is analyzed in

terms accuracy compared to single sensor approaches. It is

observed that although single sensor approaches successfully

minimize errors in 2D and 3D spaces, their accuracies are

much lower than the sensor fusion approach.
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