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Abstract - Compared to traditional classifiers, such as 

support vector machine, extreme learning machine 

(ELM) achieves similar performance for classification 

and runs at much faster learning speed. However, in 

many real applications, the different samples may not be 

exactly assigned to one of the classes such as the 

imbalance data problems and the cost-sensitive learning 

problems. The traditional ELM lacks the ability to solve 

those problems. We proposed an extension method of 

ELM called fuzzy ELM (FELM) which introduces a set 

of fuzzy memberships to the traditional ELM method. 

Then, the inputs with different fuzzy memberships can 

make different contributions to the learning of the 

output weights. Moreover, the fuzzy memberships can be 

conveniently determined based on classes or examples. 

For the imbalanced problems, the cost-sensitive learning, 

or the noise signal problems, FELM can provide a more 

logical result than that of ELM, implying good 

application prospects for the real world applications. 

 

Keywords: Extreme Learning Machine (ELM), Fuzzy 

Extreme Learning Machine (FELM), fuzzy membership, 

fuzzy matrix, cost-sensitive learning, radar emitter 

recognition. 

 

1 Introduction 

Extreme learning machine (ELM) [1-4] was originally 

proposed for the single-hidden-layer feedforward neural 

networks (SLFNs) and then extended to the generalized 

SLFNs where the hidden layer need not be neuron alike. 

In ELM, the input weights of the SLFNs are randomly 

chosen without iterative tuning, and the output weights are 

analytically determined. Thus, the training speed of ELM 

can be thousand times faster than that of the traditional 

iterative implementations of SLFNs. In addition, different 

from the traditional learning algorithms for a neural type 

of SLFNs, ELM aims to reach not only the smallest 

training error but also the smallest norm of output weights. 

Bartlett’s theory [5] shows that for feedforward neural 

networks reaching smaller training error the smaller the 

norm of weights is, the better generalization performance 

the networks tend to have. Because of its good 

performance, ELM has been attracting the attentions from 

more and more researchers [6-12]. To solve the 

classification problems using ELM, Liu et al. [13] propose 

that ELM can be applied to support vector machines 

(SVMs) by simply replacing SVM kernels with ELM 

kernels. Huang et al. study ELM for classification with the 

standard optimization method [14] and verify that ELM 

can solve any multiclass classification problems directly 

[15]. 

However, in many real applications, the different input 

points may not be exactly assigned to one of the classes 

such as the imbalance problems and the cost-sensitive 

learning problems. The traditional ELM lacks this kind of 

ability. This paper proposes a novel method called fuzzy 

ELM (FELM) where a fuzzy membership is applied to 

each input of ELM such that different inputs can make 

different contributions to the learning of output weights. 

Moreover, the fuzzy memberships can be appropriately 

defined depending on the different real classification 

applications, such as weighted classification, the problem 

of noises, or cost-sensitive learning [16]. 

In cost-sensitive learning systems, different 

misclassification errors incur different penalties. For 

example, in medical applications, the cost of 

"misrecognizing a healthy human as a patient" and that of 

"misrecognizing a patient as a healthy human" should be 

different. Compared with the first error, the second one is 

more serious since it would delay the treatment of patient. 

The purpose of cost-sensitive learning is to minimize total 

cost rather than total error [17]. Therefore, it can be 

applied to many real classification problems [18-22]. In 

this paper, cost-sensitive learning is achieved by FELM 

through defining the appropriate fuzzy memberships 

which reasonably reflect the misclassifying cost. 

The remainder of the paper is organized as follows. 

Section 2 briefly summarizes the principles of ELM, and 

discusses the cost-sensitive learning problem. The 

proposed algorithm is described in detail in Section 3, 

including the description of the FELM algorithm, and the 

determination of the fuzzy memberships. In Section 4, the 

experiments and results analysis are presented. The 

conclusions are drawn in Section 5. 

2 Related work 

Fuzzy extreme learning machine (FELM) is based on 

the traditional ELM. This section briefly reviews the ELM. 

One key principle of the ELM is that the input weights are 

randomly chosen without iterative tuning and the output 

weights are analytically determined. Moreover, some real 
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classification problems which cannot be solved by 

traditional ELM, such as imbalance problem and 

cost-sensitive learning, are discussed. 

2.1 Extreme learning machine 

ELM [17] was originally proposed for the single-hidden 

layer feedforward neural networks and was then extended 

to the “generalized” single-hidden layer feedforward 

networks (SLFNs) where the hidden layer need not be 

neuron alike [3]. The output of an ELM with N  hidden 

nodes can be represented by 
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  x ȕ a x a R x R (1) 

where ia  and 
ib  are the learning parameters of 

hidden nodes, 
iȕ  is the weight connecting the ith hidden 

node to the output node, and ( , , )i iG ba x  is the output of 

the ith hidden node with respect to the input x. For N 

arbitrary distinct samples ( , )k kx t , if ELM can classify 

them accurately, it implies that there exist ia ,
ib  and 

iȕ  

such that 
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Eq. (2) can be written compactly as 

Hȕ T ,                 (3) 

where  1 2, ,...,
T

Nt t tT . H is called the hidden 

layer output matrix of the network, and the parameters 

( , )i iba  of H are randomly chosen. Then, the 

classification problem for ELM can be formulated as 

Minimize: 
2 2

1

1 1

2 2
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ELM i
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L C
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where iȟ  is the training error vector for the training 

sample ix , and C  is the regularization parameter 

which represents the trade-off between the minimization 

of training errors and the maximization of the marginal 

distance. According to Karush-Kuhn-Tucker (KKT) 

theorem [23], to train ELM is equivalent to solving the 

following dual optimization problem: 
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The KKT corresponding optimality conditions can be 

obtained as: 
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where  1,...
T

N Į . From (6), we have 

1
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Then, the output function of ELM classifier is 
1

( ) ( ) ( ) T Tx x x
C

     
I

f h ȕ h H HH T .  (8) 

2.2 Imbalanced data problem and 

cost-sensitive learning 

The classification application with data sets exhibiting 

an unequal distribution between its classes can be 

considered as imbalanced data problem [24], which often 

exists in the real-word application. For example, a data set 

contains 990 “Negative” (majority class) samples and 10 
“Positive” (minority class) samples. However, most 
traditional algorithms expect that the class distributions 

are balanced. Therefore, when presented with complex 

imbalanced data sets, these algorithms fail to properly 

represent the distributive characteristics of the data and 

resultantly provide unfavorable accuracies for the 

minority classes. Moreover, the traditional evaluation 

metrics for classification problems, such as accuracy or 

error rate, cannot provide comprehensive assessments of 

imbalanced data problems. Therefore, two important 

metrics are introduced to evaluate the performance of 

imbalanced learning method: 

TP
Precision

TP FP
               (9) 

TP TN
G mean

TP FN TN FP
    ,      (10) 

where TP, TN, FP, FN stand for true positive, true 

negative, false positive and false negative, respectively. 

Currently, there are mainly two ideas to solve the 

imbalanced data problem. Firstly, Sampling methods 

modify the imbalanced data set by some mechanisms in 

order to provide a balanced distribution, e.g. the 

oversampling method adds data for the minority class and 

the undersampling method removes data form the 

majority class. Secondly, cost-sensitive learning targets 

the imbalanced learning problem by using different cost 

matrices that describe the costs for misclassifying any 

particular data example. Moreover, in some applications, 

cost-sensitive learning is superior to sampling methods 

[24]. 
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Fundamental to the cost-sensitive learning methodology 

is the concept of the cost matrix C  which describes the 

misclassification costs. ( , )i jC  is the cost of predicting 

that an example belongs to class i  when in fact it 

belongs to class j . In a binary classification application, 

the cost matrix ( , )Min MajC  can be defined as the cost 

of misclassifying a majority class example as a minority 

class example and let ( , )Maj MinC  represents the cost 

of the contrary case. Then, to solve the imbalanced 

problem, the cost of misclassifying minority examples can 

be determined higher than the contrary case, namely 

( , ) ( , )Maj Min Min MajC C . The objective of 

cost-sensitive learning then is to develop a hypothesis that 

minimizes total cost on the training data set rather than 

total error. In addition, via changing the cost matrix, 

cost-sensitive learning can be applied to many real-word 

fields, such as military objects recognition. 

3 Fuzzy ELM 

As the description above, the traditional ELM is a 

competitive learning method, which achieves excellent 

performance both in accuracy rate and run time. However, 

in many real applications, the different input points may 

not be exactly assigned to one of the classes such as the 

imbalance problems and the weighted classification 

problems. The traditional ELM lacks the ability to solve 

those problems. In this paper, we propose the fuzzy ELM 

which introduces a set of fuzzy memberships and a fuzzy 

matrix to the traditional ELM. Then, the inputs with 

different fuzzy memberships can make different 

contributions to the learning of the output weights ȕ . As 

a result, the fuzzy ELM can solve the problems mentioned 

above. 

3.1 Proposed fuzzy ELM 

According to the different weights in the real world 

classification problems, the effects of the training points 

should be different. Inspired by the fuzzy support vector 

machine [25], a set is  of labeled training points with 

associated fuzzy membership are introduced 

1 1 1( , , ),...,( , , )N N Nt s t sx x .         (11) 

Each training point ix  is given a label it  and a fuzzy 

membership is , 0 1is  . The fuzzy membership is  

is the attitude of the corresponding point ix  toward one 

class and 
1

2
i  is a measure of error in ELM. Thus, 

1

2
i is   is a measure of error with different weight is . 

The classification problem for the 

constrained-optimal-based fuzzy ELM can be formulated 

as 

Minimize: 
2 2

1

1 1

2 2

N

FELM i i

i

L C s


  ȕ ȟ        

Subject to: ( ) ,         1,...,T T

i i ix i N  h ȕ t ȟ . (12) 

Based on the KKT theorem, to train fuzzy ELM is 

equivalent to solving the following dual optimization 

problem 
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where 
i  is the Lagrange multiplier corresponding to 

the ith training sample. We can have the KKT 

corresponding optimality conditions as follows 
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The following equation can be obtained from (14) 

T

C

    
S

HH Į T ,          (15) 

where 

1

T

T

N

      

t

T

t

 and the fuzzy matrix 

1

2

1
  0  0    0

1
0   0    0

                  

1
0   0   0   

N N N

s

s

s 

                  

S . 

From (14) and (15), 
1

T T

C
     

S
H HH T .         (16) 

Therefore, the inputs with different fuzzy memberships 

can make different contributions to the learning of the 

output weights  . Then, the output function of FELM 

classifier is 
1

( ) ( ) ( ) T Tx x x
C

      
S

f h h H HH T .      

(17) 

For binary classification problem, FELM needs only one 

output node, and the decision function is 

2027



1

( ) ( ) T Tf sign x
C

        
S

x h H HH T .    (18) 

For multiclass cases, the predicted class label of a testing 

point is the index number of the output node which has 

the highest output value for the given testing sample 

{1,..., }

( ) argmax ( )j
j m

label f


x x .        (19) 

Obviously, when 
1 2 ... 1Ns s s    , FELM will be the 

traditional ELM. Thus, FELM is an extension of ELM. 

3.2 Determining the fuzzy memberships 

In FELM, choosing the appropriate fuzzy memberships 

according to the real-world applications is very important. 

There are mainly two kinds of methods to determine the 

fuzzy memberships, i.e., class-dependent and 

example-dependent. 

3.2.1 Class-dependent determination of the 

fuzzy memberships 

In most applications, we want to improve the accuracy 

of classifying one class or certain classes, such as the 

minority class in the imbalanced data problem. Then we 

can define the fuzzy memberships 
is  for each class. The 

minority class will be defined a big membership, while the 

membership corresponding to the majority class will be 

small. The specific value of the fuzzy memberships can be 

determined directly according to the prior knowledge or 

our demands. For example, to solve the imbalanced data 

problem, we can define the fuzzy memberships as 

i( ,+1,0.9)x , i( ,-1,0.1)x . Furthermore, the fuzzy 

memberships can be generated automatically as 

s 1/
ii tn ,                (20) 

where 
it

n  is the number of samples belonging to the 

class 
it . 

To solve the cost-sensitive problem, the fuzzy 

membership can be determined according to the cost 

matrix. In the medical applications mentioned above, to 

reduce the occurrence probability of "misrecognizing a 

patient as a healthy human", we can define the fuzzy 

memberships as ( , , ( , ))it j ix C , ( , , ( , ))jt i jx C , where 

it  is the label of the healthy human and jt  is the label 

of the patient. ( , )i jC  is the cost of predicting that an 

example belongs to the healthy human when in fact it 

belongs to the patient. When ( , ) ( , )i j j iC C , the 

classifying accuracy of the patient will be higher than that 

of the healthy human. 

3.2.2 Example-dependent determination of 

the fuzzy memberships 

In other applications, the fuzzy memberships should be 

defined for every sample. Then, the fuzzy memberships 

correspond to each example instead of each class. For 

example, in military objects recognition problems, the 

useful objects often mixes with the noise signal. Then, the 

traditional classifiers including the ELM are very sensitive 

to noises, so the classification performance will be 

reduced. The example-dependent FELM can solve this 

problem. Suppose we are given a sequence of training 

points 
1 1 1( , , ),...,( , , )N N Nt s t sx x . Denote the mean of the 

examples belong to class j  as jx . Let the radius of 

class j  

{ | }
max

i i

j j i
t j

r  
x

x x .          (21) 

The fuzzy membership 
is  can be determined as a 

function of the mean and radius of each class  1 /     i j i j is r if t j    x x ,   (22) 

where sufficient small 0   is used to avoid the case 

0is  . Then, the noise samples farther from the mean of 

class will be assigned smaller fuzzy memberships. 

Therefore, the example-dependent FELM can be applied 

to reduce the effects of noises. 

In many real-world problems, it is important to predict 

values of time series, namely to predict the value of the 

time series at the moment t    according to the values 

at the moment t . Many researchers consider the time 

series introduced by Mackey and Glass which is solution 

of the equation       101

dx t bx t
ax t

dt x t




     .      (23) 

where a , b  and   are parameters of the equation. For 

example, to predict if    x t x t   , we can use three 

dimensional vector of observations on time series       2 , 1 ,tx x t x t x t   .      (24) 

According to the expert experience, the data from recent 

past is given more weighting than the data far back in the 

past. Thus, the fuzzy memberships can be generated as 

1

1 1

1 l
i i

l l

t t
s t

t t t t

    ,        (25) 

where 1 2 lt t t    is the time the data arrived in the 

system, and   is the lower bound of fuzzy 

memberships. 

In addition, the fuzzy memberships can be determined 

according to the prior knowledge such as priori 

probability of each example. However, it has not been 

experimentally verified in this paper, and worthy of 

further study. 
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4 Experimental results 

In the following, three methods are compared using 

several classification datasets. The compared methods are 

SVM, the traditional ELM, and the proposed FELM. The 

datasets are collected form the UCI Machine Learning 

Repository [26] and a set of radar emitter datasets [27]. In 

this paper, SVM, the traditional ELM and FELM are used 

with Gaussian kernel function 
2

( , ) exp( )K   u v u v , which is the popular choice 

in the classification problems. In order to achieve good 

generalization performance, the trade-off constant C  

and the kernel parameter   need to be chosen 

appropriately. C  and   are searched in the range of  18 17 24 252 ,2 ,...,2 ,2 
, respectively. 

4.1 Benchmark Datasets 

Table 1 

Specification of classification problems from UCI. 

Datasets train test classes features 

Glass 144 70 6 9 

Iris 100 50 3 4 

Leukemia 38 34 2 7129 

Mushroom 1500 6624 2 22 

Segment 1540 770 7 19 

Vehicle 564 282 4 18 

Wine 118 60 3 13 

 

In order to verify the performance of FELM, wide types 

of balanced data sets, as shown in Table 1, are tested in 

our simulations, which are of binary class data, multiclass 

data, small sizes, low dimensions, large sizes, or high 

dimensions. In this experiment, determination of the fuzzy 

membership is not the focal point, so the fuzzy 

memberships are set randomly as: Glass (0.1, 0.1, 0.2, 0.1, 

0.2, 0.1), Iris (0.35, 0.4, 0.45), Leukemia (0.8, 0.9), 

Mushroom (0.22, 0.18), Segment (0.35, 0.40, 0.35, 0.40, 

0.35, 0.40, 0.35), Vehicle (0.3, 0.3, 0.4, 0.4), Wine (0.3, 

0.3, 0.2). Form Table 2, it can be seen that FELM can 

always achieve comparable accuracy as SVM and ELM. 

Moreover, the learning speed of ELM and FELM are 

much faster than that of SVM. Then, we change the fuzzy 

memberships of two datasets to: Iris (0.5, 0.3, 0.2), Glass 

(0.3, 0.2, 0.2, 0.1, 0.1, 0.1). As shown in Table 3 and 

Table 4, in order to verify FELM having the ability to 

solve the weighted problems, we calculate the detailed 

result of each class respectively. In FELM, compared with 

the results of ELM, the classes with larger fuzzy 

memberships have higher accuracy. In other words, the 

separate boundaries of classifier are moved towards the 

classes with smaller fuzzy memberships. Therefore, the 

accuracies of classes with different fuzzy memberships 

are changed, which is the purpose of proposing FELM. 
 

Table 2  
Performance comparison of SVM, ELM and FELM. 
Datasets SVM ELM FELM 

Rate 

(%) 

Time 

(s) 

Rate 

(%) 

Time 

(s) 

Rate 

(%) 

Time 

(s) 

Glass 67.83 0.279 67.14 0.025 67.14 0.027 

Iris 95.12 0.071 94.64 0.013 96.39 0.015 

Leukemia 82.34 0.993 82.35 0.029 82.32 0.030 

Mushroom 89.88 35.882 88.84 1.520 87.93 1.531 

Segment 96.53 13.901 96.07 1.799 96.19 1.806 

Vehicle 84.37 1.470 83.48 0.225 83.39 0.258 

Wine 98.37 0.071 98.47 0.019 98.41 0.020 

 

Table 3 

The accuracy of each label in the dataset Iris. 
Label 1 2 3 

ELM 94.82 94.05 94.59 

FELM 99.31 96.67 93.18 

 

Table 4 

The accuracy of each label in the dataset Glass. 
Label 1 2 3 4 5 6 

ELM 66.85 67.24 67.18 67.12 66.90 67.03 

FELM 78.64 72.52 71.48 61.55 60.93 61.21 

 

4.2 Imbalanced data problem 

As shown in Table 5, the datasets adult and banana are 

chosen in this experiment which is used to demonstrate 

the performance of the proposed algorithm when the 

datasets are imbalanced. The fuzzy memberships can be 

generated by (20), and if the users want to enlarge the 

effect of FELM, the fuzzy membership can be determined 

as  2

s 1/
ii tn .            (26) 

In this experiment, we evaluate the performance of FELM 

in terms of accuracy, precision and G-mean. In addition, 

in order to explain the experimental results conveniently, 

precision and G-mean are calculated as 

Tm
Precision

Tm Fm
           (27) 

Tm TM
G mean

Tm FM TM Fm
        (28) 

where Tm, TM, Fm, FM stand for true minority, true 

Majority, false minority and false Majority, respectively. 

Seen from Table 6, the accuracies of SVM, ELM and 

FELM are quite similar. However, in FELM, precision 

and G-mean are increased, and these two metrics can 

evaluate the imbalanced data problems more 

comprehensively. Moreover, we can also summarize that 

the higher the imbalance degree is, the more visibly 

precision and G-mean are increased, which is consistent 

with the principle of FELM. 
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Table 5 

Specification of binary classification problems from UCI. 
Datasets Train Test Features Imbalance ratio 

Adult 4781 27780 123 0.3306 

Banana 400 4900 2 0.8605 

 

Table 6  

Performance result of imbalanced data problems. 
 Adult Banana 

Accuracy Precision G-mean Accuracy Precision G-mean 

SVM 84.51 70.53 72.28 89.84 87.11 89.93 

ELM 84.58 70.36 72.19 89.83 87.02 89.28 

FELM 84.42 84.49 79.96 89.82 90.61 90.42 

 

4.3 Cost-sensitive learning 

To verify FELM have the ability to solve cost-sensitive 

learning problems, a set of radar emitter datasets [27] are 

taken to the simulation. The radar pulse signal is single 

frequency, and the signal/noise ratio (SNR) is in the range 

of 15 ~ 25dB. Each category contains 100 radar emitter 

pulse signals, and 50 samples of that are selected for 

training. Firstly, we consider a binary classification 

problem. The cost matrix is defined as 
0   0.8

0.2  0

    C , 

where ( , )i jC  is the cost of predicting that an example 

belongs to class i  when in fact it belongs to class j . 

Therefore, the fuzzy memberships are set as (0.2, 0.8). In 

the testing phase, the total cost will add 0.2 cumulatively 

when the example belongs to class 1 is misclassified. 

Similarly, if the example belongs to class 2 is 

misclassified, the total cost will add 0.8 cumulatively. 

Then, we consider a 4-classes classification problem and 

the cost matrix is defined as 

0         0        0.6       0.9

0         0        0.6       0.9

0.15  0.15       0        0.45

0.1     0.1       0.2         0

       
C . According to the 

relationship of ( , )i jC , the fuzzy memberships are set as 

(0.15, 0.15, 0.25, 0.45). As shown in Table 7, the 

accuracies of ELM and FELM for the binary classification 

or the 4-classification are quite similar. However, in 

FELM, total cost is reduced obviously, which verifies its 

ability to solve cost-sensitive learning problems. 

 

Table 7  

Total cost comparison of ELM and FELM. 
 Binary classification 4-classes classification 

Rate (%) Total cost Rate (%) Total cost 

ELM 72.00 14.6 70.50 20.2 

FELM 74.00 8.5 69.00 10.3 

 

4.4 Noise signal problems 

This experiment is used to demonstrate the performance 

of the proposed algorithm as the valid signal is mixed by 

noise. We selected eight categories of radar emitter 

signals, and experiment binary classification, 4-classes 

classification and 8-classes classification, respectively. 

The fuzzy memberships are generated by (21), (22). In 

Table 8, we can observe that the classification accuracy of 

FELM is higher than that of ELM. This determination of 

the fuzzy memberships could not be the optimal solution 

to solve the noise signal problem. How to determine a 

better set of fuzzy memberships is worthy of study. 

 

Table 8  

Performance result of classification problems with noises. 
Rate 

(%) 

Binary 

classification 

4-classes 

classification 

8-classes 

classification 

ELM 69.00 67.50 62.75 

FELM 71.00 69.00 65.25 

 

4.5 Mackey-Glass time series datasets 

We use the Mackey-Glass series datasets with 

parameters 0.1a  , 0.2b   and 17  , which are 

the usual parameters for experimental studies. Then, we 

consider three different problems, one step ( 1  ), five 

steps ( 5  ) and eight steps ( 8  ) predictions. In 

ELM, the time information is ignored in the training stage. 

In FELM, the fuzzy memberships are generated by (25). 

Form Table 2, it can be seen that the example-dependent 

fuzzy memberships are helpful for improving 

classification performance. 

 

Table 9 

Performance result of Mackey-Glass time series datasets. 
Steps 1 5 8 

ELM 91.03 89.87 88.42 

FELM 93.15 91.84 90.69 

 

5 Conclusion 

A new extension of ELM called FELM is proposed in 

this paper, which introduces a set of fuzzy memberships 

and a fuzzy matrix to the traditional ELM method. The 

proposed method retains the advantages of ELM, such as 

all the hidden node parameters are randomly generated 

and the output weights are analytically determined. In 

FELM, different from ELM, the inputs with different 

fuzzy memberships can make different contributions to 

the learning of the output weights. In addition, according 

to the specific applications, the fuzzy memberships can be 

conveniently determined based on classes or examples. 

The experiments results show that FELM can achieve 

comparable accuracy as SVM and ELM with much faster 

learning speed than SVM. More importantly, by 

introducing the appropriate fuzzy memberships, FELM 
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can solve some complicated classification problems which 

are beyond the ability of the traditional ELM, such as 

imbalanced data problems, cost-sensitive learning, and 

noise signal problems. In future study, we will investigate 

to find the better determination methods of the fuzzy 

memberships which are suited to wider scopes of 

real-world applications. 
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