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Abstract—This paper proposes two track fusion methodologies 

for challenging multi-target tracking (MTT) settings where 

sensors have highly disparate characteristics and target density 

is high, leading to many competing tracking solutions. Though 

distributed multiple hypothesis tracking (MHT) is known to 

provide a viable solution paradigm, its applicability is limited 

to medium-size scenarios due to the need for deep hypothesis 

trees. For large-scale scenarios, a computationally efficient 

min-cost flow solution paradigm has been proposed that works 

well for kinematic sensor data, but is not applicable to multi-

INT data that includes identity information that does not 

degrade over time. This paper introduces two approaches to 

the problem. The first is a natural extension to the MHT 

paradigm, and seeks to improve performance by considering 

out-of-sequence processing: the asynchronous MHT (A-MHT). 

The second adapts a recently proposed Markov Chain Monte 

Carlo (MCMC) approach to target tracking to multi-INT track 

fusion: the MCMC Data Fuser (MCMC-DF). A-MHT and 

MCMC-DF results are promising against an MHT baseline.  

Keywords—multi-target tracking (MTT); multiple-hypothesis 

tracking (MHT); track-oriented MHT (TO-MHT); asynchronous 

MHT (A-MHT); Markov Chain Monte Carlo (MCMC).  

I. INTRODUCTION 

Multi-target tracking (MTT) poses significant technical 
challenges principally due to the unknown time-varying 
number of targets as well as to measurement provenance 
uncertainty, i.e. which measurement originates from which 
target, and which measurements are false alarms [1]. These 
challenges are generally not found in classical detection, 
estimation, and nonlinear filtering problems. Many 
approaches have emerged over the years; among labelled-
tracking approaches, multiple-hypothesis tracking (MHT) is 
generally acknowledged as the most powerful paradigm [2]. 
First proposed in hypothesis-oriented form, it was later 
extended to tractable track-oriented form by researchers at 
ALPHATECH in the 1980s (see [3] and references therein). 

Perhaps surprisingly, multi-stage processing has been 
shown to outperform centralized processing in many 
settings. The most obvious benefit is in distributed sensor 
settings, where bandwidth and latency limitations require 
multi-stage solutions, as well as in settings where single-
sensor legacy-system outputs are to be integrated. Further, 
distributed processing is an effective means to introduce 
robustness to registration errors and to the target-fading 

effects that exist in many applications [4-5]. Indeed, 
detection streaks in space and time are best exploited on an 
individual sensor basis. Even in the absence of these 
complications, multi-stage MHT provides an efficient means 
for hypothesis management that allows significant 
performance benefits in multi-sensor settings [6-8].  

Our specific setting of interest is one for which multi-
stage MHT vastly improves upon single-stage (centralized) 
MHT. We consider a high revisit rate kinematic sensor 
providing detection-level data with noisy detection and 
localization statistics. Additionally, we have occasional 
passive emissions from targets, providing identity 
information. For simplicity, we assume unambiguous 
identity information and no spurious (false) emissions. 
Localization information for the identity sensor tends to be 
lower than for the kinematic sensor.  

First-stage kinematic tracking leads to a fragmented set 
of high-purity tracks that are reliably associated with the 
same target; this is achieved by cautious tracking that does 
not extend track when high ambiguity exists. In second-stage 
tracking, multiple association hypotheses exist between the 
identity tracks and kinematic tracks. Resolving these 
ambiguities via MHT processing requires deep but sparse 
hypothesis trees. Figure 1 provides a notional illustration of 
the second-stage track fusion challenge. 

 

Figure 1. The multi-INT track fusion challenge. 
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The challenge in multi-INT processing is to consider 
very deep hypothesis trees for dense target scenarios, for 
which a large number of track association hypotheses exist. 
We are interested in application where many nearby targets 
are present, and when the highly-informative target 
emissions are potentially infrequent. 

An interesting approach to track stitching that avoids 
hypothesis explosion relies on a Markovian assumption that 
simplifies likelihood computations as noted in eqn. (1), 
where ݕ௜  represents a track (a sequence of associated 

measurements) and ݕ௜ ൌ ሺݕଵǡ ǥ ǡ ௡ሻݕሺܮ .௜ሻݕ ൌ ଵሻݕሺܮ ෑ ௜ିଵሻ௜ୀଶǡǥǡ௡ݕ௜ȁݕሺܮ  

ൎ ଵሻݕሺܮ ς ௜ିଵሻ௜ୀଶǡǥǡ௡ݕ௜ȁݕሺܮ .  (1) 

This simplification is generally valid for kinematic data, 
but is not applicable for identity data as identity information 
does not degrade over time. Also, the approximation in 
principle assumes temporally non-overlapping tracks. This 
approximation has been exploited with promising results for 
a kinematic sensor large-scale tracking application via a min-
cost flow formulation [9]. Unfortunately, the methodology is 
not applicable to the multi-INT challenge of interest here. 
While identity information may be used as information 
overlay to provide additional context as described in [10], the 
information is not exploited in the data-association solution. 

This paper proposes two approaches to multi-INT fusion. 
Both approaches adopt a distributed tracking paradigm: we 
consider the output of a first-stage kinematic tracker, and 
seek an MTT solution by reasoning over this set of tracks as 
well as identity tracks with infrequent updates. Also, both 
approaches assume that the problem can be cast as a batch-
processing one: we seek a tracking solution for forensic 
analysis. Tracking with short-delay hypothesis resolution 
may be performed for computational reasons, but is not 
required. 

Our first approach adopts an MHT paradigm but recasts 
the problem via an asynchronous data association 
formulation; this is discussed in Section II. The approach is 
quite novel, in that out-of-sequence processing is generally 
addressed when forced upon us due to communication 
latencies in distributed surveillance settings, and the focus is 
generally limited to out-of-sequence filtering that does not 
contend with modifications to association decisions [1]. 
Asynchronous global nearest neighbor (GNN) processing is 
introduced in [11]. Here, we address the more general 
problem with target births and deaths, false alarms, missed 
detections, and the solution is based on a more powerful 
multiple-hypothesis decision-making framework, leading to 
the asynchronous MHT (A-MHT) solution. 

Our second approach leverages the growing body of 
research on Markov Chain Monte Carlo (MCMC) methods 
and their application to target tracking [12-13]. Our MCMC 
solution uses both the Metropolis Hastings algorithm and 
Gibbs sampling, thus allowing for a stochastic optimization 
approach that operates directly in global hypothesis space. 
Like the A-MHT, our MCMC Data Fuser (MCMC-DF) 
operates on track-level data.  

While the global hypothesis space is necessarily much 
larger than the track hypothesis space considered in MHT-
based approaches, MCMC methods have demonstrated 
impressive convergence times in many applications. 
However, it is worth noting that the detection-level MCMC 
tracking results in [13] are somewhat overstated in that 
comparison is not made to a track-oriented MHT but rather 
to a hypothesis-oriented MHT. Here, we compare both the 
A-MHT and the MCMC-DF algorithms to a baseline track-
oriented MHT algorithm applied to the same kinematic and 
identity track-level data. 

Statistical benchmarking of MTT algorithms is a 
challenge of its own. We adopt a set of performance metrics 
that rely on an optimal scan-by-scan track-truth assignment, 
followed by evaluation of completeness and purity metrics 
for targets and tracks, as well as average localization error. 
Track (or target) quality measures the fraction of aggregate 
track (or target) lifetime mapped to a target (or track). Track 
(or target) purity measures the fraction of track (or target) 
that is consistent with the mode (i.e. most frequent) 
assignment. Thus, the quality of the truth trajectories can be 
thought of as track-level detection probability. The quality of 
the target tracks is the fraction of track that is target 
originated. Truth purity is inversely proportional to track 
fragmentation, and track purity is inversely proportional to 
track swap occurrences. 

Our simulation studies are based on synthetic ground 
truth with a Poisson birth/death process for target existence, 
and a 2nd

 order Ornstein-Uhlenbeck (OU) process that 
governs target evolution. The multi-target OU process is a 
stable model that admits stationary statistics and long-
duration simulations with consistent target densities and 
motion; a more detailed discussion of the 2

nd
 order OU 

model and multi-target statistical stationarity may be found 
in [14]. 

Figure 2 illustrates the simulation framework for ground 
truth, data, first-level tracking, and the competing track 
fusion solutions of interest. 

 

Figure 2. Simluation framework for multi-INT fusion evaluation. 

The paper is organized as follows. The multi-target OU 
process and sensor modeling are described in Section II. The 
A-MHT and MCMC-DF algorithms are discussed at in 
Sections III-IV. Section V presents initial simulation results, 
and conclusions and directions for future work are in Section 
VI.  

II. STATISTICALLY STATIONARY MULTI-TARGET MODEL 

We assume a continuous time birth-death process with 
exponentially distributed target inter-arrival (birth) times 
with parameter ߣ௕, and exponentially distributed target 
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lifetime with parameter ߣఞ. Discrete-time statistics may be 

readily obtained, leading to a Poisson distributed number of 
births with mean ߤ௕ሺݐሻ and death probability ݌ఞሺݐሻ over an 

interval of duration ݐ. The discrete-time expressions are 
given in eqns. (2-3). ߤ௕ሺݐሻ ൌ ఒ್ఒഖ ൫ͳ െ ݁ିఒഖ௧൯,  (2) ݌ఞሺݐሻ ൌ ͳ െ ݁ିఒഖ௧.   (3) 

We denote by ݐ଴ the initial time at which no targets are 
present, and assuming sensors scans at time ሺݐ௜ǡ ݅ ൒ ͳሻ. 
Statistical stationarity may be achieved by letting ݐ଴ ՜ െλ, 
so that the first-interval birth statistics are consistent with the 

steady-state expected number of targets 
ఒ್ఒഖ. 

We adopt a 2
nd

 order or modified Ornstein-Uhlenbeck 
(MOU) target motion model that generalizes a number of 
commonly-adopted motion models in the tracking 
community, each with its strengths and limitations: (1) The 
nearly-constant position (NCP) model is simple, but position 
grows unbounded over time and velocity is not defined; (2) 
The nearly-constant velocity (NCV) model has a well-
defined velocity, but both velocity and position grow 
unbounded over time; (3) The Ornstein-Uhlenbeck (OU) 
process has bounded position, but no velocity is defined; (4) 
The Integrated Ornstein-Uhlenbeck (IOU) process has a 
well-defined, bounded velocity, but the position grows 
unbounded over time.  

The MOU process exhibits a well-defined velocity and 
bounded velocity and position over time.  As such, it lends 

itself to steady-state analysis.  Further, the initial target state 
can be defined in a natural way based on the steady-state 
characteristics of the MOU process, leading to a stationary 
stochastic process.  This, together with the target existence 
stationarity discussed above, provides a statistically 
stationary multi-target process. The continuous-time MOU 
process is illustrated in Figure 3.  

 
Figure 3. Target motion modeling 

MOU dynamics depend on the eigenvalues െߛଵ and െߛଶ 
of the process, which in turn depend on the feedback gains 
illustrated in Figure 3.  

ଵǡߛ ଶߛ ൌ ఊෝమേටఊෝమమିସఊෝభଶ .   (4) 

The principal case of interest is the real-valued 

eigenvalue case given by ߪ௣ ൐ ସఙೡయ௤ . The resulting discrete-

time dynamics in each dimension are given by the following, 

with uncorrelated noises ݔ଴̱ܰሺͲǡ തܳሻ, ݓ௞̱ܰሺͲǡ ܳ௞ሻ, and 
with ȟݐ௞ ൌ ௞ାଵݐ െ  .௞ݐ

௞ାଵݔ  ൌ ௞ݔ௞ܣ ൅ ௞ݓ ௞ܣ (5)          , ൌ ଵఊభିఊమ ൤ െߛଶexpሺെߛଵȟݐ௞ሻ ൅ ௞ሻݐଶȟߛଵexpሺെߛ െexpሺെߛଵȟݐ௞ሻ ൅ expሺെߛଶȟݐ௞ሻߛଵߛଶexpሺെߛଵȟݐ௞ሻ െ ௞ሻݐଶȟߛଶexpሺെߛଵߛ ௞ሻݐଵȟߛଵexpሺെߛ െ  ௞ሻ൨,  (6)ݐଶȟߛଶexpሺെߛ

ܳ௞ ൌ ቈܳ௞ଵଵ ܳ௞ଵଶܳ௞ଵଶ ܳ௞ଶଶ቉,          (7) ܳ௞ଵଵ ൌ ௤ሺఊభିఊమሻమ ቀଵିୣ୶୮ሺିଶఊభ୼௧ೖሻଶఊభ ൅ ଵିୣ୶୮ሺିଶఊమ୼௧ೖሻଶఊమ െ ʹ ଵିୣ୶୮ሺିሺఊభାఊమሻ୼௧ೖሻఊభାఊమ ቁ,    (8) ܳ௞ଵଶ ൌ ௤ଶሺఊభିఊమሻమ ൫expሺെʹߛଵȟݐ௞ሻ ൅ expሺെʹߛଶȟݐ௞ሻ െ ʹexpሺെሺߛଵ ൅  ௞ሻ൯,   (9)ݐଶሻȟߛ

ܳ௞ଶଶ ൌ ௤ሺఊభିఊమሻమ ቆఊభଶ ൫ͳ െ expሺെʹߛଵȟݐ௞ሻ൯ ൅ ఊమଶ ൫ͳ െ expሺെʹߛଶȟݐ௞ሻ൯ െ ʹ ଶఊభఊమఊభାఊమ ൫ͳ െ expሺെሺߛଵ ൅  ௞ሻ൯ቇ, (10)ݐଶሻȟߛ

തܳ ൌ ቈߪ௣ଶ ͲͲ ௣ଶ቉ߪ ǡ ௣ߪ ൌ ௤ଶఊෝభఊෝమ ǡ ௩ߪ ൌ ௤ଶఊෝభ.        (11) 

 

The complex-eigenvalues case under the MOU model 
and limiting cases of interest that identify the relationship 
between the MOU, IOU, and NCV models are found in [14]. 

Our data simulation will assume that kinematic-sensor 

scans at the sequence of times ݐ௞ are characterized by a 
state-independent detection probability ݌ௗ, linear 
measurements with additive Gaussian noise ݒ௞̱ܰሺͲǡ ܴ௞ሻ, 
Poisson distributed false alarms with parameter Ȧ, and false 
alarms distributed in measurement space according to 

ܰሺͲǡ തܳሻ. Identity-sensor detections are generated in a similar 
manner, but with very small ݌ௗ and no false alarms. As 
discussed in Section I, we assume no measurement 
provenance uncertainty from identity-sensor detections. 

Our approach to identity-sensor modeling is essentially to 
model a passive sensor as an active one. This amounts to the 
assumption that all targets are equipped with an active 
emitter and that target inter-emission times are exponentially 
distributed. 

ю+ ю
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III. ASYNCHRONOUS MHT  

The fundamental MHT equation that allows for recursion 
evaluation of global hypotheses based on local hypothesis 

computations is given below, where ݍ௞ denotes a global 
hypothesis at time ݐ௞, ݍ௞ is an incremental global hypothesis 
at time ݐ௞, ߬ is the number of targets at time ݐ௞ିଵ, and ݎǡ ݀ǡ ܾǡ 
and ߯ are the number of returns, number of detections of 
existing targets, number of new targets, and number of target 

deaths, respectively, at time ݐ௞. It is worth emphasizing that 
the factorization of local hypothesis computations relies 
crucially on the assumption of Poisson-distributed target 
births. The recent extension to the MHT recursion that 
relaxes the usual MHT assumption of target detection at birth 
without increasing algorithmic complexity is in [15]. When 
target statistics are stationary, the extension leads to an 
adjustment to the birth statistics to account for previously-
undetected births [16]. 

௞ȁܼ௞ିଵǡݍሺ݌  ௞ିଵሻݍ ൌ ቄஃೝ௘ష౻௘షഋ್௥Ǩ ቅ ఞఞ݌ ቀሺͳ െ ௗሻ൫ͳ݌ െ ఞ൯ቁఛିௗ݌ ൬௣೏ஃ ൫ͳ െ ఞ൯൰ௗ݌ ቀ௣೏ஃ೔  ௕ቁ௕Ǥ (12)ߤ

 

While MHT processing is effective for kinematic 
tracking, its application for our multi-INT processing is 
extremely challenging due to the need for deep hypothesis 
trees to benefit from highly-informative target emissions. 
Consider the following illustrative example.  

Assume there are ܰ sensor scans, where the first and last 
scans are due to the low-rate sensor and intervening scans are 
due to the high-rate sensor. We assume one-dimensional 
MOU target motion and positional sensor measurements. We 
consider a number of solution schemes. The first is the 
clairvoyant solution, where measurement provenance is 
assumed to be known for the high-rate sensor as well. This 
reduces to a set of linear filtering problems for which the KF 
provides an optimal solution. 

The second solution is to use the global nearest neighbor 
(GNN) assignment with sequential processing of all sensor 
scans. Note that, in general, data association errors do occur. 
We recover from such errors at the last scan (from the low-
rate sensor), when measurement provenance is known. 
Naturally, for a fixed number of targets and target density, as 
the number of scans of data increases, the problem becomes 
more difficult in the sense that data association errors will 
accrue prior to the last scan of data. 

Can we do better than the GNN solution if we constrain 
ourselves to maintaining a single global hypothesis? It turns 
out that improved performance is possible. This is achieved 
by performing Kalman smoothing based on the current state 
estimates at time ݐ௞ and the final scan of measurements at 
time ݐே, to estimate target positions at time ݐ௞. These 
estimated positions can be used in defining the GNN 
assignment matrix, resulting in a more reliable solution than 
is possible with sequential processing. We call this approach 
asynchronous GNN. 

Figure 4 illustrates one realization of target trajectories, 
along with four candidate solutions. These are the 
clairvoyant solution, the sequential GNN solution, and two 
variations on the asynchronous GNN solution – one with 
scoring based on approximate Kalman smoothing, and one 
exact scoring based on Kalman filtering. Note the “recovery” 
at the last scan exhibited by the sequential GNN solution. 

Figure 5 illustrates Monte Carlo performance results as a 
function of the number of sensor scans. When there are only 
two scans of data, both from the low-rate sensor, all four 
solutions coincide. The clairvoyant solution improves 

slightly with an increasing number of scans, due to filter 
convergence. The three solutions for which measurement 
provenance on high-rate sensor returns is unavailable all 
degrade with increasing number of scans, measured in terms 
of average position estimation error. 

 

Figure 4. Realization of competing solutions for multi-target filtering. 

 

Figure 5. Performance as a function of scenario duration. 

We see that the asynchronous GNN provides a dramatic 
multi-target filtering improvement over sequential GNN, 
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while maintaining the same processing complexity, albeit 
with the need for Kalman smoothing or an additional 
Kalman filtering update in defining the GNN assignment 
matrices. Note that in the asynchronous GNN solutions the 
information in the final scan is used solely to improve 
association decisions, and does not impact filter updates. 
There is no issue of repeated use of final-scan information.  

The above result may be applied to the general MTT 
problem, for which the number of targets is unknown, as 
well as in MHT processing, where data association decisions 
are based on sliding window of scans and multiple 
association hypotheses are maintained. This is best described 
via a notional example. 

Figure 6 illustrates A-MHT processing of track level 
identity data S1 and kinematic data W1 and W2. The 
processing proceeds in batch or forensic mode. We initialize 
the set of track hypothesis trees with all unassociated identity 
tracks. Next, we proceed to process kinematic tracks 
sequentially, whereby the entire track is processed in 
forming and scoring track hypothesis trees; this in analogous 
to the preceding asynchronous GNN discussion. However, 
here we consider as well new target hypotheses. Further, we 
consider several processing steps before pruning the set of 
track hypothesis trees, as prescribed under the n-scan 
pruning logic that we adopt [3].  

Figure 6. A-MHT hypothesis formation via batch processing of tracks. 

The track order for processing is somewhat arbitrary, but 
for convenience we order kinematic tracks by time, starting 
with the first track to terminate. This explains why, in the 
example, we process kinematic track W1 first. We do not 
consider the hypothesis that both W1 and W2 are due to the 
same target as they overlap in time. This would require a 
redundant-measurement sensor model, for which recent 
developments in MHT are discussed in [17]. 

A-MHT hypothesis generation logic is different from 
classical MHT in certain details as well. As an example, 
there is no need to consider limited track coasting prior to a 
track termination hypothesis. The A-MHT will allow for 
arbitrarily long track coasts, since the single-sensor tracks in 
any fused track hypothesis may exhibit significant temporal 
separation. 

IV. MCMC DATA FUSER 

MHT-based approaches to multi-INT surveillance – even 
the A-MHT – will ultimately fail in sufficiently large-scale, 
high-density, and prolonged inter-emission-time target 
scenarios. Hence, we consider a stochastic sampling 
approach that is motivated by recent research on MCMC 
approaches to multi-target tracking [12-13].  

Our approach operates on track-level data. As such, all 
global hypotheses will necessarily account for all single-
sensor tracks. Our initial condition is to hypothesize that all 
single-sensor tracks originate from a distinct target. Next, we 
proceed to perturb the current global hypothesis, evaluating 
new global hypothesis with a batch form of the global 
hypothesis score that is consistent with MHT scoring 
identified in eqn. (12). The MCMC Data Fuser (MCMC-DF) 
keeps track of the best global hypothesis encountered in past 
iterations; this allows the sampling scheme to explore global 
hypothesis space by occasionally migrating to a worse-
performing global-hypothesis state without degrading the 
current solution. The MCMC-DF proposal density used in 
sampling must satisfy certain technical ergodicity, 
reversibility, and detailed balance assumptions to guarantee 
convergence to the optimal global hypothesis.  

The MCMC-DF includes Metropolis-Hastings merge and 
split moves, as well as Gibbs sampling that cycles through 
all single-sensor tracks and potentially changes the fused 
track to which each is associated. Figure 7 illustrates a 
Metropolis-Hastings split move that extracts a single-sensor 
track from a fused track, generating a new (singleton) fused 
track. 

 

Figure 7. A Metropolis-Hastings split move in MCMC-DF processing. 

The potential disadvantage of the MCMC-DF over the A-
MHT is that it operates in an enormous global hypothesis 
space, whereas track-oriented MHT approaches operate in 
local hypothesis space and rely on efficient relaxation-based 
optimization approaches to identify a global hypothesis 
solution. The potential advantage of the MCMC-DF over the 
A-MHT is that it need not characterize all of hypothesis 
space and relies on impressive convergence properties that 
MCMC technology has demonstrated in many application 
domains. 

V. SIMULATIONS  

We consider a 2D scenario with the following statistical 
characteristics. 

• Target existence: ߣ௕ ൌ ͲǤͲͳsec ିଵ
 (birth rate), ߣఞ ൌͲǤͲͲͳsec ିଵ

 (death rate); ܶ ൌ ͳͲmin (scenario length). 

• Target dynamics (in each dimension): ߪ௣ ൌ ʹͷͲm 

(positional std. dev.), ߪ௩ ൌ ͸Ǥͷm ڄ sec ିଵ
 (velocity std. 

dev.), ݍ ൌ ͷ݉ଶ ڄ sec ିଷ
 (process noise); 
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• Sensor characteristics: ȟݐௐ ൌ ʹsec (kinematic sensor 

revisit time), ݌ௗௐ ൌ ͲǤͺ (kinematic sensor detection 

probability), ߉ ൌ Ͳ (kinematic sensor false alarm rate 

per scan), ȟݐௌ ൌ ͲǤͷsec (identity sensor revisit time), ݌ௗௌ ൌ ͲǤͲͷ (identity sensor detection probability); ܴ ൌ ቂͳ ͲͲ ͳቃ mଶ (measurement error std. dev. for both 

kinematic and identity sensors). 

An illustration of end-to-end processing is in Figure 8. 
The left pane shows ground truth trajectories (black) and 
kinematic and identity detections (red & green, respectively). 
Single-sensor kinematic tracks based on first-stage MHT 
processing as well as fused multi-sensor tracks are shown in 
the right pan (red & blue, respectively). These are nearly 
indistinguishable as kinematic localization of fused tracks is 
similar to the kinematic tracks, though fragmentation is 
greatly reduced and associations are aided by identity-sensor 
information. As discussed in Section I and as illustrated in 
the bottom pane, our processing architecture includes 
performance evaluation based on a truth-tracks comparison. 

 

Figure 8. One realization of the benchmark scenario. 

In some settings, target and track purity are second order 
metrics while target and track completeness are of primary 
importance. On the other hand, for our application, kinematic 
tracks are well localized and do not incur track swaps, so that 
track completeness is high. Likewise, target completeness is 
high due to the high sensor detection probability. 
Accordingly, our principal focus is on the performance of the 
MCMC-DF and A-MHT as assessed by target and track 
purity, relative to an MHT track-fusion baseline. 

We first examine MCMC-DF performance in Figure 9, 
using the Metropolis-Hastings merge move and Gibbs 
sampling. Recall that the initial condition is for all single-
sensor tracks to be unassociated. Hence, track purity is one, 
and remains nearly one with increasing iteration number. 
This implies that track associations are performed correctly. 
Target purity starts low and gradually increases to over 90%, 
indicating that many track associations are performed and 
that track fragmentation is greatly reduced. 

It is of interest to measure the significance of identity-
sensor data on overall performance. We do this by applying 
the MCMC-DF only to kinematic track-level data. The 
results are in Figure 10, where we see much lower target 
purity. Thus, we see that identity information enables much 
more data fusion, as higher target purity implies lower track 
fragmentation, while still performing correct association 
decisions as indicated by high track purity. 

Figure 9. MCMC-DF performance with both Metropolis-Hastings and Gibbs 
sampling. 

 

Figure 10. MCMC-DF performance with kinematic data only. 

It is surprising that identity information has a significant 
impact on fragmentation reduction; one might expect that the 
primary benefit would be lower-error association decision-
making. Identity information often establishes that a long-
duration target is present: a notional illustration is below. 

 
Figure 11. Identity information induces association of kinematic tracks that 

would not otherwise fuse. The two-target kinematic-only optimal hypothesis 
is replaced by a one-target multi-sensor optimal hypothesis. 

Target visibility under high detection-probability 
kinematic sensing induces the association of the identity 
track with multiple kinematic tracks that would not be 
associated otherwise. Indeed, were the identity track not 
associated with the kinematic tracks, we would incur a 

t

W1 W2

S1 S1
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penalty in global hypotheses score with a target that persists 
for a long time and is not observed by the kinematic sensor.  

The MCMC-DF iterations for the results given above are 
somewhat slow, on the order of 20sec per iteration. This is 
due to the rather slow Gibbs sampling move that sequentially 
considers resampling all single-sensor tracks. We have 
improved both performance and complexity by considering 
instead Metropolis-Hastings merge and split moves, with no 
Gibbs sampling. Execution time is reduced to 2-3sec per 
iteration, and an improved target purity of about 94% is 
achieved, as illustrated in Figure 12. 

Figure 12. MCMC-DF performance with Metropolis-Hastings moves. 

Unfortunately, the MCMC-DF is not able to reach target 
purity of one, even after prolonged processing – see Figure 
13. The apparent lack of convergence to the optimal global 
hypothesis is a matter of current investigation. Nonetheless, 
the MCMC-DF achieves comparable performance to 
baseline MHT processing with a hypothesis tree depth (n-
scan) of 10; this is significant and promising performance 
result for the MCMC-DF approach. 

Figure 13. No further improvement with continued MCMC-DF iterations. 

We consider MHT and A-MHT on the same scenario as 
above, though we consider as well a second, more 
challenging setting, with modifications as noted below. 

• Modified settings: ߉ ൌ ͳͲ (kinematic sensor false alarm 

rate per scan), ܴ ൌ ቂͷ ͲͲ ͷቃ mଶ (measurement error std. 

dev. for both kinematic and identity sensors). 

Target and track purity results are illustrated in Figures 
14-17, for a range of n-scan values. Note that the meaning of 
n-scan is the usual one for MHT processing, i.e. the number 
of additional temporal scans before global hypothesis 
resolution. An n-scan of 0 corresponds to GNN processing. 
On the other hand, n-scan processing in the A-MHT 
indicates the number of single-sensor tracks that are ingested 
(in batch form) prior to global hypothesis resolution. Thus, 
though both MHT and A-MHT processing complexity 
increase as a function of n-scan, the processing time of the 
algorithms is not the same for a given n-scan. Nonetheless, 
examining performance as a function of n-scan is instructive. 

Figure 14. MHT and A-MHT target purity (easier scenario). 

Figure 15. MHT and A-MHT target purity (harder scenario). 

For the easier scenario, both the MHT and A-MHT 
achieve the same level of performance, though a larger n-
scan is needed for the MHT to do so. The performance 
difference, and the potential of the A-MHT approach, 
becomes clearer with the harder scenario. First, as expected 
we see that performance is lower for both algorithms than it 
was with the easier scenario. On the other hand, the A-MHT 
reaches target purity and track purity levels that the MHT is 
unable to reach regardless of n-scan. Indeed, the theoretical 
optimality of MHT for sufficiently-large n-scan is not 
actually achieved, due to effective but suboptimal track-
extraction and track-management logic. 
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For both the easier and harder scenarios, MHT and A-
MHT processing times are fast (on the order of 1sec) for 
moderate values of n-scan. Nonetheless, processing time 
ultimately is a bottleneck for sufficiently complex scenarios. 

Figure 16. MHT and A-MHT track purity (easier scenario). 

Figure 17. MHT and A-MHT track purity (harder scenario). 

VI. CONCLUSIONS  

This paper has introduced MCMC-based and MHT-based 
advances for multi-INT track fusion with complementary 
kinematic and identity sensors. The challenge is to exploit 
highly informative but sporadic identity information in 
complex settings with dense targets and many association 
possibilities for kinematic single-sensor tracks. 

Both the MCMC-DF and the A-MHT show promising 
results against a highly efficient classical MHT baseline 
algorithm. We plan to compare performance of the three 
algorithms in larger-scale and more complex scenarios. 

There are a number of directions for future work. More 
effective single-sensor tracking would maintain higher track 
continuity and only induce breaks at target group splits. 
Enhanced passive sensor modeling would allow for inactive, 
absent, or multiple emitters per target. Optimized 
management of the association decision-making sequence 
would improve A-MHT performance. Finally, both 
optimized MCMC-DF and A-MHT solutions require 
trajectory smoothing for enhanced forensic performance. 
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