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Abstract—Several techniques aim to classify human activity
using data from sensors e.g., GPS, accelerometer, Wi-Fi and
GSM. The sensor data allow inferring transportation modes
as car, bus, walk, and bike. Despite some techniques show
improvements in accuracy, researchers constantly deal with issues
such as over-segmentation and low precision in trip reporting.
Journeys are over-segmented due to the ambiguous situations,
for instance: traffic lights, traffic jam, bus stops and weak signal
reception. Thereby, current techniques report high misclassifi-
cation errors. We present a method for detecting changes of
transportation mode on a multimodal journey, where the input
data regard to the classification of human activities. We use a
space transformation for extracting features that identify a tran-
sition between two transportation modes. The data are collected
from the Google API for Human Activity Classification through a
crowdsourcing-based application for smartphones. Results show
improvements on precision and accuracy in comparison to initial
classification data outcomes. Therefore, our approach reduces the
over-segmentation for multimodal journeys.
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I. INTRODUCTION

Nowadays, mobiles phones are ubiquitous devices that allow

collecting data from the built-in sensors such as accelerometer,

gyroscope, compass, Bluetooth, NFC1, GSM2 and wireless

radio. We refer to data from these sources as low-level data.

Based on these characteristics of mobiles phones, several

approaches for detecting the human activity have been pre-

sented. Most approaches base their classifications on GPS and

accelerometer data [1] [2] [3] [4], since they provide more

information for inferring the transportation mode. However,

those approaches suffer from a lack of precision on trip

reporting or they are limited to single modal detection.

Multimodal journeys occur very often in the daily life.

People use more than one transportation mode for daily

journeys. For instance, considering a journey for going to

work, it can include a flow of activities as follows (i) walk to

the bus station, (ii) go on the bus, and (iii) walk at office. In the

1Near field communication (NFC)
2Global System for Mobile communications (GSM)

previous example we can identify three transportation modes

walk, bus and walk respectively. However, the techniques on

Human Activity classification may split that journey in more

than three modes, thus it causes over-segmentation on journey

[5] and inaccuracy on trip reporting. These problems are

presented because some features of low-level data are similar

in various transportation modes as riding a bike, tram, car

and even walk; specially in cases, when the bus is stopped or

slows down the speed. Besides, GPS data may be incomplete

or inaccurate, causing problems for correct imputation of

activities patterns [6].

This work is focused on detecting changes of transporta-

tion mode for multimodal journeys. It improves the journey

segmentation, particularly on ambiguous situations where mis-

classifications take place. Moreover, the reduction of over-

segmentation benefits the activity classification accuracy, since

it identifies segments where a unique transportation mode is

performed.

Our approach works on data of human activity classification

instead of low-level data. The data are collected from the

Google Human Activity Classification (GHAC) API3. First,

the data are preprocessed for removing inconsistencies either

incomplete trips or unlabeled data. Second, the sample data

space is transformed into an orthogonal space. Third, we

extract six features using a sliding window method along the

data, those features are the projected angles. Finally, we use a

state vector of projected angles for identifying to the change

modes.

II. MATERIALS AND METHODS

A. Preliminary

We address a preliminary terminology used in activity

classification within the context of transportation.

A transportation mode specifies the different kind of trans-

portation facilities, that are used to transport people [7]. The

transportation can include vehicles such as bus, tram, train,

3Google API reference https://developer.android.com/reference/com/
google/android/gms/location/DetectedActivity.html
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car, motorcycle, and bicycle. Although, walking does not use

any transport, it is considered as a transportation mode as

well. An activity groups one or more transportation mode into

categories, for our purpose we consider only three activities

such as walking, biking and driving. Since, these activities

involve motion from one location to another. The driving

activity aggregates the transportation modes such as bus, tram,

train, car, and motorcycle. A change point refers to a transition

from one transportation mode to another, furthermore, a new

transportation mode or segment is defined when there is

a change from one form of transportation to another [8].

Besides, walking is an important mode to identify changes of

transportation, considering that an individual needs walking to

transform from one transportation mode to another [5]; and a

journey can be partitioned into a walk segment and a non-

walk segment by a change point [9]. Thus, there is a change

of transportation mode, when the transportation mode at time

t is not equal to the next mode at time t+1, and one of them

is a walking mode.

B. Collecting data

The data collection was performed using the a

crowdsourcing-based application developed by Ghent

University called Connect [10]. It runs on android-based

devices and collects measurements such as, GPS locations,

accelerometer data, and activity classification data, which are

stored on a central database. Connect allows to an individual

starting a journey with a preselected transportation mode,

then make a pause and change for another mode, this step

can be repeated anytime; and finally stop the data collection

when the journey is over. An individual can select up eight

transportation modes on Connect, such as on foot, by bike,

motorcycle, train, tram/metro, bus, car as driver, and car as

passenger; these modes represent labels on the measurements.

Connect also collects the measurements provided by the

GHAC API; these measurements represent the probabilities

of performing an activity such as driving, biking, walking,

still, tilting, and unknown. The API defines those activities

as follow: driving, probability of device is in a vehicle,

such as a car; biking, probability of device is on a bike;

walking, probability of device is on a user who is walking

or running; still, probability of device is still (not moving);

tilting, probability of device angle relative to gravity changed

significantly; and unknown, probability of unable to detect the

current activity.

We are interested on activities that include motion; therefore

we select inputs such as driving, biking and walking from the

activity classification data. Although, the activity still could be

an indication of change, for instance, an individual can walk

to station and wait, either sitting or standing before getting on

the bus. However, it may also be possible that the individual

decides not to wait anymore and continues walking. In this

case, the individual keeps the initial transportation mode, e.g.

there is not a change of transportation mode. Thus, we are

focused on activities with motions rather than still and tilting.
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Fig. 1: Activity vector and its projected angles

C. Preprocessing data

Data collection process is not error free; thereby, the data

may include either incomplete journeys or unlabeled data.

A journey is completed, when it has a start and end entry

on the database. A preprocessing stage detects incomplete

journeys and unlabeled data. The incomplete journeys are

excluded from the data sample, since we aim to identify the

changes of transportation, and an incomplete journey does not

provide enough information for that purpose. Furthermore,

each journey has an identification field, which is provided

by Connect in order to group the measurements. However,

some observations contain missing data on the identification

field. Thus, the missing data are filled out using the previous

observation, when the interval between observations is lower

than third quartile of the sampling period. Namely, the missing

observation is part of the same journey. It is important to

remark that, this stage does not modify the classification

measurements.

D. Sliding windows

A sliding window method is used for processing in sequen-

tial order the stream of GHAC data captured by Connect. This

method allows extracting more information; since the original

data contains peaks and values with a high variability, as a

consequence, false changes of transportation mode could be

detected on the journey. The sliding window smooths the data

by averaging the low and peak values. Within the window, the

observations are mapped into an individual output value [11].

Where, the output is a local estimator of the probability.

Sliding windows were used in [12] [13] [14] [15] for

features extraction since this technique allows capture more

information by segmenting the data. The window size has a

direct influence over the change detection, the bigger windows

produce more delay than smaller [16].
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E. Approach

We based our approach on representing the GHAC data

as components from a vector. It allows combining all inputs

into a multidimensional space, where we calculate the vector

characteristics such as, magnitude and projected angles. With

all these information we make a relationship between the

angles for building a vector state, which allows identifying

the changes on the transportation mode.

1) Activity Vector: We represent the input data as a vector

M , depicted in Fig. 1. The input data are the set of values

for the activities defined in section II-B; where the coordinate

system is given by a set of orthogonal vectors wi, which

represent the components for each activity. Therefore, let M

be the activity vector and wi the coefficient vectors for each

activity dimension, defined as follow: M = {m1,m2,m3},

where mi represents the vector components: m1 driving, m2

biking, m3 walking; and w1 = {1, 0, 0}, w2 = {0, 1, 0},

w3 = {0, 0, 1}, where wi are orthogonal unitary vectors and

w1, w2 and w3 represent the axes driving, biking, and walking,

respectively; the coefficient vector wi allows to keep the vector

M in an orthogonal system and it could be used to compensate

any component later on. As result, the products wT
1 M , wT

2 M

and wT
3 M represent the projections of M onto each wi axis.

The magnitude of activity vector M is expressed as follow:

‖M‖ =
√

(wT
1 M)2 + (wT

2 M)2 + (wT
3 M)2 (1)

2) Activity angle φ: We define the activity angle φ, as the

angle between the activity vector M and its projection with

the orthogonal axis wi.

φi = cos−1

(

1

‖M‖
|wT

i M |

)

(2)

where φ1 is the angle between the vector M and w1 axis;

φ2 is the angle between the vector M and w2 axis; and φ3 is

the angle between the vector M and w3 axis.

3) Comparative angle θ: We define the comparative angle

θj,k, as the angle between the activity vector M and its

projection onto the plane formed by the axes wj and wk, where

the axis of activity angle φi is not part of that plane.

θj,k = cos−1





1

‖M‖

√

∑

i∈(j,k)

(wT
i M)2



 (3)

where θ12 is the angle between the vector M and the plane

formed by the axes w1 and w2; θ13 is the angle between the

vector M and the plane formed by the axes w1 and w3; and

θ23 is the angle between the vector M and the plane formed

by the axes w2 and w3.

4) Detecting changes: To detect changes of transportation

mode we use the existing relationship between activity angle

and comparative angle, the relationship shows that, if the angle

φi is lower than the angle θj,k, then the axis wi is more likely

to be the activity, i.e., the activity vector M is closer to the

axis wi than to the others.
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Fig. 2: The detected changes are plotted as red points, the changes are detected
where the activity angle φ decreases its value and the other ones increases it.
Besides, the ground truth of changes are labeled as change.

Based on aforesaid relationship, we define St that represents

a state vector of the logical comparison between the angles φ

and θ at time t.

St =







φ1t < θ23t
φ2t < θ13t
φ3t < θ12t







(4)

Thereby, we detect a change mode Ct, when the transition

from a state St to the next state St+1 shows differences

between those states.

Ct =

{

1 if St 6= St+1

0 otherwise
(5)

Furthermore, we consider a false detection, when there are

two consecutive changes, i.e., the change is detected at time t

and then another change is detected at time t+1. It may mean

the individual went back to the initial transportation mode

in a very short period. Hence, these consecutive changes are

considered as false detections.

false detection : Ct = Ct+1 (6)

Detecting the false changes of transportation increase the

precision, hence it assess a better accuracy. The false changes

are the consequence of small variation between the trans-

portation modes; it can also be seen as an uncertainly on the

classifier side.

F. Error metrics

To assess the error in our approach, we use the metrics

such as precision, recall, and accuracy, which are defined as

follows:

Precision =
tp

tp+ fp
(7)

Recall =
tp

tp+ fn
(8)

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(9)

where tp, fp, tn and fn stand for true positive, false

positive, true negative and false negative respectively.
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Fig. 3: The target variable is binary and the value of 1 represents a change,
although a continuous sequence of 1s is equivalent to a single change.

Precision is the proportion of detected change modes when

the approach detects a change of transportation mode that

actually occurred. Recall is the proportion of real change

modes that have been correctly detected. Accuracy is the

proportion of true results i.e., it is the right detection of change

and non-change modes.

III. EXPERIMENTAL RESULTS

A. Dataset

We tested our approach in the city of Ghent, Belgium. The

data were gathered from daily situations such as go work, go

home, and go shop.

Our dataset consists of 71 journeys, which represents 633.6

kilometers and 49 hours. The journeys include transportation-

modes such as tram, train, bus, bicycle and walk.

The dataset contains 4116 observations, where each obser-

vation represents the probability of performing the activities

such as driving, biking, and walking at time ti. The sampling

period is not fixed, it was on average 44 seconds.

The observations are labeled with a transportation mode

assigned by the user through Connect, and it could have

values either bus, car, tram, train, foot, bike, motorcycle, and

passenger. These labels represent our ground truth and will

help us to build the target variable. Besides, the driving activity

concerns the transportation mode such as bus, train, tram and

car.

1) Target variable: The target variable represents whether

or not there is a change of transportation mode, thus it is

a binary variable where 1 stands for a change mode and 0
otherwise. We build it using the transportation mode labels i.e.,

for each transition between distinct values of transportation

mode the target variable gets value 1. Those transitions,

moreover, may represent more than one observation, especially

when an individual is waiting for his next transportation.

Thereby, a change of mode can be represented by a sequence

of ones as well.

For instance, the data sample in Fig. 3 contains 30 observa-

tions, where 24 observations are zero and 6 observations are

one, although there are only 2 change of mode.

The target variable has skewed distribution, where the

changes are 12% of the data and the non-change is 88%, it can

be explained by the data origin, since an individual can switch

often as much two transportation in a multimode journey, thus

more samples are collected as non-change.

TABLE I: Table of window size δ
δ=2 δ=3 δ=4 δ=5 δ=6

Precision 67.0% 74.0% 74.0% 78.0% 78.3%
Recall 76.4% 79.0% 71.4% 77.6% 73.2%

Accuracy 92.5% 94.0% 93.4% 94.6% 94.2%

TABLE II: Table of change mode detection
GHAC Our approach

Precision 30.1% 78.0%
Recall 99.0% 77.6%

Accuracy 71.8% 94.6%

B. Experiment

We set a fixed sliding window of size δ = 5 samples, and the

sliding step size of 1. Since, it shows a good trade-off between

precision and delay. The table I shows the precision of using

different δ size. In each step, we calculate the new value for

GHAC data by averaging the observations. Then those values

are used for computing the activity and comparative angle

using (2) and (3) respectively. Consequently, we get the state

vector S in (4) and identify the changes of transportation mode

using (5) from which we filter out the false detections that fall

in (6).

The error measure is assessed using the precision (7) and

recall (8) metrics that are defined on section II-F. Since the

target variable data are skewed class, e.g., only 12% of the

data represent change modes. Considering only the accuracy

metric (9) is not a meaningful reference, because the data are

skewed class, which in the hypothetical case of our technique

will evaluate whole the observations as changes, it will provide

us an accuracy of 88%. Yet, it does not mean that it is a good

detector of changes. For that reason, we consider the precision

and recall metrics as references to show the increase of valid

detections.

Our approach detects a change of transportation as a specific

point in the timeline, depicted in Fig. 3. Thus, we count as a

true detection, when the detected change overlaps any of 1s

values on the target variable.

The table II shows the result of applying the approach using

a fixed-window size of 5 samples; we increase the precision

from 30.1% to 78.0%, it means a reduction of precision error

from 69.9% to 22.0%. Besides, the accuracy is increased from

71.8% to 94.6%. Although, we notice a decrease in recall

from 99% to 77.6%, since our method reduces the over over-

segmentation, which is presented on the original GHAC data.

IV. RELATED WORKS

Most of the researches are focused on the transportation

mode classification. To achieve it, researchers use sensors such

as GPS, Accelerometer, GSM, Wireless, and Bluetooth. For

getting a high accuracy, researchers mainly work with GPS

and accelerometer data, although these sensors demand more

energy for collecting the tracking data [17].

The tracking data can be categorized either single or mul-

timodal journeys. A single modal journey is a trip where the

subject performs a single transportation mode; by contrast, a
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multimodal journey is a trip with more than one transportation

mode [10]. The multimodal journeys are more challenging

than single modal one, since multimodal journeys require iden-

tifying the different transportation modes along the journey, in

other words, identify whether there is a change of mode.

Approaches for transportation mode classification on single

mode journey were presented by [18] an approach that uses

accelerometer data for inferring the transportation mode, the

model has an accuracy of 82.1%; In [12], a transportation

mode classification system uses five biaxial accelerometers

for gathering the data and asseting the transportation mode,

the method achieves 84% of accuracy, although the activities

were performed indoors the laboratory, where the individuals

may present unusual behavior. GPS and accelererometer data

were used in [6]; in [1], an approach uses a mobile phone

for collecting the data, and this model achieves an accuracy

of 93.6% however, the authors omit the segmentation issue

and filter out ambigous states. In addition, approaches for

multimode journeys using GPS were presented by [2], a model

achieves an accuracy of 90%; in [19], the classifier combines

the GPS data with commonsense knowledge of read-world

constraints, where a change may occur when there is a walk

segment; in [4], an approach aims to classify multimodal

journeys by using GPS data, and this model has an accuracy

of 88%.

Segmentation is a challenging issue within activity recog-

nition, and it can be achieved by detecting the transition

between transportation modes. In [9], the approach splits the

trajectories using features from GPS data such as speed and

distance. It applies a good commonsense knowledge of the

world, describing that the start and end points of walk segment

may be changes of transportation mode. In [5], an approach

partitions the trajectories into walk segments using speed,

distance, angle of point, and acceleration; this segmentation

aim to improve the traffic condition. In [2], an approach

estimates the changes location using a probabilistic model. In

[3] a method identifies changes by detecting walk segments

from a trip, despite its accuracy for detecting transportation

mode is around 76%, the precision for change detection is

bellow 30%.

All those approaches work with features like speed, duration

and distance, which are provided by sensors. By contrast,

our method works with activity classification data rather than

low-level data; therefore, it can work as complement of those

approaches.

V. CONCLUSION

In this paper, we present a novel approach for detecting

changes on multimodal journeys. This approach uses the out-

put data of Human Activity classification as input data, which

are obtained from the GHAC API. The approach involves a

transformation from the original sample space into orthogonal

space; then the projected angles are calculated for each axis

using a sliding windows, where the axes represent activities

such as driving, biking and walking; finally we detect changes

on the transportation mode by comparing a state vector in

which the projected angles are related each other.

In the preprocessing stage (section II-C), we found two

main reasons for incomplete journeys: the first one is due to

user input mistakes either selecting the transportation mode or

pausing the journey, thus the journey is stopped or deleted;

and the second reason rarely present, it is as consequence a

system failure, which ends abruptly the application.

The experimental results show increment in the precision,

due to reduction the false detections. Thereby the journeys

are not over segmented into multiples trips. Although the

recall metric is reduced, the accuracy for detecting changes

is increased. The effect on recall is explained by the reduction

on false detections, this also affects on a small amount of true

changes.

Moreover, the presented approach can work as complement

of activity classification techniques, since it reduces the over-

segmentation by identifying the change modes, and conse-

quently it will increase their accuracy. This approach can be

applied to on-line detection for embedded systems, because it

involves low computational cost. And the information where

people change of transportation, it can be used in other

contexts, for instance: to optimize frequencies and trajectories

of public transportation such as buses and trams; from a

commercial point of view, this information will help to place

services on the more likely locations of potential targets.

Further works, in order to improve even more the segmenta-

tion for multi modal journeys, we want to incorporate external

events like purchasing of electronic tickets, parking lots, bus

stops and station boundaries. Those events will help us to make

a differentiation between similar transportations such as car,

bus, and tram especially in urban places where those vehicles

share common routes.
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