
Anisotropic Point-Based Fusion

Damien Lefloch

Computer Graphics Group

University of Siegen

Email: damien.lefloch@uni-siegen.de

Tim Weyrich

Dept of Computer Science

University College London

Email: t.weyrich@ucl.ac.uk

Andreas Kolb

Computer Graphics Group

University of Siegen

Email: andreas.kolb@uni-siegen.de

Abstract—We propose a new real-time framework which
efficiently reconstructs large-scale scenery by accumulating
anisotropic point representations in combination with memory
efficient representation of point attributes. The reduced memory
footprint allows to store additional point properties that represent
the accumulated anisotropic noise of the input range data in the
reconstructed scene. We propose an efficient processing scheme
for the extended and compressed point attributes that does
not obstruct real-time reconstruction. Furthermore, we evaluate
the positive impact of the anisotropy handling on the data
accumulation and the 3D reconstruction quality.

I. INTRODUCTION AND PRIOR WORK

Following the seminal paper by Rusinkiewicz et al. [1],

and further popularized through the availability of affordable

structured-light and Time-of-Flight depth cameras and the

prominent KinectFusion system [2], interactive real-time scene

acquisition from hand-held depth cameras has developed much

momentum, enabling applications in ad-hoc object acquisition,

augmented reality and other fields.

Previous work has mainly focused on representing the

accumulated model using implicit volumetric voxel grids in

which truncated distance fields are accumulated in order to store

the probability of a voxel being at the observed surface. As this

representation is rather inefficient in terms of spatial adaptivity

and scalability, various approaches have been proposed to

overcome this restriction, e.g., by adopting the spatial position

and orientation of the voxel grid [3] or by hashing and book-

keeping of smaller voxel bricks [4]. An alternative point-based

representation has been presented by Keller et al. [5].

Common to all these systems is a three-stage process,

consisting of the following components; see also Fig. 1:

1) Depth Map Preprocessing: The range map delivered by

the Kinect camera is preprocessed, e.g., using bilateral

filtering, and additional data such as normals are estimated

for each range map pixel.

2) Camera Pose Estimation: Based on the current obser-

vation and the so far accumulated model, the camera

pose is estimated using an Iterative Closest Point (ICP)

approach [6].

3) Depth Map Fusion: In this step the registered input range

map is accumulated into the existing model representation.

One aspect that has insufficiently been addressed so far is

the anisotropic nature of the input data. The spatial uncertainty

of an individual pixel of the input range map is determined by

two factors:

a) the lateral pixel extent which is given by the lateral

resolution of the camera chip and the intrinsic parameters

of the camera, i.e, focal length, principal point and lens

distortion, in combination with the depth value, i.e. the

distance from the camera, and

b) the depth noise of the sensor, which itself strongly depends

on the underlying range measurement principle.

There are already some works on noise models for range

devices, e.g., for Time-of-Flight (ToF) cameras such as the

new generation Kinect One. Falie and Buzuloiu [7] present

a noise model based one phenomenological considerations,

which predicts a range error as a function of the amplitude

and the distance value of a specific pixel. For an overview of

denoising approaches for ToF cameras, refers to the survey

of Lenzen et al. [8]. Often simple Gaussian noise models are

assumed, e.g., in the context of motion capturing [9].

Depth Map

Fusion

Camera Pose

EstimationPreprocessing

Depth Map 

Input Depth Map

Surface Rendering

Fig. 1. The KinectFusion pipeline.

Maier-Hein et al. [10] introduce a method in order to improve

ICP-based registration of ToF-based range maps with respect to

a given polygonal model in the context of medical applications.

However, as of yet, the anisotropy of the input data has not

been considered in the context of real-time scene acquisition.

In this paper we present a new real-time framework for

efficient reconstruction of large-scale scenery incorporating the

anisotropy of the input data. Our system uses an enhanced

point-based representation similar to Keller et al. [5] which is

capable of handling anisotropy in the depth map fusion step;

see Fig. 1. Our main contributions are:

• a novel symmetric anisotropic distance measure that is

applied to establish more robust correspondences between

input and model points in the fusion step, and

• a novel anisotropy-aware fusion technique for accumula-

tion of anisotropic input data into the model,

• a data compression scheme for point-based model repre-

sentation implying an efficient storage of attributes per-

point.

Furthermore, we present a solid evaluation on both, the

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 2121



data compression scheme and the anisotropic accumulation

approach, and their impact on the reconstruction quality.

II. OVERVIEW POINT-BASED FUSION

Our approach shares many design aspects with the point-

based KinectFusion method proposed by Keller et al. [5]. The

main components of the online, point-based scene reconstruc-

tion are the following stages; see Fig. 1.

a) Depth Map Preprocessing: Denoting a pixel of the

input frame as u = (x,y)⊤ ∈ R
2, an initial 2D vertex map

Vi(u) ∈ R
3 is generated from the depth map Di(u) ∈ R for

frame i by applying the inverse of the intrinsic camera matrix

Ki. Additional information is computed and stored in attribute

maps: a normal map Ni, the point radius map Ri.

b) Depth Map Fusion: Given a valid camera pose and

the corresponding vertex and attribute maps, the geometric data

is fused into the global model. The global model consists of a

simple list of attributed 3D points. Model points evolve from

unstable to stable status based on the confidence they gathered.

The confidence essentially counts how often a point has been

observed by the sensor. Data fusion first projectively associates

points in the input depth map with the points in the global

model by rendering the model from the current camera position

as an index map. If point partners are found, the input point is

merged with the best matching model point using a weighted

average for the point position and attributes. If no merge partner

is found for an input point, the new point is added to the global

model as an unstable point. The global model is continuously

cleaned up over time to remove outliers due to visibility and

temporal constraints, removing isolated observations that have

not been confirmed by further observations over a specific

period of time.

c) Camera Pose Estimation: All stable model points are

passed to the visualization stage which reconstructs a dense

representation of the model’s surface including the associated

attributes, i.e., normal and size, using a surface splatting

technique. To estimate the 6DoF camera pose, the model

points are projected from the previous camera pose, and a

pyramidal dense iterative-closest-point (ICP) [2] alignment

is performed using the synthesized model map and the input

depth map. The resulting relative transformation rigidly links

the previous to the new global camera pose.

Regarding the rendering, which is not further discussed in

this paper, we stick to the simple splat surfel rendering used

in Keller et al. [5] which trades off the rendering quality in

order to achieve a fast synthetic view generation. For visual

user feedback, we use a simple Phong illumination model

coupled with a fast approximation of ambient occlusion known

as Screen-Space Ambient Occlusion (SSAO) [11].

III. ANISOTROPIC POINT-BASED FUSION

We introduce a new reconstruction framework that stores

as an additional per-point property the 3×3, anisotropic noise

covariance matrix Σ(u).

A. Anisotropy

So far, real-time reconstruction methods with range maps

have ignored the anisotropic nature of the range data. The

anisotropy results from the fact, that the reliability of a 3D

point in a range map is much higher in lateral direction than

in axial direction, as the lateral uncertainty is only limited

by the pixel size and, due to the perspective mapping, by the

distance. The axial uncertainty is defined by the noise of the

acquisition device, i.e., the Kinect camera in our case, which,

for example, increases for larger object-to-camera distances.

Maier-Hein et al. [10] model the standard deviation as a

function over distance. We use the model for the Kinect camera

proposed by Nguyen et al. [12] in order to compute the variance

of the noise based on the z-distance.

Given a covariance matrix Σp for a point p ∈ R
3, the

Mahalanobis distance of any other point q ∈ R
3 can be

calculated based on the inverse of the covariance matrix Σ
−1
p ,

which is also called reliability matrix:

dp,Σ(q) =

√
(q−p)⊤Σ

−1
p (q−p) .

We directly store the symmetric 3×3 reliability matrix Σ
−1
p

leading to 6 additional values per point.

Similar to Maier-Hein et al. [10], we build the data associa-

tion before data fusion using our anisotropic model (see Sec. II

for a short description of the data association). While they

use the Malahanobis distance based on the inverse of the sum

of covariance matrix (Σp +Σq)
−1, we minimize the sum of

both Malahanobis distances dp,Σ(p−q)+dq,Σ(p−q) in order to

choose the best associated corresponding pair for accumulation.

The main reason of this approach is performance. As we store

the reliability matrix Σ
−1
p , applying Maier-Hein et al. [10]

would require three additional matrix inversions per point-pair

comparison. We conducted several experiments to compare

our simple minimization to the one proposed in [10]. All

experiments were leading to the same result, i.e, same points

pairs. This validates our choice to keep our data association

for a better efficiency.

B. Anisotropic Fusion

The accumulation of range data in the anisotropic case

has to consider the non-uniformity of distance measurements

given by the depth sensor. Similar to the geometric fusion, the

anisotropic noise model should be refined over time. Therefore,

the geometric and anisotropic fusion procedures have to be

reformulated by convex combinations for accumulating of the

point’s mean and the accumulation of the reliability matrix.

Considering two different points pi with covariance matrices

Σpi
, i = 1,2, and point q lying on the line segment between p1

and p2, a meaningful definition of an anisotropic split ratio β
of q with respect to p1 and p2 is given by

q =
dp2,Σ2

(q)

dp1,Σ1
(q)+dp2,Σ2

(q)
p1 +

dp1,Σ1
(q)

dp1,Σ1
(q)+dp2,Σ2

(q)
p2

= (1−β )p1 +βp2, with β =
dp1,Σ1

(q)

dp1,Σ1
(q)+dp2,Σ2

(q)
. (1)

2122



Within the context of point-based fusion, the points p1, p2 and

q may refer to the model point, the corresponding input point

and the resulting merged point, respectively.

Since q is the resulting merged point, we need to reformulate

the anisotropic split ratio β as given in Eq. (1). Defining q

as affine combination q = (1−α)p1 +αp2 for some α ∈ [0,1]
and exploiting, that the Mahalanobis distance simply scales

the isotropic distance values for a given direction, from Eq. (1)

we get

β =
dp1,Σ1

((1−α)p1 +αp2)

dp1,Σ1
((1−α)p1 +αp2)+dp2,Σ2

((1−α)p1 +αp2)

=
αdp1,Σ1

(p2)

(1−α)dp2,Σ2
(p1)+αdp1,Σ1

(p2)
. (2)

Inverting Eq. (2), we get the proper affine weight α that needs

to be applied to achieve the desired anisotropic split ratio β

α =
βdp1,Σ1

(p2)

(1−β )dp2,Σ2
(p1)+βdp1,Σ1

(p2)
.

Analogously, the anisotropic split ratio β is used to accumulate

the point normals.

Regarding the model accumulation of the covariance repre-

sented in the same coordinate system, we apply the approach

proposed by Kerl et al. [13]. They perform the covariance

accumulation by adding the reliability: given input and model

covariance matrices Σ
in
i and Σ

mod
i for a corresponding input

and model point for frame i, respectively, the fused covariance

matrix reads as

(Σ̂mod
i )−1 = (Σmod

i )−1 +(Σin
i )

−1 . (3)

Note that in order to transform the covariance matrix Σ
mod
imod

to

the same coordinate system of the input frame Σ
mod
i , we have

to apply the following transformation:

Σ
mod
i = (R⊤

i→WC ·Rimod→WC)Σ
mod
imod

(R⊤
i→WC ·Rimod→WC)

⊤ ,

with Rimod→WC and Ri→WC referring to the rotational part of

the transformations Timod→WC and Ti→WC to pass from local

to world coordinates (WC), respectively.

IV. IMPLEMENTATION

notation: In the following, we adopt the data type nomen-

clature given by [14] where uintb refers to a positive integer

with b bits representing integers on
[
0,2b −1

]
and floatb is

the floating-point representation with b bits in total describing

sign, mantissa and exponent.

In order to store the symmetric reliability matrix (Σmod
i )−1

for each point inside our model representation, an efficient re-

duction of memory footprint for the point properties is required

to preserve the scalability of the overall acquisition system.

Salas-Moreno et al. [15] propose a point-based accumulation

model which directly reduces the total number of points by

efficiently encoding points belonging to the same planar surface

using a new planar representation. The method was shown to

be robust and efficient, but it is mainly designed for indoor

scenes, which comprise many planar regions.

Fig. 2. Advanced rendering of the extracted surface mesh given by our
point-based reconstruction framework (Totempole scene).

Since we would like to reduce the storage cost of the

point-based fusion framework for any type of data set (see,

for example, Fig. 2 for a very large scene from Zhou

and Koltun [16]), we decide to directly compress the point

properties. A naive way to store all required point properties that

is, position, normal, radius, confidence counter and timestamp,

would require 9 float32 scalars leading to a total of 288

bits per point.

To compress the surface normal property, we adopt the

method proposed by Praun and Hoppe [17] designed to

compress unit vectors efficiently. This method first maps the

unit sphere to a unit octahedron that is later on unfolded to the

z= 0 plane. This method is known as one of the best approaches

to compress unit vectors rapidly and robustly. Recently a survey

of unit vector compression by Cigolle et al. [14] shows that the

simple octahedron compression (non-numerically optimized)

using 16 bits encoding (i.e. enc16) for both texture coordinates

leads to a mean error angle of 0.37709◦ whereas the one using

32 bits (i.e. enc32) leads to a mean error of 0.00131◦. At a

first glance, a mean error of less than half a degree might appear

negligible, we show that the impact of the 8 bits encoding on

the accumulation significantly coarsens the final reconstructed

model. Fig. 3 gives a visual comparison of different encoding

schemes applied to the Totempole data set.

The point position is also compressed by partially adopting

the same method. First, all model points are expressed in

their local coordinate referring to the camera position from

which they were last observed. The original point based fusion

method [5] represents the model points in world coordinate.

Practically, once a fusion of an input point and model point

occurs, the new average model point will be represented in the

camera coordinate system of the current input frame i. This

representation enables us to encode the vertices using their

viewing direction and their polar distance. We can use the same

procedure to encode the viewing ray as we apply to the normal

vector. We further assume that consumer depth cameras only

provide range measurements up to a maximum radial distance

of 10 meters with millimeter precision. Thus, we can store the

polar distance ρ expressed in meters in one uint16 scalar

2123



Fig. 3. Comparison of three different compression schemes at frame 380 of the Totempole scene using our SSAO surfel splatting. The compression enc16

(left) leads to a coarser model compared to the original, uncompressed version (center). However, enc32 (right) shows negligible visual difference. The
second row refers to the color coded normal maps.

applying the following encoding ρe = ⌊6553.5 ·ρ⌉1. Our vertex

position encoding requires only 32+16 = 48 bits per model

point in contrast to the usual 3 ·32 = 96 bit storage.

The drawback of this method is that it requires to save all

camera pose transformations Ti→WC in order to transform all

model points to common world coordinates. Nevertheless, in

Sec. V we show that this additional storage requirement has

very little influence on the achieved compression ratio.

The remaining properties, i.e., radius, timestamp and confi-

dence counter, are also encoded using a simple quantization.

We store the timestamp t in a uint16 scalar, leading to

a maximum frame id of 65535. Using a 30 Hz camera, it

represents more than 30 minutes acquisition time which is

sufficient for most applications. The confidence counter is

described as a uint8 scalar since it is usually clamped to a

maximum value of 255 to allow for adaptation to changes in

the scene [2]. Similar to Weise et al. [18], the radius property

is computed by using the following formulation

r = δpix ·
max(sx,sy)

f
· d

〈n, [0,0,1]⊤〉 , (4)

where f , sx and sy are given by the intrinsic parameters of the

camera and represent the focal length and the pixel size in

horizontal and vertical directions, respectively. δpix represents

the half of the pixel’s diagonal
√

2/2. Whereas d and n denote the

Cartesian z-distance and the surface unit normal of the current

input point, respectively. As seen previously, the z-distance

cannot exceed 10 meters, and a valid range measurement of

depth camera usually occurs when the surface normal describes

1⌊·⌉ refers to the closest integer rounding operation.

an oblique angle smaller than 80◦ with the camera direction [5]).

Thus, a maximum radius size of an input point is defined

by rmax =
5
√

2
cos80◦ ·

max(sx,sy)
f

. Additionally, we can consider the

intrinsic parameter’s ratio
max(sx,sy)

f
to be in any case smaller

than 1/200 which leads to a maximum radius size of rmax ≈ 0.2
meters, which is a quite conservative upper bound for real-

world applications. Thus, we encode the radius as a uint16

scalar giving re = ⌊327.675 · r⌉.

In summary, the proposed encoding results in a storage of 2

float32, 3 uint16 and 1 uint8 scalars (120 bits + 8 bits

alignment cut-off) for the set of point properties in contrast

to the naive storage of 9 float32 scalars (288 bits), which

leads to a compression ratio of 1 : 2.25. We show that our

compression scheme leads to a negligible difference to the

original point-based fusion method (see below for a detailed

evaluation).

V. RESULTS

In order to evaluate the proposed method, we use four

different data sets. Two real-world data sets are used to evaluate

the proposed compression method without storing or processing

the anisotropy. Two simulated data sets are used to obtain a

quantitative comparison of the isotropic reconstruction with

our novel anisotropic accumulation scheme (with compression

enabled in both instances).

Totempole: This data set is provided by Zhou and Koltun [16]

and consists of 8,853 RGB-D frames (≈ 5 minutes

of acquisition time) from a Kinect-like camera.

Fig. 2 shows the reconstructed scene given by our

framework. Note that for this data set only pseudo-

groundtruth of camera pose and geometry is given, based

2124



on the approach by Zhou and Koltun. (Available on

http://web.stanford.edu/∼qianyizh/projects/scenedata.html)

Office: This data set is provided by Kerl et al. [19] and

contains 2,509 RGB-D frames (≈ 1.4 minutes of acqui-

sition time) given by a Kinect-like camera, see Fig. 4.

The data set includes the camera path groundtruth

acquired by an infrared tracking system and was de-

signed for SLAM benchmark applications. (Available on

http://vision.in.tum.de/data/datasets/rgbd-dataset)

Buddha: This data set is generated using our Time-of-Flight

simulator, which is an enhanced version of Keller and

Kolb [20], applied to the Stanford Buddha model scaled

to 3 meters height. It is composed of 237 depth frames

disturbed with Gaussian noise on the computed polar

distance using the formulation of Nguyen et al. [12]

for the Kinect structured-light camera. This formulation

relates the standard deviation of the z-distance noise to

the measured distance via a second-degree polynomial

and was modeled using images of planar regions located

at different distances.

Statue: This second simulated data set is generated in the same

way as the Buddha scene and consists of 286 frames.

Fig. 4. Overview of the Office scene data set from [19].

A. Encoding Evaluation

In order to evaluate our compression representation, we use

two data sets given by the Totempole and the Office scenes. The

following three representations are compared to each other:

naive storage: refers to the original point-based fusion frame-

work [5] (uncompressed model).

enc16: compresses normals and viewing rays in our low-

resolution, 16-bit representation.

enc32: compresses normals and viewing rays in our high-

resolution, 32-bit representation.

The Totempole data set is used to highlight the visual quality

and the storage ratio. We showed that the proposed compression

scheme retains the visual reconstruction quality if the enc32

compression is used for unit vector representations; see Fig. 3.

Concerning the storage gain, the final Totempole reconstructed

model is composed of 7,822,519 oriented points. The naive

storage method (9 float32 scalars) will lead to a memory

usage of 269 MB where our new compression scheme leads to

a memory usage of 104.4 MB (+ 7.5 MB alignment cut-

off). However, our method requires the storage of all the

camera poses (8,853 × 12 float32 scalars) which enlarges

the memory footprint by 415 KB, i.e., by 0.4%.

The Office data set is used in order to quantitatively evaluate

the compression scheme against the camera tracking and the

reconstructed geometry quality. Fig. 5 shows the camera center

position errors computed by the Iterative Closest Point (ICP)

algorithm for the naive storage, the enc16, and the enc32

encoding schemes. Whereas the enc16 encoding leads to

a higher error in terms of the camera pose estimation, the

enc32 encoding gives camera pose errors very close to the

uncompressed method. Additionally, we evaluate the quality of

the geometry model reconstructed by each compression scheme.

Since no geometry groundtruth is given, we generated a pseudo-

groundtruth by applying our reconstruction framework without

compression using the groundtruth camera poses. This pseudo-

groundtruth is compared to three different reconstruction meth-

ods that all use the ICP algorithm to track the camera motion.

Fig. 6 shows the Euclidean distance errors of the enc16,

enc32 and uncompressed storage. Note how negligible the

difference is between the enc32, and the naive storage. For a

better view on the distance error statistics comparison, refer to

Tab. I.

frameId

C
a
m

e
ra

 c
e
n
te

r 
e
rr

o
rs

 (
m

)

0.1

0.2

1000 2000

naive

enc16

enc32

Fig. 5. Camera position errors using the pose groundtruth with the naive
representation and the two different compression schemes for the Office data
set.

B. Anisotropic Fusion Evaluation

In order to evaluate the benefit of the anisotropic fusion, it

is important to have proper groundtruth of the scene geometry.

Therefore, we used the simulated data sets, i.e., the Buddha

and the Statue scenes. We run our approach for two different

scenarios processing the full depth sequences with known

groundtruth camera poses. In order to evaluate the anisotropic

2125



0.00

0.08

Fig. 6. Color-coding of the geometry distance errors of the Office scene for different compression schemes. The reconstruction using the enc16 (left), the
uncompressed (center) and the enc32 encoding (right). The images are generated using the CloudCompare software [21].

Methods enc16 naive enc32

Error Distances 24.0±18.3 12.2±10.31 13.0±10.6
mean±std (mm)

TABLE I
DISTANCE ERROR STATISTICS FOR THE Office SCENE EXPERIMENT.

fusion, we use the groundtruth camera poses given by our

simulator in order to avoid any external error introduced by

the ICP algorithm. First, the data is processed using a simple

isotropic fusion as it is commonly done for KinectFusion-like

approaches. Whereas the other scenario consists of processing

the data sequence with anisotropic fusion. Both resulting point

clouds are compared to the groundtruth mesh. For each point,

the minimal distance error to all mesh faces is computed.

Fig. 9 (left) shows a close view of the point distance errors

for the isotropic case, and 9 (right) concerns the anisotropic

fusion for the Buddha scene. One can clearly see that the

anisotropic fusion noticeably reduces the overall point distance

errors. Fig. 7 shows the statistic of the errors depending on the

confidence counter attribute, i.e., the number of point merges.

For the isotropic case, the distance error of model points with

a confidence counter greater than 30 is increasing. Fig. 10

visualizes these points and their distance errors, which are

mainly located around the lower part of the Buddha. Due to

the specific camera path, this region of the scene has been

observed by many frames with a comparably large range noise.

Apparently, the isotropic accumulation has more difficulties

with this strong anisotropy than our anisotropic approach. The

total mean distance errors is 1.67±1.4249 mm for the isotropic

fusion whereas the anisotropic fusion leads to a total mean of

1.4856±1.3452 mm.

The simulated Statue scene confirms our observation, even

though the increase of quality is less significant than for the

Buddha scene. The error statistics in Fig. 8 show a comparable

error statistics for points up to 30 merges and again an

improvement beyond 30 merges. The points with a confidence

counter greater than 30 are shown in Fig. 11.

10 20 30 40 50 60 70 80

Confidence counter

D
is

ta
n
c
e
 E

rr
o
r 

(m
m

)

0

1

2

3

4

5

6

mean-std

mean+std

mean

isotropy

anisotropy

Fig. 7. Comparison of distance error statistics of the Buddha scene for the
isotropic and anisotropic accumulation. The mean and the standard deviation
are plotted. The confidence counter is related to the number of merges for the
model points.

C. Performance

We demonstrate the efficiency of our method by evaluating

the performance of the different compression schemes and the

anisotropy in isolation. Tab. II shows a detailed summary of

the timings. Note how the compressed encoding is faster than

the original method for the generation of model maps. This

is easily explained by the fact that loading the compressed

point attributes into a vertex buffer requires 4 floats, whereas

the naive storage requires 9 floats per point. Furthermore, the

anisotropy is not used during this processing which explains

the similar timing with the one from the compression alone.

VI. CONCLUSION

In summary, we proposed a new efficient point-based

reconstruction framework that allows a better handling of

anisotropic noise of range camera. We introduce a point

attributes compression scheme that allows large-scale recon-

struction reducing the final storage by half with the same

2126



0.00

0.01

Fig. 9. Color-coded error distances of our Buddha scene. The point distance errors to the groundtruth mesh for the isotropic fusion (left) and for the anisotropic
fusion (right), The images are generated using the CloudCompare software [21].

0.00

0.01

Fig. 10. Color-coded error distances of the Buddha scene in a region with high anisotropy. Here only points that have a confidence counter greater than 30
are shown. The anisotropic accumulation (right) better handles this region with strong distance noise compare to the isotropic fusion (left). The images are
generated using the CloudCompare software [21].

0.00

0.01

Fig. 11. Color-coded error distances of the Statue scene in a region with high anisotropy. Here only points that have a confidence counter greater than 30
are shown. The anisotropic accumulation (right) better handles this region with strong distance noise compare to the isotropic fusion (left). The images are
generated using the CloudCompare software [21].

2127



Confidence counter

0

-2

2

4

6

8

12

10

D
is

ta
n

c
e

 E
rr

o
r 

(m
m

)

0 20 40 60 80 100 120

mean-std

mean+std

mean

isotropy

anisotropy

Fig. 8. Comparison of distance error statistics of the Statue scene for the
isotropic and anisotropic accumulation. The mean and the standard deviation
are plotted. The confidence counter is related to the number of merges for the
model points.

Methods MapComp IdxMap Accum GenModelMaps

(all times min, max min, max min, max min, max
in msec) mean±std mean±std mean±std mean±std

Naive 1.9, 6.1 0.7, 2.6 3.2, 6.7 2.1, 6.7
3.1±0.5 1.6±0.5 5.1±0.3 5.0±1.2

Encoding 1.9, 6.1 0.6, 2.6 3.4, 7.9 1.6, 4.4
3.1±0.5 1.4±0.4 5.2±0.4 3.4±0.5

Encoding + 1.9, 6.7 0.6, 2.6 3.5, 8.0 1.6, 4.4
Anisotropy 3.1±0.6 1.8±0.4 5.6±0.4 3.4±0.5

TABLE II
TIMINGS GIVEN BY THREE METHODS USING THE Buddha SCENE FOR FOUR

PROCESSING MODULES. MAPCOMP (DEPTH MAP PREPROCESSING),
IDXMAP (INDEX MAP GENERATION), ACCUM (DEPTH MAP FUSION),

GENMODELMAPS (RENDERING). RED COLORS REFERS TO THE MODULES

WHERE THE ANISOTROPIC INFORMATION IS USED.

performance. We demonstrate that this encoding does not

disturb neither the camera tracking algorithm nor the quality

of the reconstructed geometry. Furthermore, we demonstrate

that anisotropic fusion improves the overall quality of the

reconstruction.

ACKNOWLEDGMENT

This work was funded by the German Research Foundation

(DFG) as part of the research training group GRK 1564 Imaging

New Modalities, and by the UK Engineering and Physical

Sciences Research Council (grant EP/K023578/1).

REFERENCES

[1] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model
acquisition,” ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 21,
no. 3, pp. 438–446, 2002.

[2] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,
D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “KinectFusion:
Real-time dense surface mapping and tracking,” in Proc. IEEE Int. Symp.

Mixed and Augmented Reality (ISMAR), 2011, pp. 127–136.

[3] H. Roth and M. Vona, “Moving volume KinectFusion,” in British Machine

Vision Conf., 2012, pp. 1–11.

[4] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3D reconstruction at scale using voxel hashing,” ACM Transactions on

Graphics (TOG), vol. 32, no. 6, p. 169, 2013.

[5] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb,
“Real-time 3D reconstruction in dynamic scenes using point-based fusion,”
in Proc. Int. Conf. 3D Vision (3DV), 2013, pp. 1–8.

[6] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in
Robotics-DL tentative. International Society for Optics and Photonics,
1992, pp. 586–606.

[7] D. Falie and V. Buzuloiu, “Noise characteristics of 3d time-of-flight
cameras,” in Proc. Int. Symp. Signals, Circuits and Systems (ISSCS),
vol. 1, 2007, pp. 1–4.

[8] F. Lenzen, K. I. Kim, H. Schäfer, R. Nair, S. Meister, F. Becker, C. S.
Garbe, and C. Theobalt, “Denoising strategies for time-of-flight data,” in
Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications.
Springer, 2013, pp. 25–45.

[9] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time
motion capture using a single time-of-flight camera,” in Proc. IEEE

Conf. Computer Vision and Pattern Recognition (CVPR), 2010, pp. 755–
762.

[10] L. Maier-Hein, A. M. Franz, T. R. dos Santos, M. Schmidt, M. Fangerau,
H. Meinzer, and J. M. Fitzpatrick, “Convergent iterative closest-point
algorithm to accomodate anisotropic and inhomogenous localization
error,” IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI),
vol. 34, no. 8, pp. 1520–1532, 2012.

[11] M. Mittring, “Finding next gen: Cryengine 2,” in ACM SIGGRAPH 2007

courses, 2007, pp. 97–121.

[12] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling kinect sensor noise for
improved 3D reconstruction and tracking,” in Proc. Int. Conf. 3D Imaging,

Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012,
pp. 524–530.

[13] C. Kerl, M. Souiai, J. Sturm, and D. Cremers, “Towards illumination-
invariant 3d reconstruction using ToF RGB-D cameras,” in Proc. Int.

Conf. 3D Vision (3DV), 2014, pp. 39–46.

[14] Z. H. Cigolle, S. Donow, D. Evangelakos, M. Mara, M. McGuire, and
Q. Meyer, “A survey of efficient representations for independent unit
vectors,” Journal of Computer Graphics Techniques, vol. 3, no. 2, 2014.

[15] R. F. Salas-Moreno, B. Glocken, P. H. Kelly, and A. J. Davison, “Dense
planar SLAM,” in Proc. IEEE Int. Symp. Mixed and Augmented Reality

(ISMAR), 2014, pp. 157–164.

[16] Q.-Y. Zhou and V. Koltun, “Dense scene reconstruction with points of
interest,” ACM Transactions on Graphics (TOG), vol. 32, no. 4, p. 112,
2013.

[17] E. Praun and H. Hoppe, “Spherical parametrization and remeshing,” in
ACM Transactions on Graphics (TOG), vol. 22, no. 3, 2003, pp. 340–349.

[18] T. Weise, T. Wismer, B. Leibe, and L. Van Gool, “In-hand scanning with
online loop closure,” in Computer Vision Workshops (ICCV Workshops),

2009 IEEE 12th International Conference on, 2009, pp. 1630–1637.

[19] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d cameras,”
in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International

Conference on, 2013, pp. 2100–2106.

[20] M. Keller and A. Kolb, “Real-time simulation of time-of-flight sensors,”
J. Simulation Practice and Theory, vol. 17, pp. 967–978, 2009.

[21] D. Girardeau-Montaut, “CloudCompare OpenSource Project,” 2013.
[Online]. Available: http://www.danielgm.net/cc/

2128


