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Abstract—Future advanced driver assistant systems and auto-
mated driving put high demands on the environmental perception
especially in urban environments. Major tasks are the perception
of static and dynamic elements along with the drivable area
and road structures. Although these tasks can be done without
an explicit representation of the ground surface, evaluations
with real-world sensor data have shown that many failures in
sensor data interpretation result from inappropriate ground point
filtering, e.g. false negative or false positive detection of objects.
That means, the ground plane estimation becomes a key-task
in urban environment modeling assuming a reliable perception
of the local vehicle’s surroundings is required. In this paper we
thus present the enhancements of the environment modeling that
can be derived from an explicit representation of the ground
surface. We propose the combination of channel-wise ground
classification with a grid-based representation of the ground
height to cope with spatial false measurements and exploit inter-
channel dependency. Partial occlusions by other road users are
handled in an efficient way. Integration of the ground data is
shown by a pitch angle estimation and a curb detection module.
The algorithms run in real-time on a standard PC and are
evaluated with real sensor data.

I. INTRODUCTION

The development of advanced driver assistance systems

(ADAS) and automated road vehicles has high demands on

the environmental perception of the vehicle. Especially for

inner-city scenarios, which are addressed e.g. by the project

Stadtpilot [1], a complete representation of the vehicles’

surroundings is necessary to provide a safe and comfortable

driving experience.

That means, the host vehicle has to perceive features of

the ground surface as well as elevated elements in order to

determine the course of the lanes and detect obstacles that

would potentially collide with the host vehicle. Among these

are dynamic objects, e.g. vehicles and vulnerable road users

(VRUs), and static obstacles on and at the side of the road. On

highway-like roads, the course of the lanes can be determined

from ground features, e.g. lane markings or textural changes of

the ground surface. But when advancing into inner-city streets,

also curbs and elevated objects provide relevant information

about the boundary of the roads and drivable areas.

These perception tasks mentioned above benefit from a

stable and reliable detection and explicit representation of

the road surface. Evaluation with real-world sensor data have

shown that systematic errors arise if the ground height around

the host vehicle and its environment is not regarded. This

results in either false positive objects (ghost objects from

ground measurements) or false negative objects (overseen

objects due to false classification as ground measurements).

When knowing the ground surface around the host vehicle,

lane marking hypotheses can be validated based on the ground

plane information. The height of obstacles is measured against

the ground height below that obstacle, thus correct object

height estimation as well as the detection of underdrivability

are coupled to the ground plane. The knowledge of the ground

plane enables us to extract curb features, which are character-

ized by a sudden moderate height change, in a simple way. The

curb data provide additional features to road fusion algorithms.

Additionally, the pitch and roll angle of the host vehicle in

relation to the ground plane are relevant for image processing

algorithms and classification tasks of other sensors. These

angles can be determined from a ground plane estimation as

well.

Although suggested by its name and often assumed when fil-

tering for ground measurements (e.g. [2], summary in [3]), the

ground plane is usually not a plane in terms of a mathematical

definition. Locally plane-like, the ground area might contain

slope changes over larger distances. As these slope changes

have similar influence as pitch and roll angle changes, the

ground surface model has to be able to deal with these slope

changes in an appropriate way.

In this paper, we propose a grid-based algorithm for ground

plane estimation which provides locally consistent results and

which is capable of dealing with local slope changes up

to a certain extent, defined by a maximum allowed slope.

We demonstrate the benefit of a grid-based ground plane

representation compared to a more simple channel-based clas-

sification of ground measurements. The practical usage of an

available ground plane is shown by example applications: A

local pitch angle estimation and the robust extraction of curb

features along with an improved height classification of sensor

measurements. The additional curb features are used to extend

our road fusion module, already published in [4], to further
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stabilize the road extraction process.
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Fig. 1: Overview of the overall sensor data processing chain

for the perception tasks. Colored modules are addressed by this

contribution, partly-colored modules are extended in order to

handle new features, grayed modules are out of scope.

This contribution is organized based on the signal data

flow shown in Figure 1. Modules addressed by this paper

are highlighted in blue. Other modules are mandatory for

the overall perception task of the automated vehicle, but are

outside the scope of this paper and are addressed by other

publications of our research group. After the review of related

work in Section II, the ground plane estimation is introduced in

Section III. Based on these results, we present our pitch angle

calculation based on the estimated ground plane in section IV.

The adoptions of the stixel generation and segmentation step

as well as the curb classification module are presented in

Section V. These features are finally used to extend our road

fusion framework (Section VI). We close with a conclusion

and outlook to further work in Section VII.

II. RELATED WORK

In this paper, we refer to the term ground as that area

which is reachable by the host vehicle without passing dis-

continuities, defined by a maximum allowed slope of the

ground surface. In the following section, a brief overview over

established algorithms is given and the contribution of our

approach and its usage for environment modeling is shown.

A. Literature review

The estimation of the ground surface around the host vehicle

is a major topic in the context of automated driving as it

describes the drivable area. Several sensor technologies are

used to retrieve this information, e.g computer vision systems

(mono and stereo cameras) and laser distance sensors. An

extensive comparison of different approaches is given by the

authors in [3] and [5]. Here, we will focus on the extraction

from a high density 3D point cloud generated from the well

known Velodyne LIDAR. The classification of ground points

from those data was addressed during the DARPA Urban

Challenge in 2007, as many teams used this type of laser

scanner (e.g. [6] [7] [8] [9]) or accumulated a 3D point cloud

from multiple single-layer laser scanners (e.g. [10]).

In general, existing algorithms can be subdivided into two

groups. Algorithms of the first category generate a ground

classification based on the relative position of measurements

inside a defined vertical slice of the sensor data (commonly

known as channel). Algorithms of the second group estimate

ground information in the scan data of a group of channels up

to the complete sensor scan. Examples for algorithms of both

groups are given in the following paragraphs.

a) Channel-based algorithms: Channel-based classifica-

tion algorithms compare the given measurements within a scan

channel to identify those measurements which describe the

ground surface. Several different approaches can be found in

literature. Ground points can be detected by comparing the

vertical displacement between the sensors’ measurement inside

a bounded area. By this, flat structures can be detected and

separated from elevated targets (e.g. [8] [10] [11]). Slope-

based algorithms compare the height data from subsequent

measurements inside a channel in relation to the radial distance

to detect slope changes and thus measurements from vertical

structures. Beside direct angular calculation, adjacent beam

comparison is applied to be more robust against high-frequent

dynamic movements of the vehicle [6]. A similar algorithm

was used in the first place by the Stadtpilot project as well

(see [12]).

In contrast to the aforementioned approaches, the authors

in [13] applied a line regression algorithm after clustering

the sensor raw data within a 2.5D grid representation. The

extracted line was used as the ground slope inside the channel.

The measurements were classified afterwards regarding their

distance to this ’ground line’.

Typically, these algorithms are used to separate ground

points from measurements of elevated targets in order to

remove the ground points from the sensor scan. This allows

to detect elevated point clusters and drivable areas. An ex-

plicit modeling of the ground surface was not used in these

approaches. The channel-based classification is sensitive to

ground slope changes, but does not take the neighbor channels

into account, which would lead to a more stable and consistent

classification.

b) Group-Based and Scan-based algorithms: Other ap-

proaches use the explicit modeling of a plane function in order

to classify points as part of the ground plane. The authors in

[14] discretized the sensor data into distinct cells and applied

a RANSAC fitting to the lowest z coordinate inside those

cells, assuming these measurements to be part of the ground

surface. The authors in [15] use a RANSAC algorithm as well,

2050



but apply it to the nearly complete sensor point cloud. Only

points above a certain height in the sensor reference frame

were removed as they cannot be generated from ground mea-

surements. Other approaches, e.g. [2], combine the channel-

based classification with a plane fitting algorithm. A slope-

based approach is used to determine possible ground points.

In the second step, a plane is fitted into this point cloud in a

least-squares manner.

As stated previously, these approaches assume the existence

of a single ground plane around the vehicle (flat world

assumption). If applied to non-planar areas, these algorithms

lead to false approximations of the ground height and thus

false measurement classification. False classification leads

to failures in the object detection, e.g. ghost objects then

classifying ground points as elevated targets or missing objects

when classifying elevated objects as part of the ground plane.

B. Contribution of this paper

Many of the above mentioned algorithms focus on the clas-

sification of sensor data in order to remove ground points from

further processing steps or to extract the drivable area from

the vehicle’s point of view. Channel-based and scan-based

algorithms differ in their ability to adapt to slope changes

or to generate a consistent ground surface estimation. Similar

to the approach in [2] and [9], we propose the usage of a

channel-based pre-classification combined with an area-based

consistency constraint. By using a grid-based representation,

we are not limited to using one plane function for the overall

ground surface, but can adapt to slope changes up to a prede-

fined extent. Furthermore, the grid-based representation allows

for the compensation of partial occlusions from other traffic

participants. The results of the ground surface estimation are

used to correct the height information of object hypotheses and

to classify the extent of vertical structures. This allows for a

simple curb classification and enhances the results of our grid-

based road fusion. Furthermore, the correction of the height

component results in a higher effective range of view since

less false classifications would appear at larger distances.

III. GROUND PLANE ESTIMATION

Our ground plane estimation consists of four major process-

ing steps to be explained in the following paragraphs.

A. Algorithm description

a) Profile-based classification according to [16]: After

sensor data acquisition and preprocessing to compensate sen-

sor decalibration, the sensors’ data is organized in a channel-

like data structure. All measurements belonging to the same

azimuth angle of the sensors’ reference frame are sorted by

their elevation angle in ascending order.

The first processing step performs a profile-based classifica-

tion inside such a channel. Given a pre-defined threshold for

the maximum allowed ground slope (change of height over

distance), the slope angle between two subsequent measure-

ment points inside a channel is calculated by comparing the

cylindric radial distance change against the detected height

value change. Measurements with a slope below the applied

threshold are marked as ground point candidates, whereas

other points are classified as measurements from elevated

targets. The ground point candidates are validated by a profile

criterion. If a previous measurement in the current channel was

classified as an elevated target measurement, the slope must

have a downward direction larger than the given threshold. By

applying this rule, we prohibit elevated plateaus from being

classified as ground points. The results of this step are shown

in Figure 2, left. The major number of ground measurements

is classified correctly. However, sensor noise and small irreg-

ularities on the pavement, e.g. grass between cobblestones,

lead to spatial false classifications in some channels. At this

processing step, the algorithm lacks an explicit model of the

dependency between the neighbored channels.

b) Cell-based aggregation: Spatial false classifications

can be filtered by exploiting inter-channel dependencies. Typ-

ically, the ground surface height does not change significantly

between the channels, so consistent height hypothesis can be

generated when regarding neighbor channels. This dependency

is modeled via a grid-based representation of the ground height

around the host vehicle. All ground-classified measurements

are taken into account in this processing step and are assigned

to a certain grid cell depending on their position. This leads to

a clustering of ground points to specific grid cells. In a second

step, the mean height of all points inside such a cell is then

calculated and provided as a mean height of the ground plane

at that specific area. The usage of a grid structure combines

the advantages of both the scan-based and the channel-based

algorithms. It provides a locally consistent ground height and

adapts well to ground height changes inside the sensor range

as it uses the profile-based classification of the first processing

step as an input filter. The results from this processing step

are shown in figure 3, left.

c) Median filtering and gap filling: A modified median

filter is applied to this grid structure to fill spatial missing

ground plane information and to further flatten the detected

ground height. The filter algorithm calculates the median value

of all available ground cells inside its filter kernel. This allows

the median filter to be able to operate even on cells with

partial missing ground plane information in its neighborhood.

Furthermore, this algorithm is able to fill up missing ground

cells, if a sufficient number of ground cells is found in its

surrounding. The results of this processing step are shown in

Figure 3. We chose a grid cell size of 1.0m per dimension and

a median filter kernel size of 9 cells. With these parameters, we

can compensate missing measurements underneath vehicles on

the road, but are robust against single-point failures from the

profile-based classification.

d) Final point classification: With knowledge about the

ground plane around the host vehicle, all sensor measurements

of the current scan can be classified according to their specific

distance to this plane. While points with ground classification

have a reasonable small distance to this plane (currently a

threshold of 0.1m), we also classified points with a distance

up to 0.25m as curb. Points above this threshold are classified
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Fig. 2: Results of the profile-based classification (left) and

the grid-based classification (right): ground points (white),

elevated points (red, orange). The profile-based classifier

yields spatial false classifications due to small irregularities

and false measurements (yellow marking). The grid-based

classifier provides a more robust classification.

Fig. 3: Resulting ground height from grid-based approach

before (left) and after (right) applying a median filter. The

modified median filter fills cells with missing ground informa-

tion and removes spatial outliers. The height is colored from

low (green) over zero (cyan) to high (red).

as regular elevated targets.

This threshold-based decision yields good results so far, it

leads to false classifications on vertical structures, e.g. house

walls. As the ground plane cuts with the vertical structure,

measurements with small distance to the ground plane on

the vertical structure would be classified as curb as well. To

overcome this issue, the number of non-ground measurements

inside each grid cell is calculated. If the number of non-ground

measurements relative to the number of ground measurements

is above a pre-defined threshold, we assume a vertical structure

inside that cell. Measurements with a distance-based curb

classification inside such a cell will be classified as uncertain

curb. This allows subsequent modules a proper handling of

such measurements based on their demands, e.g. the contrast

adjustment or the reflectance grid (out of scope in this paper;

for further information about these processing steps, see [16]).

B. Computation performance

The applied algorithms are computationally feasible. Typi-

cal execution times, measured on an Intel i7-4770S Quadcore

processor, are in a range of 10−14ms. The execution time of

the grid-based filtering scales with the total number of ground

points classified in the first processing step and depends on

the used grid cell size and cell count. The median filter

is currently implemented in a straight-forward manner with

O
(

n2
)

complexity. Thus, the choice of the median kernel size

has significant influence on the overall performance. By using

algorithmic optimizations (e.g. [17]), the processing time of

this filter step can be reduced.

IV. PITCH ANGLE EXTRACTION

With information about the ground plane around the vehi-

cle, we can extract the relative angle between the sensors’

mounting position and the ground plane. The angles in x

and y direction of the vehicle reference frame (according to

DIN 70000) are known as pitch and roll angle. These angles

have huge influence on the mounting position of the sensor

relative to the road surface and thus on the interpretation of

sensor measurements, especially for measurements at larger

distances. The extracted angles can be used to compensate

high-frequent vehicle movements due to braking and acceler-

ation maneuvers or road unevenness. Examples for the usage

of the relative pitch and roll angles are given in [16], [18]

and [19]. Especially on roads with a slope, the ground-

relative angle differs from the absolute pitch and roll angles

measured by accelerometers of an inertial measurement unit

(see Subsection IV-B).

The extraction is currently limited to the pitch angle only,

because in dense traffic scenes or when driving through house

canyons, the detection range along the lateral vehicle axis is

fairly limited. The roll angle is less important for the sensor

data correction as the pitch angle is the dominant component.

Thus, the next paragraphs will focus on the pitch angle

extraction based on 3D Lidar data. The extraction algorithm

in general can be applied to the roll angle in the same manner.

A. Extraction algorithm

The pitch angle is extracted from virtual scan lines following

the longitudinal axis of the vehicle reference frame. The

extraction range is limited to 25m in both directions, as valid

ground layer cells are most likely available inside this range.

A line fitting algorithm is applied to the extracted cell values

(ground heights) to get a linear function of ground plane

with regard to a perpendicular-least-square manner [20]. The

total pitch angle is calculated as a weighted mean from both

lines with the total extracted number of cells as weighting

factor. This approach assumes a constant slope profile of the

underlying ground plane along the extraction line; a sudden

slope change between the front and rear line would result in
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an erroneous angle. This influence can be reduced by either

adjusting the extraction range or, in addition to that, using

another fitting function primitive, e.g. a parabolic function.

B. Results

The results of the pitch angle estimation based on the ground

plane are shown in Figure 4. The extracted ground-relative

pitch angle is plotted against the absolute pitch angle measured

from an iTrace-F200 inertial measurement unit, which is

used as a reference. The high-frequent component of the

extracted angle which results from road surface irregularities

and braking/acceleration of the host vehicle, follows the pitch

angle from the IMU without a noticeable delay. A low-

frequent offset between both plots becomes evident towards

the end of the sequence. This offset, the difference between

the absolute and the ground-relative pitch angle, results from a

slope of the ground plane. The absolute ground height (green

line) measured via GPS localization of the iTrace shows a

downward slope of the road. The angular difference correlates

with the changing ground height, which shows the correct

estimation the relative pitch angle.
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Fig. 4: Comparison of the extracted pitch angle with the values

from iTrace system. The high-frequent component follows the

values from the accelerometer. The low-frequent offset results

from a change in the overall road surface slope. The ground

height is plotted for comparison.

Figure 5 shows another measurement sequence taken on a

highway segment around Braunschweig. The road segment is

characterized by a slight slope over a large distance, resulting

in a locally plain road surface. Without any disturbance due to

acceleration/braking maneuvers and irregularities of the road

surface, one expects a pitch angle around zero degrees. In

deed, this is achieved by our extraction of the relative pitch

angle: It has the same high-frequent peaks as measured from

the IMU, but has a zero mean. The large-scale slope of the road

is visible as a low-frequent offset between the IMU angle and

the extraction angle; the delta is plotted as extracted ground

slope. It is matches with the deviation of the GPS/IMU height

signal measured by the iTrace system.

V. PROCESSING OF STIXEL DATA

In a subsequent step of the ground plane estimation the

non-ground measurements are processed. In order to reduce
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Fig. 5: Extracted ground slope compared to iTrace system

estimated ground slope on a road segment with slope changes

over time. The proposed algorithm extracts the expected near-

zero pitch angle, while the IMU is influenced by the road

slope. The resulting delta (extracted ground slope) is correlated

with the deviation of the GPS height signal.

the total amount of measurements, a stixel representation is

generated from the 3D point cloud data by projecting the data

into a polar grid, as already published in [12]. In addition,

we use the ground plane information at the respective cells to

calculate the stixel height in relation to the ground height.

Extensive work has been done in the field of curb detection

using different approaches, e.g. from computer vision [21] or

3D laser distance data [22]. A comprehensive summary and

comparison of algorithms used on this topic is published in [5].

The approach presented in this paper uses a simple distance-

to-ground calculation to classify points as curbs. Based on

the ground-relative stixel height, we classify stixels with a

height below a predefined threshold (currently 0.25m) as curb

and stixels above as regular targets. This closes a gap of our

previous published approach in [16].

The segmentation used in this project is based on the well

known algorithm presented by Dietmayer et al. [23] and ex-

ploits the channel-wise representation of the sensor data. This

algorithm has been extended to handle curb-classified stixels

differently during the segmentation step. Those stixels are

neglected during the segmentation process, but are assigned to

the according segment if they are inside the given geometric

proximity threshold. By this, the segments will include all curb

stixels fulfilling the segmentation criterion, but curb stixels are

not able to connect segments, e.g. parking vehicles in front of

a curb-like structure. The results of the curb classification and

the segmentation step are shown in Figure 6.

Due to the sensors’ resolution, detailed features like curbs

can only be detected reliably inside a short area around the

host vehicle, while elevated targets will be detectable at a

large distance up to the sensors’ viewing range. The different

detection ranges lead to a late occupancy information for

curb-like structures if they are accumulated inside the same

Bayesian grid as elevated targets. As typical sensors ’oversee’

curbs at a larger distance due to the growing gap between

two vertical scan lines at larger distances, the Bayesian grid

cells will be updated as ’free’ up to the first elevated target.
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Fig. 6: Left: Results of the curb classification. Stixels are

classified as curb (white), uncertain curb (curbs near elevated

targets, blue) and elevated (red).

Right: Adapted segmentation process: Presence of curb stixel

aborts the segmentation, which results in different segments at

the elevated targets (yellow marking).

When finally detecting curb points, the relevant grid cell

already contains a free state and will take some update steps

to converge towards occupied state. This results in an unstable

occupancy information on curbs and pavement areas around

the host vehicle.

To avoid this issue, curbs and elevated targets are accumu-

lated in two separated Bayesian grids based on their previous

classification. The results are shown in Figure 7. The combined

Bayesian layer shows unstable occupancy states in the area of

the curb, while the curb layer contains stable information about

the curb features and the distinct elevated target layer contains

stable information about targets above the curb threshold. Both

layers can be used as different features by e.g. the road area

detection (see section VI).

Fig. 7: Comparison of a default Bayesian grid (left) against

separate layers for curbs and elevated targets (middle/right):

Curb and elevated target features create high occupancy values

in their respective layer while the combined layer contains

unstable occupancy in the area of curb measurements (red:

occupied, green: free; magenta box shows host vehicle posi-

tion).

VI. INTEGRATION TO ROAD EXTRACTION

In [4] and [24] we presented an algorithm for road extrac-

tion. Our algorithm addresses the challenge of detecting road

and lane geometries especially in urban environments which

do not follow a certain model assumption, e.g. a clothoid

model. Due to the big variety of environmental features

in urban environments (e.g. elevated targets, lane markings,

curbs) which all together define the road and lane boundaries,

we presented in [16] and [24] an approach which fuses

elevated targets and lane markings into one single grid-based

representation. This step improves the robustness of the road

detection algorithm referring to different local environments

(e.g. side streets without lane markings or radial highways

with lane markings but without building lines). However, we

did not explicitly consider curb-like features so far.

The integration of the curb layer into our existing framework

is shown in Figure 8. The curb information is fused with the

information of elevated targets and lane markings to extend

the low-level representation of those features which define the

road course.
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Fig. 8: The curb layer in the context of our multi-layer concept:

Different features are stored in specialized layers, abstracted

to a common representation and then fused per-cell by a

rule-based framework. The resulting representation is used by

e.g. our grid-based road extraction algorithm (blue parts are

currently used, black ones can be additionally integrated).

In this framework, several features are stored in dedicated

grid layers. The cell data type and the data processing algo-

rithms can thus be optimized for the respective features.

The grid fusion algorithm combines the information stored

in those different layer types. To be able to perform this

fusion step, each cell of the feature layers is converted into a

tristate value (free, unknown, occupied) by a feature-dependent

algorithm. This values correspond to the presence (occupied)

or absence (free) of a specific feature; the unknown state

is used to label cells with inconclusive information. The

different layer abstractions are then fused on a per-cell basis

into a combined representation using a rule-based framework.

The fused states of the cells provide information about the

availability of features at the cells’ positions. This includes
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both information about the type of detected features and the

representation of free and unknown areas.

The road extraction algorithm uses the type of occupancy

stored in this fused representation to select suitable features

for the determination of road and lane courses.

The fusion of curbs and the structure of the ground plane

(reflectance layer) provides redundant information about the

road borders because in many cases the material of the slightly

elevated curbs differs from the material of the road surface

(see Figure 9 and Figure 10). Nevertheless, a lot of scenes

remain where only either the reflectance value or the curb

information is available. In these cases the robustness of the

road course extraction referring to different environments is

additionally improved when using the fused representation of

both features.

Fig. 9: Results of the curb feature extraction with redundant

information: Left: Aerial view with digital map overlay;

Middle: Extracted curb grid (height information);

Right: Extracted reflectance grid (texture information). Aerial

image: City of Braunschweig, Department of Geographic

Information (no. 011/2010)

VII. CONCLUSION AND OUTLOOK

We have presented the extension of the vehicle environment

modeling for automated road vehicles in urban scenarios

by the usage of an explicit ground surface estimation. This

estimation is done based on measurements of a 3D laser

scanner, the Velodyne HDL-64 S2. Our approach provides

locally consistent ground height estimations and is able to deal

with slope changes of the ground surface inside the sensors’

range. Moreover, it can deal with occlusions of the ground

area and spatial false measurements. We have pointed out the

enhancements based on the knowledge of the ground area, a

pitch angle calculation and a curb feature extraction, which

was shown to be an additional feature for road extraction

algorithms. The estimated ground height is used to correct the

height of object hypotheses and thus reduces the number of

false positive and false negative object detections. Due to this,

we were able to extend the sensors’ effective field of view.

Fig. 10: Feature layers for the tristate road fusion. Upper left:

reflectance data; upper right: elevated target occupancy; lower

left: curb occupancy; lower right: resulting tristate fusion layer

At the current stage of research, the estimated height values

stored in the grid structure are reinitialized with every new

sensor scan to be able to react to high-frequent pitch and roll

angle changes. Further research will address the storage of

measured ground heights to fill temporarily seen cells not only

based on its neighbor cells but also on past results from the

ground plane estimation. This involves the compensation of

pitch/roll influence in both timesteps and an efficient storage

of the ground height during different measurement cycles.

The knowledge of seen ground surface areas allows the

modeling of explicit free regions in the grid-based environment

representation. Current implementations model the free re-

gions in a Bayesian grid implicitly based on a free line-of-sight

assumption up to the first elevated target. This assumption has

some drawbacks which can lead to ambiguous interpretations:

In case of sensor channels without valid measurements, it

can either be interpreted as completely free field of view or

as measurements of non-reflective objects. The explicit grid-

based ground surface representation presented in this paper

can be used to resolve these ambiguities in an easy way.
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