
A Maximum Weight Constrained Path Cover

Algorithm for Graph-Based Multitarget Tracking

Lingji Chen and Ravi Ravichandran

BAE Systems

Burlington, MA, USA

Abstract—In graph-based target tracking, vertices represent
measurements and/or tracklets and edges represent allowable
associations. Therefore a solution with a set of tracks is simply
a vertex-disjoint path cover of the graph. Under certain (path
independence) conditions, the tracking problem can be trans-
formed into one of finding the maximum weight vertex-disjoint
path cover of a directed acyclic graph, which can be efficiently
solved using maximum weight bipartite matching or minimum
cost network flow algorithms. However, attribute information
often leads to path dependence. In this paper we consider an
associated graph theoretic problem of finding the maximum
weight vertex-disjoint path cover under the constraint that a
given pair of vertices have to be on the same path. We show
that the greedy algorithm is not optimal, and conjecture that
the problem is nondeterministic polynomial-time hard (NP-hard).
This motivates us to seek efficient algorithms for special classes
of graphs that can be used as subroutines in a general algorithm.
We present an efficient optimal algorithm for trellis graphs, and
indicate how it can be used as a building block in a search
algorithm for the general case.

I. INTRODUCTION

Multiple Hypothesis Tracking (MHT) is an enabling tech-

nology that has been used in myriad applications with major

success. In a typical (track oriented) MHT implementation, a

tree/forest data structure is maintained and, as measurements

come in, new leaf nodes are created and incorporated to

represent possible (track) hypotheses. The best global solution

in the form of a set of compatible (track) hypotheses with

the best association likelihood is then obtained by solving a

linear integer programming problem. The width of the tree

can grow exponentially with the number of measurements

in such an approach, and pruning becomes a crucial part

of MHT. In recent years, Graph-Based Tracking (GBT) has

drawn a lot of attention in the research community while it

is being used in more and more applications; see for example

[1] and the references therein. In a graph based approach,

measurements are incorporated into a graph data structure,

and local computations such as gating and likelihood are

also carried out and recorded in the graph. Hypotheses are

not explicitly represented, and the best global solution is

obtained using suitable algorithms depending on the nature

This material is based upon work supported by the Washington

Headquarters Services under Contract No. HQ0034-12-C-0050. Any

opinions, findings and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the

views of the Washington Headquarters Services.

of the problem. Thus, data representation and inference are

decoupled in GBT. The number of vertices grows linearly with

the number of measurements, making GBT an attractive choice

for handling large data sets.

More importantly, there are many applications where cer-

tain Markov condition holds, such that the likelihood of an

incremental track association does not depend on the path the

track took to reach “here.” Then a log likelihood ratio can be

assigned as a weight on an edge in the graph, and finding the

best global solution in the form of a set of tracks becomes

finding the maximum weight vertex-disjoint path cover of

the weighted, directed acyclic graph, which can be solved

very efficiently. In the following “vertex-disjoint” is always

assumed for a path cover.

For applications where the Markov condition (or the path

independence condition) does not hold, for example when

long term attribute information is present, GBT offers savings

in data representation but not necessarily in inference as

compared to MHT. This paper considers a special type of

hard constraints posed by attributes: A pair1 of measurements

are required to be in the same track (because for example

they have the same identification code). The associated graph

theoretic problem is that of finding the maximum weight

vertex-disjoint path cover under the constraint that a given pair

of vertices have to be on the same path. Solving this problem

will be our focus in this paper, which is organized as follows.

In Section II we set up the GBT problem, describe the case

of path independence, and show how it can be solved effi-

ciently. In Section III we introduce the same-track constraint,

present a greedy algorithm and show that it is not optimal.

Inspired by the NP-completeness results in [2], [3], and to

attract more attention and research, we make a conjecture that

the problem is NP-hard. This motivates us to seek efficient

algorithms for special classes of graphs that can be used

as subroutines in a general algorithm, so in Section IV we

present an efficient algorithm for trellis graphs. In Section V

we indicate how this algorithm can be used as a building block

in a search algorithm for the general case. In Section VI we

draw conclusions and discuss future work.

1In general, there can be a set of such pairs, and the problem becomes even
more difficult.

Approved for public release; unlimited distribution.

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 2073

II. PATH INDEPENDENCE AND MAXIMUM WEIGHT PATH

COVER

The GBT approach employs a track graph G(V,E) where

a vertex represents a measurement or a tracklet2 and an edge

represents a possible association (after spatial and temporal

gating). A vertex-disjoint path cover [4], [5] (or path partition

[6]) is a set of paths, including path of length zero (i.e.,

single vertex) such that each vertex belongs to one and

only one path. The tracking problem then is to determine

the best path cover of the track graph according to certain

criterion. Figure 1 illustrates a valid path cover with three

paths: ade, bc and f . For the problems we consider in this

paper, we can typically use the (start or stop) time stamps of

the measurements/tracklets to impose a direction of association

from an earlier time to a later time, and therefore the track

graphs we consider in the following will be directed acyclic

graphs, unless otherwise stated.

Fig. 1. A path cover with three paths: ade, bc and f .

If we have a weighting function w(·) on a path p, for

example as a function of its likelihood, then we can define

the best path cover as

P∗ = argmax
P

∑

p∈P

w(p). (1)

This general form does not permit efficient algorithms: We

may not be able to reuse the result of w({de}) in calculating

both w({ade}) and w({bde}); the weighting function may be

path dependent.

However, there are many applications where the likelihood

of a track satisfies a Markov, or path independence, condition;

see [7], [8], [1], [9] for details, and [10], [11], [12] for related

work. In such a case, we can assign a log likelihood ratio [13]

as a weight on an edge, and define the best path cover as

P∗ = argmax
P

∑

p∈P

∑

e∈p

w(e). (2)

A weighted track graph is shown in Figure 2. Then Equation

(2) defines a maximum weight path cover problem on the

graph, which can be solved by maximum weight bipartite

matching [14] or minimum cost network flow [5]. In Fig-

ure 3 we illustrate the maximum weight bipartite matching

approach, where we “split” each vertex v into two (connected)

vertices v′ and v′′, such that each in-arc of v goes into v′ and

2A tracklet is a set of measurements determined by the sensor to have
originated from the same target.

Fig. 2. With path independence, the tracking problem becomes one of finding
the maximum weight path cover on a weighted track graph.

each out-arc of v goes out of v′′. The resultant companion

graph is a bipartite graph and its maximum weight bipartite

matching provides edges that can be assembled into paths to

give the solution to (2).

Fig. 3. Maximum weight path cover of a directed acyclic graph can be solved
using maximum weight bipartite matching.

The complexity of solving for the maximum weight bipartite

matching by the Hungarian algorithm [15] is O(|V |3) where

| · | denotes cardinality.

III. THE SAME-TRACK PROBLEM AND A CONJECTURE ON

ITS COMPLEXITY

Attribute information often leads to track dependence. For

example, if we have color information of the vehicles being

tracked, then whether a red car should be “stitched” with a

car in an earlier frame, whose color is not observed, depends

not only on the kinematics, but also on whether this no-color

car has already been stitched with an orange car even earlier.

In such cases, a path weight cannot be written as a sum

of edge weights, and we have to solve the problem in (1),

not (2). However, we consider a simplified problem where

attributes provide hard constraints and nothing else. More

specifically, we do not have propagation and likelihood models

for the attribute, and the only information we extract and

use is whether a path is valid or not. In such a case, if

we first construct a weighted track graph using only path

independent information such as kinematics, then a valid path

for the constrained problem has the same weight as in the

Approved for public release; unlimited distribution.

2074

unconstrained case, while an invalid path has a weight of

minus infinity.

Thus, we can attempt to solve (2), i.e., obtaining the maxi-

mum weight path cover, but subject to some hard constraints

on the validity of paths. As a starting point, in this paper we

consider only a single same-track constraint that a given pair

of vertices have to be on the same path.

For this problem, there is an apparent greedy algorithm.

The greedy algorithm (approximate solution):

1) Find the longest path, pl, between the pair of

vertices that form the same-track constraint.

2) Delete all vertices on pl and their incident

edges.

3) Solve the maximum weight bipartite matching

problem, now unconstrained, for the remaining

graph. Let the set of paths be P̄ .

4) Return P = {pl, P̄} as an approximate solu-

tion.

It can be readily verified, by using the track graph in

Figure 2, that the greedy algorithm does not always provide

the optimal solution: If the same-track pair is a-f , then the

greedy solution is (acf, bde) with a total weight of 14, while

the optimal solution is (adf, bce) with a total weight of 19.

For a small graph, we can solve the problem by a brute

force algorithm that enumerates all connecting paths between

the same-track pair, and for each path follows the same steps

as in the greedy algorithm. The number of connecting paths

can grow exponentially as the graph becomes larger and the

pair of vertices become farther away. Thus there is reason

to suspect that the constrained maximum weight path cover

problem could be NP-hard. In [2], [3] some other types of

constrained path cover problems were discussed in the context

of computer program testing, and many problems were proved

to be NP-hard. In view of these, and with an intention to spur

more research in this area, we venture the following:

Conjecture. The same-track problem of finding the maxi-

mum weight vertex-disjoint path cover of a weighted directed

acyclic graph such that a given pair of vertices are on the

same path is NP-hard.

A proof of this conjecture would be valuable. An efficient

algorithm to disapprove this conjecture would be satisfying.

IV. AN EFFICIENT OPTIMAL ALGORITHM FOR TRELLIS

GRAPHS

The possibility that the same-track problem is NP-hard

motivates us to seek efficient algorithms for special classes

of graphs and use them as subroutines in a general search.

We consider a graph G(V,E) that is a trellis [16]: The vertex

set V can be divided into disjoint subsets, called stages, of

vertices {Vi}, i = 1, 2, . . . , N , such that any edge e = vivj is

between two adjacent stages, i.e., there is an index t such that

vi ∈ Vt and vj ∈ Vt+1. Figure 4 illustrates one such graph, or

more precisely, its companion bipartite graph where we split

each vertex v into v′ and v′′ as discussed in Section II.

Fig. 4. In a trellis, a local matching does not interfere with other local
matchings, and the union is always a valid global matching.

Consider the subgraph Gi formed by edges between two

adjacent stages and their associated vertices, and a matching

Mi of Gi. It is apparent that the (companion) graph G is

the union of such subgraphs, and the union of the “local”

matchings Mi always forms a valid matching M for the

whole graph G. It is this property that will be exploited in

constructing an efficient algorithm for the same-track problem.

Figure 5, together with Figure 4, illustrate the idea. Let a

and h be the same-track pair. Suppose that the edge cf is on

the optimal global solution. It follows that, in the subgraph

Gi, the local matching of the “remaining” graph, after the

vertices c and f and their incident edges are deleted, has to

be optimal. We can thus obtain a weight for the edge cf in

an auxiliary graph shown in Figure 5 and find the connecting

path in the global optimal solution by finding the longest path

in the auxiliary graph.

Fig. 5. Constructing an auxiliary weighted graph and finding its longest path,
which will be in the best path cover of the same-track problem.

The trellis algorithm (exact solution):

1) Let va and vb be the same-track pair that are

constrained to be on the same path, and va be

earlier than vb (in the topological sort). Perform

a forward sweep to mark “gray” all vertices

reachable from va. Perform a backward sweep

to mark “black” all gray vertices that can reach

vb. Construct an auxiliary graph with only

black vertices (including va and vb).

2) For an edge e in the auxiliary graph with

weight we, consider the corresponding edge

v′′xv
′
y in the companion graph and the subgraph

Gi that contains it, as described before. Ob-

tain the maximum weight bipartite matching

for the remaining graph of Gi with v′′x and

v′y deleted together with their incident edges,

and let the optimal weight be We. Assign the

weight we + We to edge e in the auxiliary

graph.

Approved for public release; unlimited distribution.

2075

3) Find the longest path p in the auxiliary graph.

This path is in the best global solution.

4) The rest of the steps follow those in the greedy

algorithm.

The worst case running time of the trellis algorithm is O(n5)
where n = |V |, since there are at most O(n2) edges, each

costing O(n3) to solve for the optimal weight in the subgraph.

In practice, the main concern is for a trellis having N ≫ 1
stages with m = O(1) vertices in each stage. There are mN

possible connecting paths, but the trellis algorithm can be run

with m5N time.

Numerical examples: We conduct Monte Carlo runs to

evaluate the trellis algorithm and compare with the greedy

algorithm and the brute force algorithm. More specifically, we

choose m = 6 for the number of vertices in a stage, and

varies the number of stages N from 5 to 15. For each (m,N)
configuration, we conduct 100 Monte Carlo runs and record

the worst running time. In each run, 50% of all possible edges

are randomly chosen to be present with a weight uniformly

distributed between -1 and 1.

Both the trellis algorithm and the greedy algorithm are

run for all values of N . The brute force algorithm is run

for only N = 5, 6 and 7. In these 3 settings, the solutions

obtained by the trellis algorithm and the greedy algorithm are

judged against the optimal solution obtained by the brute force

algorithm, and the fraction of the optimal solutions out of all

runs is recorded for the two algorithms. This fraction is always

1 for the trellis algorithm, as we reasoned before, but less than

0.5 for the greedy algorithm.

The worst running times and the fractions of optimal

solutions are plotted in Figure 6, where results of all N values

are combined for better visualization even though the brute

force algorithm is run for only three values of N .

Fig. 6. Top: Worst running times; the brute force algorithm was run only
for the first three cases. Bottom: Fraction of solutions that are optimal as
determined by the brute force algorithm for the first three cases.

V. SEARCH FOR THE GENERAL CASE

In this section we indicate how the trellis algorithm can

be used in a search algorithm for the general case. If, as

illustrated in Figure 7, an edge “jumps over” a stage, then

we can construct an auxiliary graph by adding an auxiliary

vertex in the stage that is jumped over, and the resultant graph

will be a trellis3. Any solution for the original graph can be

expressed as a solution for the auxiliary graph: If the edge ab

is in the solution on the left, then replacing ab with azb is a

valid solution on the right. If the edge ab is not in the solution

on the left, then the solution is valid on the right which does

not include either az or zb.

Fig. 7. Adding an auxiliary vertex to turn the graph into a trellis.

Therefore, if we solve for the optimal solution on the right,

and it is a valid solution on the left (i.e., it contains either both

az and zb, or neither az or zb), then it is the optimal solution

on the left. If however, only one of az and zb is present in

the solution, then we need to search further. Suppose az is

present and zb is absent. Instead of splitting the weight of ab

equally between az and zb, we can decrease the weight on

az and increase the weight on zb while maintaining the same

sum. If we solve again the problem for the trellis on the right,

it may happen that az disappears from the optimal solution,

and the optimal solution is valid for the graph on the left. The

situation where az is absent but zb is present can be similarly

handled.

The above procedure has the potential to terminate with

an optimal solution, but this is not guaranteed. A procedure

guaranteed to terminate with the optimal solution is as follows,

which is practical only if the number of “violating” edges that

jump over stages is small enough.

The search algorithm (exact solution):

1) Identify all “violating” edges that jump over

stages, and enumerate their presence and ab-

sence in the optimal solution. (If there are L

such edges, then the number of configurations

is 2L.)

2) For each enumerated configuration, construct

an auxiliary trellis graph by adding auxiliary

vertices in the “jumped over” stages, and as-

signing weights appropriately.

3) Solve the problem for each trellis, and record

the total weight.

4) Declare the solution with the largest weight to

be the optimal solution.

3This procedure can be applied recursively for jumps over more than one
stage.

Approved for public release; unlimited distribution.

2076

Other heuristics with a combination of weight re-assignment

and enumeration (of a smaller set) can also be applied, and

are not elaborated here.

VI. CONCLUSIONS

Graph Base Tracking offers the advantage of decoupling

data representation from data inference, and is better suited

for handling large data sets as compared to MHT. Under

certain path independence condition, which usually holds

for kinematics obtained with modern sensors, the inference

problem can be transformed into one of finding the maximum

weight path cover, which can be solved efficiently. However,

with long term attribute information, path independence no

longer holds, and research is being carried out to find efficient

algorithms to solve such problems. This paper considers a

special case of attribute-induced hard constraint, i.e., that a

given pair of measurements/tracklets are known to be from

the same target and therefore should be in the same track in

the tracking solution. We have described the graph theoretic

problem of constrained maximum weight path cover, made a

conjecture about its computational complexity, and presented

an efficient optimal algorithm for a subclass of graphs with a

trellis structure. We also indicate how such an algorithm can

be used in a search procedure for the general case.

The same-track problem can involve more than one pair

of vertices, and finding efficient algorithms is part of the on-

going research. The constraint can also take the form that a

given pair of vertices cannot be on the same path. An efficient

trellis algorithm for one such constraint will be reported in a

future paper, and more research is needed to deal with more

than one constraints.

We have assumed in this paper that the only information

we extract and use from the attribute information is the hard

constraint that defines the validity of a path. In more general

cases, the constraint can be “soft” in the sense that attribute

can evolve and its measurement is probabilistic, e.g., red

color can look brownish under a different lighting. Finding

algorithms that are more efficient than a full scale MHT is

another direction of future research.

ACKNOWLEDGMENT

This work was supported in part by Contract No. HQ0034-

12-C-0050.

The authors would like to thank Dr. Ravi Prasanth for the

trellis terminology. They would also like to thank Drs. Joao

Cabrera and Chris Moss for their valuable comments and

feedback.

REFERENCES

[1] C.-Y. Chong, “Graph approaches for data association,” in 15th Interna-

tional Conference on Information Fusion. IEEE, Jul. 2012, pp. 1578–
1585.

[2] S. C. Ntafos and S. L. Hakimi, “On Path Cover Problems in Digraphs
and Applications to Program Testing,” IEEE Transactions on Software

Engineering, vol. SE-5, no. 5, pp. 520–529, 1979.
[3] S. Ntafos and T. Gonzalez, “On the computational complexity of path

cover problems,” Journal of Computer and System Sciences, vol. 29,
no. 2, pp. 225–242, Oct. 1984.

[4] Wikipedia, “Path cover,” http://en.wikipedia.org/wiki/Path cover, 2015.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, Second Edition, 2nd ed. The MIT Press, Sep. 2001.
[6] A. Bondy and U. S. R. Murty, Graph Theory (Graduate Texts in

Mathematics), 1st ed. Springer, Sep. 2011.
[7] C.-Y. Chong, G. Castanon, N. Cooprider, S. Mori, R. Ravichandran,

and R. Macior, “Efficient multiple hypothesis tracking by track segment
graph,” in 12th International Conference on Information Fusion. IEEE,
Jul. 2009, pp. 2177–2184.

[8] G. Castanon and L. Finn, “Multi-target tracklet stitching through net-
work flows,” in 2011 IEEE Aerospace Conference. IEEE, Mar. 2011,
pp. 1–7.

[9] S. Mori and C.-Y. Chong, “Performance analysis of graph-based track
stitching,” in 16th International Conference on Information Fusion.
IEEE, Jul. 2013, pp. 196–203.

[10] N. Vyahhi, S. Bakiras, P. Kalnis, and G. Ghinita, “Tracking Moving
Objects in Anonymized Trajectories,” in Database and Expert Systems

Applications, ser. Lecture Notes in Computer Science, S. Bhowmick,
J. Küng, and R. Wagner, Eds. Springer Berlin Heidelberg, 2008, vol.
5181, pp. 158–171.

[11] S. Zhang and Y. Bar-Shalom, “Track Segment Association for GMTI
Tracks of Evasive Move-Stop-Move Maneuvering Targets,” IEEE Trans-

actions on Aerospace and Electronic Systems, vol. 47, no. 3, pp. 1899–
1914, Jul. 2011.

[12] L. J. van der Merwe and J. P. de Villiers, “Track-stitching using graphical
models and message passing,” in 16th International Conference on

Information Fusion. IEEE, Jul. 2013, pp. 758–765.
[13] Y. Bar-Shalom, S. S. Blackman, and R. J. Fitzgerald, “Dimensionless

score function for multiple hypothesis tracking,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 43, no. 1, pp. 392–400, Jan.
2007.

[14] F. T. Boesch and J. F. Gimpel, “Covering Points of a Digraph with
Point-Disjoint Paths and Its Application to Code Optimization,” J. ACM,
vol. 24, no. 2, pp. 192–198, Apr. 1977.

[15] Wikipedia, “Hungarian algorithm,” http://en.wikipedia.org/wiki/
Hungarian algorithm, 2015.

[16] D. A. Castanon, “Efficient algorithms for finding the K best paths
through a trellis,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 26, no. 2, pp. 405–410, Mar. 1990.

Approved for public release; unlimited distribution.

2077

