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Abstract—This paper introduces a statistical risk based metric
for field of view constrained sensor management in a target
tracking scenario. This metric is based on a Bayesian estimate
of both the target position and the target classification. Due to
field of view restrictions it is assumed that more targets exist
than the given sensor is capable of tracking simultaneously. It is
also assumed that initially all target classifications are unknown
and that a cost exists for incorrectly classifying a target track.
This cost is higher for certain classes of targets than it is for
others. To account for uncertainty in both the kinematic and
classification state estimates, the proposed metric treats the cost
as a random variable and uses a hierarchical statistical model to
calculate the expected value of this cost when conditioned on the
event of losing a target track. This metric is then applied to a
simulated radar sensor manager to maintain an acceptable level
of kinematic accuracy on targets of high cost. It is shown through
empirical statistical tests that this sensor manager maintains track
on high priority targets significantly better than other common
methods.

I. INTRODUCTION

A common problem in target tracking applications is the

ability to maintain a good estimate, or track, of a target’s

true state (i.e. classification, position, and velocity) in the

presence of sensor imperfections. This is usually accomplished

by maintaining an estimate of the target’s state over time using

an algorithm such as a Kalman filter [1]. However, it is often the

case that sensors are incapable of maintaining a good estimate

of all target states in a given area over a period of time due

to field of view (FOV) restrictions. If the target’s estimated

location is poor enough such that its location falls outside this

field of view, then no state measurements will be collected on

the target. Essentially, the target will be lost.

As an example, consider a pan tilt zoom (PTZ) camera

attempting to autonomously locate a person of interest in a

crowd of people. Research has found that a larger number of

camera pixels on a target substantially improves results during

target classification [2]. Thus, the PTZ camera needs to zoom in

on potential targets to classify them, at the sacrifice of collecting

state measurements on other targets. This creates a field of view

constraint and has led to a significant amount of research on

how to autonomously manage a PTZ sensor resource to classify

and track targets of interest [3] [4] [5] [6].

An analogous sensor management problem exists for radar

sensors. Common radar systems use a ’pencil beam’ mode with

sufficient resolution to both classify and track targets of interest.

However, this mode typically requires a field of view of only

several degrees in size and thus also leads to FOV constraints

[7]. This has also led to a significant amount of research on

how to autonomously manage radar sensors for applications

ranging from satellite tracking to ground target tracking [8] [9]

[10] [11].

Since both of these cases often involve tracking a large

number of targets, a form of autonomous sensor management is

typically employed to track as many targets as possible. This

usually involves scheduling the sensor to measure the target

track estimate with the largest uncertainty in the true target

state. To measure the reduction in uncertainty, a metric of infor-

mation gain is commonly employed. This can take the form of

Kullback Liebler divergence, Fisher information gain, or Renyi

divergence [12] [10] [9]. Information gain based metrics can

be used for measuring both kinematic and classification based

uncertainty during sensor management [13]. However, there is

no prioritization of target tracks which is essential when only

a subset of the total targets can be successfully tracked.

To circumvent the limitations on existing metrics, the idea

of using a statistical risk model to calculate an expected cost

as a metric has gained ground in recent research. Papageorgiou

et. al. have used an expected cost for the problem of missile

defense [14]. Wang et. al. have used Bayesian risk during sensor

management for micro air vehicles and satellite tracking [8]

[9]. DeSena et. al. have used heuristic approximations to an

expected cost for surveillance problems [15]. This paper differs

from these works in that its focus is on field of view constraints

when calculating expected costs.

This paper considers autonomous sensor management for

field of view constrained sensors when there are too many

highly maneuverable targets for a single sensor to track. It

is assumed that only a small number of targets need to be

tracked (i.e. persons of interest in a crowd) and that initially all

the target kinematic states are known, but their classification

states are unknown. It is also assumed that a cost exists for

making an incorrect decision on a target’s true classification.

The key observation in this paper is that the job of a sensor

manager is not to make classification decisions on target tracks,

nor is it to reduce all of the targets’ state estimate uncertainties.

Instead, the sensor manager needs to decide what allocation of

sensors to what targets will result in the greatest reduction in

expected cost of making an incorrect classification decision.
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By framing the problem as one of reducing expected cost,

the cost can then be conditioned on the event of losing a

target track. Thus, the expected cost incorporates both the track

kinematic estimate and the track classification estimate. Section

II discusses the modeling of these estimates. The calculation of

the expected cost and the amount of reduction in this cost from

new measurements is discussed in Section III, and experiments

showing the effectiveness of this metric compared to others are

detailed in Section IV.

II. KINEMATIC AND CLASSIFICATION STATE ESTIMATION

For each target, a track:

~X =
[

~Xkinematic
~Xclassification

]

is maintained to estimate the true state of the target and

provide needed data in calculation of the risk metrics provided

in Section III. The specific values of this track ~X are discussed

in the following subsections.

A. Kinematic State Estimation

For simplicity, in this paper both the targets and the sensor

exist in a two dimensional plane. Thus the true kinematic state

consists of a two dimensional position (x and y) and velocity

(ẋ and ẏ):

~Xkinematic truth =









x

ẋ

y

ẏ









The estimates of these true target states, referred to as target

tracks, are modeled by four dimensional Gaussian distributions:

~Xkinematic ∼ N
(

x̂k, P̂k

)

Where x̂k is the mean state estimate and P̂k is the state

estimate error covariance at time k. Both of these values are

updated by the standard extended Kalman filter equations, with

linearization around the measurement, which are summarized

in the appendix. The parameters to these updates are detailed

as follows.

Measurements consist of an angle θ = arctan
(

y
x

)

and a

range r =
√

x2 + y2:

~Ztruth =

[

θ

r

]

To avoid singularities in the linearization process, measure-

ments are converted to Cartesian coordinates and the lineariza-

tion is performed on the noise [16]. This is reflected in the

construction of the measurement error covariance matrix R as

shown below. Measurements are thus represented as:

~ZCartesian
truth =

[

r cos (θ)
r sin (θ)

]

The linear state estimate to measurement transformation H

is given by:

H =

(

1 0 0 0
0 0 1 0

)

Note that this simply extracts the x and y position estimates,

since the sensor does not measure angular or range rates.

Thus, the measurement error covariance matrix R using the

linearization in [16] is given by:

R =

(

r2σ2
θ sin

2 θ + σ2
r cos

2 θ r2σ2
θ cos

2 θ + σ2
r sin

2 θ

r2σ2
θ cos

2 θ + σ2
r sin

2 θ
(

σ2
r − r2σ2

θ

)

sin θ cos θ

)

Where var (r) = σ2
r and var (θ) = σ2

θ . In this paper, σ2
r = 1

squared meter and σ2
θ = 3.0462e− 04 squared radians (which

corresponds to a standard deviation of 1 degree).

The process noise covariance matrix Q for all target tracks

is given by the first order derivation (i.e. position and velocity)

as derived in [17]:

Q = Φs
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Where Ts = 1 and Φs = 5 in this paper.

Finally, the state transition model F is a basic constant

velocity model:

F =









1 dt 0 0
0 1 0 0
0 0 1 dt

0 0 0 1









B. Classification State Estimation

The next estimate is the classification state. The true clas-

sification is represented by the categorical random variable J

with support {j | jǫ [1, n]} for n total possible classifications.

Thus:

~Xclassification =







P (J = 1)
...

P (J = n)







the classification measurement is then represented by the

discrete random variable M with support {m | mǫ [1, n]}.

The classification probability is updated through direct ap-

plication of Bayes’ Theorem:

P
′

(J = i) ≡ P (J = i|M = m)

=
P (M = m|J = i)P (J = i)

P (M = m)

=
P (M = m|J = i)P (J = i)

∑n

r=1 P (M = m|J = r)P (J = r)

Where P
′

indicates the posterior probability. Typically the

measurement likelihoods P (M = m|J = i) are represented by

a normalized confusion matrix. This paper uses a normalized

confusion matrix CC with the columns representing truth,

the rows representing the classifier output, and the sum of

2042



each column being 1 by definition of a conditional probability

distribution:

CC =









1 . . . n

1 P (M = 1|J = 1) . . . P (M = 1|J = n)

...
...

. . .
...

n P (M = n|J = 1) . . . P (M = n|J = n)









III. STATISTICAL RISK

A. Type I Error Cost

As mentioned in the previous Section, there is a decision to

be made as to what a target’s classification is. If an incorrect

decision is made, this results in a cost (i.e. lost sensor resources,

lost coverage of a criminal act, etc.). In this paper, an incorrect

decision is treated as falsely rejecting a null hypothesis in

the context of statistical testing. Thus, the costs for making a

wrong decision correspond to the type I error during statistical

hypothesis testing. This is an approach that has been used

before in economics when deciding whether or not to ban

various genetically modified crops [18][19].

The matrix CM1 as defined below contains the cost of

committing a type I error when making a decision on a

target’s classification. In this cost matrix, the rows designate

the decision and the columns designate the true classification.

The diagonals are all zero since there is no cost for making

the correct decision. Also note that the null hypothesis is the

column and the alternate hypothesis is the row (decision is a

false reject). Thus, with the exception of the diagonal entry of

zero, each column entry is identical since they all represent the

type I error cost:

CM1 =











1 2 . . . n

1 0 c12 . . . c1n
2 c11 0 . . . c1n
...

...
...

. . .
...

n c11 c12 . . . 0











As an example, consider the decision that a target of true

classification 1 is a different classification. This corresponds to

the first column and any row other than the first row in CM1.

The corresponding test with the decision underlined is:

H0 : Target is 1 Ha : Target is not 1

A decision of ¬1 falsely rejects H0 resulting in a cost of

c11 .

B. The Expected Cost of Committing a Type I Error

During the process of target tracking, several additional

random variables (listed below) will influence the expected

cost of making a decision. These variables are used in the

following theorem, which is proved in the appendix.

C1 := a discrete random variable representing the type I

error cost. Support is the cost matrix CM1 with entries
{

c1ij
}

defined below. The event space consists of all ways to make a

type I error.

c1ij := Entry of an n × n dimensional cost matrix CM1

incurred when a decision falsely rejects H0 resulting in a type

I error. Each row i of this matrix represents a decision on the

classification. Each column j of this matrix represents the true

target classification.

J := Categorical random variable denoting the actual

classification of an object. Support is {j | jǫ [1, n]}.

I := Categorical random variable denoting the decision

on classification of an object. Support is {i | iǫ [1, n]}.

Inew := Discrete uniformly distributed random variable

denoting the classification decision on a reacquired object after

its original track was lost. Support is {i | iǫ [1, n]}.

L := Bernoulli random variable denoting whether or not

the actual target is lost (i.e. outside the sensor’s field of view

when the sensor is centered on the track position component

of the state estimate x̂k). The event space is {True, False} .

Plost := The probability of the actual target being lost.

This probability is assumed to be the portion of a multivariate

normal distribution N
(

x̂k, P̂k

)

not contained in the sensor

field of view when the sensor aim-point is centered on

X̂kinematic.

THEOREM 1:

The expected cost for making a type I error when deciding on

the classification of a target track is given by:

EC1
(C1|I = i) =

∑

rǫI

criP (J = i)Plost

n− 1

n
∀r 6= i

+
∑

rǫJ

cirP (J = r)Plost

1

n
∀r 6= i

+
∑

rǫJ

cirP (J = r) (1− Plost) ∀r 6= i

Proof follows by the law of total expectation as detailed in

the appendix.

C. The Expected Risk Reduction

In calculating the expected risk reduction (ERR) the goal is

always to maximize the reduction in risk. As mentioned in [14],

risk always decreases with the addition of new measurements.

In the context of the expected cost calculated in Theorem 1,

these measurements reduce the probability of the target being

lost or mis-classified. Assuming a sensor can only measure a

single track at a time, the track with the max ERR is chosen

for measurement.

When deciding what a track classification is, it is assumed

that the decision of least cost is made. Thus, the min expected

cost is chosen among all possible decisions for each track

classification. Following the approach presented in [14], this
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min cost is then used when calculating ERR. Start by denoting

the min cost R before a measurement update as:

Ri ≡EC1 (C1|I = i)

R =min
i

{Ri}

Note that the probabilities in these expectations will change

as measurements are accumulated by sensors being controlled

by the sensor manager. It is assumed that probabilities change

through a Bayesian update. In particular, both Plost and

P (J = i) are updated by kinematic and classification mea-

surements respectively. The posterior probabilities are denoted

by P
′

lost and P
′

(J = i). It is assumed that P
′

lost is the result

of a Kalman filter covariance update using the measurement

error covariance of the kinematic sensor. The classification

probability is updated through direct application of Bayes’

Theorem as discussed in Section II-B.

By Theorem 1 the resulting risk using these updated proba-

bilities is:

R
′
=min

i

{

R
′

i

}

=min
i



















∑

rǫI

criP
′
(J=i)P

′

lost
n−1
n

∀r 6=i

+
∑

rǫJ

cirP
′
(J=r)P

′

lost
1
n

∀r 6=i

+
∑

rǫJ

cirP
′
(J=r)

(

1−P
′

lost

)

∀r 6=i



















=min
i



















∑

rǫI

cri
P (M=m|J=i)P (J=i)

P (M=m)
P

′

lost
n−1
n

∀r 6=i

+
∑

rǫJ

cir
P (M=m|J=r)P (J=r)

P (M=m)
P

′

lost
1
n

∀r 6=i

+
∑

rǫJ

cir
P (M=m|J=r)P (J=r)

P (M=m)

(

1−P
′

lost

)

∀r 6=i



















Since any classification measurement is possible, it is nec-

essary to take an additional expectation
〈

R
′
〉

over all possible

measurements. This is calculated over discrete classification

measurements by:

〈

R
′
〉

= Σ
mǫM

min
i

{

R
′

i

}

P (M=m)

= Σ
mǫM

min
i



















∑

rǫI

criP (M=m|J=i)P (J=i)P
′

lost

n−1
n

∀r 6=i

+
∑

rǫJ

cirP (M=m|J=r)P (J=r)P
′

lost
1
n

∀r 6=i

+
∑

rǫJ

cirP (M=m|J=r)P (J=r)

(

1−P
′

lost

)

∀r 6=i



















Note that this formulation of expected cost is guaranteed to

decrease in value with the addition of measurements [14]. Thus,

the expected risk reduction ∆R is given by:

∆R = R−
〈

R
′
〉

(1)

The sensing action that yields the greatest reduction in this

ERR value is chosen to take the actual measurement.

IV. EXPERIMENTS

It is worth re-iterating that all the metrics discussed up

to this point depend on expected values and probabilities of

various events occurring. Thus, there will always be situations

where targets will be mis-classified or they will maneuver in

an unexpected way such that tracks on important targets are

lost. The value of a sensor management algorithm is therefore

better reflected by either average or median performance over

time. For this reason, this section examines several tests over

Monte Carlo runs of measurements generated from the ground

truth for a single scenario consisting of 200 time steps of one

second each. This scenario involves 10 maneuvering ground

targets and 1 sensor. Of these 10 targets, 3 are targets of interest

(targets 1, 3, and 10) and should be tracked. The ground truth

over the entire 200 second scenario is shown in Figure 1. A

single sensor capable of measuring: bearing, range, and target

classification is located at position x = 0 and y = 0. The sensor

field of view (FOV) is a 500 meter square region centered

on the track position estimate location. If the target ground

truth corresponding to the track position is outside this field

of view, i.e. the state estimate is very poor, then the track is

considered lost and no further measurements are generated on

it. The sensor takes a measurement only on even time steps (i.e.

every 2 seconds). Thus, every two seconds a sensor resource

management algorithm based on the risk metrics introduced in

previous sections runs to decide which target track estimate to

measure using the sensor.

Fig. 1: Position and classification ground truth for targets of

interest (in red), targets not of interest (in green), and the sensor

location (red triangle). The numeric target identifiers are shown

at the target position at the scenario end (200 seconds).

Each target starts with a high accuracy kinematic track,

however, the classifications of all targets are unknown at the

start of the scenario. Thus, the task of the single sensor is to:

correctly classify, maintain track on, and allocate measurements

to the targets of interest. As experiments will show, a single

sensor cannot maintain track on all 10 maneuvering targets,

thus the problem of allocating the sensor is non-trivial. The

software used in this section is available at [20].

A. Two Classifications

In this section a binary classification state is considered

where either the target being tracked is a target of interest
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(J = 1) or not a target of interest (J = 2). Thus:

~Xclassification =

[

P (J = 1)
P (J = 2)

]

and the binary classification measurement M has support

{m | mǫ [1, 2]}. The confusion matrix CC and cost matrix

CM1 are:

CC =

(

1 2

1 .8 .2

2 .2 .8

)

CM1 =

(

1 2

1 0 1

2 30 0

)

Figure 2 shows the scenario described at the beginning of

this section. The sensor position is denoted by a red triangle.

The ground truth for the targets of interest (1,3, and 10) is

shown by the red trails. The green trails show ground truth

for non targets of interest. The track position state estimate is

shown by the diamonds. The color of the diamonds reflects the

classification estimate. The color is black if P (J = 1) = .5,

red if P (J = 1) > .5, and green if P (J = 1) < .5. Ellipses

indicate a 95% confidence region for the location of the

corresponding target. A line is drawn from the sensor to the

track location showing line of sight, and a green box shows

the sensor’s field of view.

For comparison purposes, the performance of a sensor man-

ager based on the expected risk reduction metric introduced in

Section III-C was compared to several other common methods

for sensor management. In particular: random assignment,

round robin assignment where targets are repeatedly selected

in order, and choosing the target that maximizes the Kullback-

Leibler divergence in kinematic accuracy before and after a

measurement. Fifty Monte Carlo runs were conducted using

each method. The track error was calculated between estimated

position and ground truth for all tracks at the end of each run

and saved for analysis. Table I shows the resulting median error

on each target for each sensor scheduling method. From this

table it is evident that only the sensor manager using ERR

maintains track on targets 1, 3, and 10 with error less than the

sensor FOV radius (250m). The random method performs very

poorly, the round robin method has poor performance on target

3, and the KL divergence method has poor performance on

target 1. Observe from the ground truth shown in Figure 1 that

both targets 1 and 3 have sharp turns which likely result in them

becoming lost and consequently having large errors. When

using ERR, more measurements can be assigned to these targets

since they are targets of interest and thus tracking performance

improves at the sacrifice of tracks on non targets of interest. To

examine these results more rigorously, it is necessary to show

with high confidence that the average track error on targets

1, 3, and 10 is less than 250 meters and thus still within the

sensor field of view. For each analysis below, the highest and

lowest 5% of the error measurements were discarded to remove

outliers. If the average error on any of targets 1, 3, or 10

is greater than 250 meters then conclude that the scheduling

method was ineffective on average. Performing a single sample

one sided Student t-test (H0: true mean error is ≤ 250 meters)

Target Random Round Robin KL Divergence ERR

1 6535.93 10.32 7489.81 13.85

2 5992.96 56.51 40.28 1964.07
3 5664.38 4752.66 16.48 8.29

4 67.22 69.63 18.16 3427.44
5 1662.32 52.50 65.93 1609.45
6 3151.88 83.65 94.22 1662.93
7 44.39 36.03 29.71 32.79
8 1278.00 36.25 63.84 94.61
9 3559.79 23.97 58.72 5136.31
10 387.56 21.51 10.48 16.22

TABLE I: Median position error in meters per target for each

metric after 50 Monte Carlo runs (targets of interest are 1, 3,

10)

Metric Target 1 Target 3 Target 10

Random 1.65e-10 3.464e-11 1.673e-07
Round Robin 1 2.2e-16 1
KL Divergence 2.2e-16 1 1
ERR 0.0988 0.1438 0.07948

TABLE II: p-values for H0: residual error ≤ 250m

yields the p values in Table II. Based on the results in this table

observe that the scheduling method based on ERR is the only

method that effectively maintains tracks on all of targets 1, 3,

and 10 with 95% confidence that H0 is not rejected. Additional

tests were conducted with just the ERR metric to examine the

median error under 100 Monte Carlo runs. Table III shows the

first three quartiles of error values when targets 1, 3, and 10 are

targets of interest, while Table IV shows error quartiles when

targets 4, 6, and 8 are targets of interest. In both cases the

targets of interest all have track error less than 250m even at

the upper quartile.

B. Three Classifications

In this section a tertiary classification state is considered

where either the target being tracked is a target of high interest

(J = 1) or medium interest (J = 2) or low interest (J = 3).

Thus:

~Xclassification =





P (J = 1)
P (J = 2)
P (J = 3)





and the classification measurement M has support

{m | mǫ [1, 2, 3]}. The confusion matrix CC and cost matrix

Target Lower Quartile Median Upper Quartile

1 7.18 13.28 28.72

2 1951.48 1962.23 1973.26
3 7.96 8.35 9.25

4 885.66 3417.70 3452.57
5 1605.71 1614.14 2332.90
6 1101.07 1649.18 1668.15
7 22.02 393.58 2114.64
8 52.44 594.52 1706.32
9 5136.31 5136.31 5136.31
10 11.45 15.27 39.58

TABLE III: First, second, and third quartiles for position error

in meters per target (targets of interest are: 1, 3, 10) after 100

Monte Carlo runs
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Target Lower Quartile Median Upper Quartile

1 7483.12 7488.36 7494.21
2 1946.15 1961.79 1971.43
3 2597.55 2627.39 2649.93
4 26.18 28.73 40.18

5 1605.11 1611.91 1619.73
6 11.66 17.32 51.33

7 972.91 2115.00 2132.47
8 9.84 14.96 24.67

9 6.45 9.40 5136.31
10 115.86 573.32 1099.58

TABLE IV: First, second, and third quartiles for position error

in meters per target (targets of interest are: 4, 6, 8) after 100

Monte Carlo runs

Target Lower Quartile Median Upper Quartile

1 9.67 48.36 101.08

2 1953.16 1963.16 1971.08
3 8.18 8.81 22.32

4 18.00 28.94 66.53

5 1605.20 1613.06 1618.07
6 1635.69 1653.45 1666.71
7 33.81 939.76 2096.89
8 299.36 1391.61 1900.84
9 5136.31 5136.31 5136.31
10 10.56 14.77 25.76

TABLE V: First, second, and third quartiles for position error

in meters per target (the high priority target is 10, medium

priority targets are: 1, 3, 4) after 100 Monte Carlo runs

CM1 are:

CC =







1 2 3

1 .8 .1 .1

2 .1 .8 .1

3 .1 .1 .8






CM1 =







1 2 3

1 0 20 1

2 30 0 1

3 30 20 0







Since ERR is the only metric sensitive to prioritized targets,

the results for the other metrics would be unchanged in this

section. Thus, only the median error test with 100 Monte Carlo

runs is performed with results in Table V. As seen in this table,

both the high priority targets and the medium priority targets

are tracked with error less than 250m even at the upper quartile.

V. CONCLUSION

This paper introduced a metric based on the expected cost (or

risk) of making an incorrect decision on a target’s classification

under uncertainty. The metric was then conditioned on the event

of losing a target track which allowed for the combination

of classification and kinematic uncertainty in the same metric.

Further, this metric was then applied in the context of a sensor

resource manager which takes field of view constrained sensor

actions based on the maximum expected risk reduction. It has

been shown empirically that unlike other common methods of

sensor management, a sensor manager based on maximizing

ERR can maintain track on targets of interest when it is

not possible for a single sensor to track all targets in the

environment.

APPENDIX A

PROOF OF THEOREM 1

Using the law of iterated expectation for each random

variable on which the cost depends, observe:

EC1
(C1|I=i)

=EL(EC1
(C1|I=i,L))

=EJ(EL(EC1
(C1|I=i,L,J)))

=EJ(EC1
(C1|I=i,L=True,J))P (L=True)

+EJ(EC1
(C1|I=i,L=False,J))P (L=False)

=EC1
(C1|I=i,L=True,J=i)P (L=True)P (J=i)

+EC1
(C1|I=i,L=False,J=i)P (L=False)P (J=i)

+EC1
(C1|I=i,L=True,J 6=i)P (L=True)P (J 6=i)

+EC1
(C1|I=i,L=False,J 6=i)P (L=False)P (J 6=i)

=EC1
(C1|I=i,L=True,J=i)P (L=True)P (J=i)

+0

+EC1
(C1|I=i,L=True,J 6=i)P (L=True)P (J 6=i)

+EC1
(C1|I=i,L=False,J 6=i)P (L=False)P (J 6=i)

Note that for the second term in the above summation, the

correct decision is made and the target is not lost. Thus, the

cost is zero since it falls on the diagonal of the cost matrix

CM1. Now at this point, if a target was lost, it is necessary to

consider the case in which the target is re-acquired. Note that

regardless of the classifier accuracy, it is possible that the target

acquired is not the original target. Thus, Inew is modeled as a

discrete uniform distribution. Also note that depending on the

density of targets of interest in a given scenario, this may be a

different distribution.

EC1
(C1|I=i)

=EInew(EC1
(C1|I=i,L=True,J=i,Inew))P (L=True)P (J=i)

+EInew(EC1
(C1|I=i,L=True,J 6=i,Inew))P (L=True)P (J 6=i)

+EC1
(C1|I=i,L=False,J 6=i)P (L=False)P (J 6=i)

=EC1
(C1|I=i,L=True,J=i,Inew=i)P (L=True)P (J=i)P (Inew=i)

+EC1
(C1|I=i,L=True,J=i,Inew 6=i)P (L=True)P (J=i)P (Inew 6=i)

+EC1
(C1|I=i,L=True,J 6=i,Inew=i)P (L=True)P (J 6=i)P (Inew=i)

+EC1
(C1|I=i,L=True,J 6=i,Inew 6=i)P (L=True)P (J 6=i)P (Inew 6=i)

+EC1
(C1|I=i,L=False,J 6=i)P (L=False)P (J 6=i)

=0

+EC1
(C1|I=i,L=True,J=i,Inew 6=i)P (L=True)P (J=i)P (Inew 6=i)

+EC1
(C1|I=i,L=True,J 6=i,Inew=i)P (L=True)P (J 6=i)P (Inew=i)

+0

+EC1
(C1|I=i,L=False,J 6=i)P (L=False)P (J 6=i)

Observe that the first term in the above summation still has

the correct decision even though the track was lost and later

re-acquired. Thus, there is no cost. Also note that in the fourth

term of the summation, Inew 6= i and J 6= i. Thus, there is

no cost with regard to the initial decision of I = i prior to the

track being lost. This leaves three terms to the summation. The
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first term is the cost incurred if the target is lost and a decision

on its classification is wrong after the target is re-acquired. The

second term is the cost for a decision on the target classification

never being correct even after being lost. The last term is the

cost for a target classification decision being wrong even though

the target is never lost. These terms are related to specific rows

and columns of the cost matrix CM1 as follows:

EC1
(C1|I=i)

=EC1
(C1|I=i,L=True,J=i,Inew 6=i)P (L=True)P (J=i)P (Inew 6=i)

+EC1
(C1|I=i,L=True,J 6=i,Inew=i)P (L=True)P (J 6=i)P (Inew=i)

+EC1
(C1|I=i,L=False,J 6=i)P (L=False)P (J 6=i)

=
∑

c1ij

c1ij
P(C1=c1ij

|I=i,L=True,J=i,Inew 6=i)P (L=True)P (J=i)P (Inew 6=i)

+
∑

c1ij

c1ij
P(C1=c1ij

|I=i,L=True,J 6=i,Inew=i)P (L=True)P (J 6=i)P (Inew=i)

+

∑

c1ij

c1ij
P(C1=c1ij

|I=i,L=False,J 6=i)P (L=False)P (J 6=i)

=
∑

rǫI

c1ri
P (J=i)P (L=True)P (Inew 6=i) ∀r 6=i

+

∑

rǫJ

c1ir
P (J=r)P (L=True)P (Inew=i) ∀r 6=i

+
∑

rǫJ

c1ir
P (J=r)P (L=False) ∀r 6=i

Note that the first term in this summation is a function of

the rows of the cost matrix over column J = i. This reflects

an incorrect decision after the target was re-acquired. Finally,

plugging in the assumption of Inew being uniformly distributed

and the previously mentioned calculation of Plost:

EC1
(C1|I=i)

=
∑

rǫI

c1riP (J=i)P (L=True)P (Inew 6=i) ∀r 6=i

+
∑

rǫJ

c1irP (J=r)P (L=True)P (Inew=i) ∀r 6=i

+
∑

rǫJ

c1irP (J=r)P (L=False) ∀r 6=i

=
∑

rǫI

c1riP (J=i)Plost
n−1
n

∀r 6=i

+
∑

rǫJ

c1irP (J=r)Plost
1
n

∀r 6=i

+
∑

rǫJ

c1irP (J=r)(1−Plost) ∀r 6=i

APPENDIX B

KALMAN FILTER EQUATIONS

The equations for the recursive Kalman filter estimators are

summarized below. The notation x̂n|m denotes the estimate of x

at time n given measurements up to and including time m ≤ n.

Prediction for the state estimate x̂k|k−1 and state estimate error

covariance P̂k|k−1 are given by:

x̂k|k−1 = Fkx̂k−1|k−1

P̂k|k−1 = FkP̂k−1|k−1F
T
k +Qk

An update to these estimates given the measurement zk at

time k is given by:

ỹk = zk −Hkx̂k|k−1

Sk = HkP̂k|k−1H
T
k +Rk

Kk = P̂k|k−1H
T
k S

−1
k

x̂k|k = x̂k|k−1 +Kkỹk

P̂k|k = (I −KkHk) P̂k|k−1

Where: Fk is the state transition model, Hk is the mea-

surement model, Qk is the process noise covariance, ỹk is the

measurement residual, Sk is the residual covariance, Rk is the

measurement noise covariance, and Kk is the optimal Kalman

gain.
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Fig. 2: Selected time steps for a scenario containing a sensor manager making decisions that maximize the ERR for type I error.
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of interest (green), and targets of interest (red). The red ellipses represent 95% confidence ellipsoids on target positions. The
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