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Abstract—Intelligence analysts are faced with a complex in-
formation fusion problem that is characterised by the volume,
velocity, variety and veracity of the observed data and informa-
tion. That is, there are large quantities of data and information
(volume) arriving at a high rate (velocity) which are, in general,
highly heterogeneous (variety) and of inconsistent fidelity (verac-
ity). Making sound decisions based on these observations is the
aim and human decision making is essential, since humans are
ultimately held responsible. Current industry tools are designed
to support this process, by helping to process and curate the
collection of observations automatically, storing it in databases
and providing various analytical tools to retrieve and manipulate
fragments of the collection. However, industry approaches for
managing the inherent uncertainty in these observations and
exploiting all the available higher level contextual information
are inadequate. What is needed is a practical formalism that can
deal with multiple types of uncertainty, can exploit contextual
information and can operate at scale to reduce the cognitive
burden on analysts. In this paper, we discuss the use of Markov
logic networks for handling uncertainty and exploiting higher
level contextual information and demonstrate how this provides
a framework which is well suited to handling the real-world
issues encountered in intelligence-based problems.

I. INTRODUCTION

Intelligence analysis may be defined as “the application of

individual and collective cognitive methods to weigh data and

test hypotheses within a secret socio-cultural context” [1, p. 4].

Regarded as a process, it may also be viewed as one of exploit-

ing observed data and information to support the establishment

of situation awareness about a scenario and entities within the

scenario, in a context in which deception is the rule, not the

exception. Making sound decisions based on these data and

information is the aim and human decision making is essential,

since humans are ultimately held responsible. Minton et al [2]

illustrate the nature of such an undertaking. They describe the

real-life case of a Russian businessman who was the owner

of several air cargo companies that were alleged to to have

facilitated illicit trafficking of contraband. They state [2]:

“In tracking a suspected arms dealer such as [name

supplied], intelligence analysts would collect as

much information as possible about the air cargo

companies he is associated with, the planes used

by those companies, the plane’s capabilities, known

routes that they have flown, reported observations of

those planes, and other people, organizations and

companies that [he] deals with or communicates

with. In addition, analysts would attempt to infer any

aliases or front companies he uses, and document

any suspicious and/or deceptive behavior.

Deceptive behaviors come in many forms. One

common behavior which [he] allegedly engaged in

is transferring aircraft between multiple companies.

Doing so makes tracking more difficult, since an

aircraft can be re-registered with a new tail number

when it is transferred.”

They then go on to list a number of open source intelligence

(OSINT) resources that would assist in such an analysis

including sites with millions of pictures of aircraft at airports

around the world, aviation safety databases, databases with

public records about aircraft and air transport companies, as

well as news, blogs and internet fora.

While intelligence comes in many more forms than just

OSINT, the example in this extract does highlight the com-

plex fusion problem facing intelligence analysts which is

characterised by the 4 V’s of big data. There are large

quantities of data (volume) arriving at a high rate (velocity)

which, in general, are highly heterogeneous (variety) and

of inconsistent fidelity (veracity). Current industry tools are

designed to assist in dealing with this problem by helping

to automatically process and curate the collection of observed

data and information, storing them in databases, and providing

various analytical tools to retrieve and manipulate relevant

fragments from the collection. However, existing industry

approaches have no means of handling the inherent uncertainty

in these observations or of exploiting the available higher

level contextual information which may influence and inform

the intelligence analysis; these tasks are still left to the

analysts. What is needed is a practical formalism that can

deal with multiple types of uncertainty, can exploit contextual

information, can operate at scale and can reduce the cognitive

burden on analysts.

Employing statistical data mining approaches can provide

useful insights for some problems due to the volume and

velocity of the observations, but other problems are more like
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finding a needle in a haystack. That is, the problem is to

find a few pieces of information amongst the vast deluge that

connect together to allow an analyst to draw conclusions about

a particular topic, threat or system of interest. The two parts

to this problem are then (i) finding the important pieces of

information and (ii) assessing the strength of the conclusions.

Automated methods would be useful for some parts of this

problem, but in order to develop automated methods robust

manual methods must first be developed to handle some of

the preprocessing of the observations.

Dealing with the variety and veracity of the observations

is a technical challenge that falls under the general banner of

what is often called data cleaning. For example, information

about locations can be specified in a wide variety of ways,

such as by name, coordinates (a point), a region defined by

a set of coordinates, or as a position or region relative to

another location (e.g. 20 km North of town X). Making these

observations accessible for reasoning and querying regardless

of their input format and level of fidelity is one of our aims.

Given a number of observations of some real-world variable,

which may differ in fidelity and uncertainty, observation fusion

is the process of choosing the most likely fused value for

that variable. Even better is to consider all probable values

of the variable for downstream processing, such as in entity

resolution where the aim is to determine if two distinct entities

in a database actually represent the same entity.

While data cleaning, observation fusion and entity resolu-

tion have been described as separate processes, in intelligence

applications entity resolution cannot be disentangled from data

cleaning and observation fusion. Thus, while the discussion in

the remainder of the paper is skewed towards entity resolution,

our intention is to present an approach based on Markov logic

networks which has the potential to address all three problems

together in a homogeneous way, and identify what problems

arise along the way.

The rest of the paper is structured as follows. In Section II

a brief history and overview of entity resolution is described.

Section III commences with an overview of the principal

concepts from first-order logic which underpin Markov logic,

and proceeds with an outline of the theory of Markov logic

networks. Section IV then steps through a small-scale worked

example of entity resolution in the intelligence domain to

illustrate how Markov logic can be applied to this problem.

Section V makes some observations about the approach and

describes some of the lessons learnt. Some final thoughts are

then presented in the conclusion.

II. ENTITY RESOLUTION

As defined in the introduction, entity resolution refers to the

problem of determining if two distinct entities in the same

database or different databases actually represent the same

entity. Historically, the notion of entity resolution arose in

the context of the removal of equivalent references between

two lists of attributes, where the lists were assumed to have

different structures. The earliest acknowledged reference of

the need for such a process, which was first known as record

linkage, but which in more modern parlance could be regarded

as data association between databases, was Dunn [3] in 1946

who raised the issue in the context of compiling a ‘Book of

Life’ for human subjects whose vital records were scattered

across different files and registers. However, it was Newcombe

et al. [4] in 1959 who proposed the use of computers to

automate record linkage. The first algorithm for achieving this

automation was proposed by Fellegi and Suntner [5] in 1969.

Based on a naive Bayesian model [6, p. 572], the Fellegi-

Suntner algorithm has remained influential since then, with a

number of other algorithms being based on it [6, p. 577]. Most

of these algorithms function on a pairwise basis, producing a

list of matched entity pairs. In principle, for any three entities

e1, e2, e3, if such an algorithm matches e1 with e2 and e2
with e3, then it should also match e1 with e3. However, this

ideal is often violated when performing pairwise matching.

As such, a separate step is then performed to remove such

inconsistencies; this is referred to as computing the transitive

closure.

In 2006, Singla and Domingos [6] introduced a markedly

different approach to entity resolution. It was based on the

concept of Markov logic networks that Domingos had pio-

neered several years before for combining first order logic and

probability theory. What distinguished their approach was that

it incorporated (i) the use of softened first-order logic formulae

to represent conditions under which two entities could be

considered identical and (ii) constraints based on the axioms

for equivalence classes, which ensured that transitive incon-

sistencies could not arise, thus avoiding the need to compute

the transitive closure after the fact. They demonstrated this

approach to the problem of ‘de-duplicating’ different citations

of academic papers to determine which citations referred to the

same paper. In the sequel, we demonstrate how their general

approach can be extended to incorporate both uncertainty in

observations and contextual information for entity resolution

(integrated with some data cleaning and observation fusion) in

the intelligence domain, by developing an appropriate Markov

logic knowledge base and a representative set of entity-based

evidence to reason over using this knowledge base.

III. FIRST ORDER LOGIC AND MARKOV LOGIC

NETWORKS

The concept of Markov logic, which integrates first order

logic with probabilistic graphical models known as Markov

networks, was developed about a decade ago by Domingos

[7, Ch. 12], [8] in a bid to exploit the best of both formal

first order theories and probability theory, and to create an

‘interface layer’ for artificial intelligence which provides an

economical means of representing constraints that must be met

in all the worlds for a given application domain. A full account

of this elegant theory would require a discussion of Markov

networks and first order logic. However, regarding Markov

networks, which are also sometimes referred to as Markov

random fields, for the purposes of this paper it is sufficient

to understand that they form a special class of probabilistic

graphical models based on undirected graphs, which induce
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so-called Markov (conditional independence) properties on the

joint probability distributions which are defined over them

(refer to Refs. [9], [10] and [11, Ch. 2] for detailed accounts).

As such, only the requisite background on first-order logic will

be presented here before Markov logic networks are defined.

A. First Order Logic Descriptions and Terminology

Regarded as a formal language, a first-order logic (FOL) [12]

is a triple L = (V, T,W ), where V , T and W are defined as

follows:

V is the vocabulary, consisting of logical symbols including:

• A countable collection of variables x, y, z, . . .
• The Boolean connectives ¬, ∧, ∨, →, ↔ which are

read not, and, or, (material) implication and equivalence

respectively

• The universal and existential quantifiers ∀, ∃ which are

read for all and there exists respectively

• Brackets “(” and “)”

• The equality predicate =

and non-logical symbols including (possibly empty) sets of

symbols for constants, predicates and functions.

T is a collection of terms, each of which is either a constant,

a variable over V , or a function f(t1, t2, . . . , ti), where f is

a function symbol over V and t1, t2, . . . , ti are terms over V .

W is a collection of well-formed formulae over V , where the

well-formed formulae wff (or simply formulae for short) are

defined constructively according to the following criteria:

• Atomic formulae where, by definition, an atomic formula

has the form p(t1, t2, . . . , ti), where p is a predicate

symbol, and t1, t2, . . . , ti are terms

• If p and q are wff then so are ¬p, (p∨q), (p∧q), (p → q)
and (p ↔ q)

• If p is a wff and x is a variable, then both ∃x p and ∀x p
are wff

• Nothing else is a wff.

�

Given a FOL, a knowledge base comprises a set of FOL

formulae over a domain of interest. The constant symbols in

V represent the objects in the domain of interest and the

variables in V range over these objects. An interpretation

specifies which objects, functions and relations in the domain

are represented by which symbols [8, p. 9].

Three other main concepts of FOL are important for Markov

logic networks, namely the conjunctive normal form, ground-

ing and possible worlds.

Conjunctive Normal Form: Given a FOL, the literals of

the FOL are the atomic formulae (positive literals) and their

negations (negative literals). Assuming the FOL has a finite

number n of atomic formulae, a disjunct1 consists of the

disjunction of n distinct wff, each of which is a literal. It is

noted that, for FOLs with finite numbers of atomic formulae,

every wff which is expressed in terms of the defined FOL

1Also sometimes referred to as a maxterm (refer to Ref. [13, p. 494]).

Boolean connectives can be rewritten in so-called conjunctive

normal form (CNF) which consists of the conjunction of

distinct disjuncts. Furthermore, this CNF representation is

unique up to the order of the disjuncts and the order of the

literals in the disjuncts (this follows from corresponding results

in Ref. [14, pp. 146-147] about the counterpart to the CNF

known as the disjunctive normal form which is the disjunction

of conjuncts). Descriptions of the means for converting FOL

formulae into conjunctive normal form are given in Refs. [15,

pp. 281-282] and [16].

Grounding: A ground term is a term containing no variables.

A ground atom or ground predicate is an atomic formula, the

arguments of which are all ground terms. Given a term, the

process of grounding it refers to the substitution (instantiation)

of each of its variables by a constant in the domain of the

variable [8, p. 9].

Possible Worlds: Given a knowledge base and an interpre-

tation over it, a possible world refers to the assignment of a

binary truth value to each possible ground predicate. A formula

in the knowledge base is said to be satisfiable if and only if

there exists at least one possible world in which it is true [8,

p. 9].

B. Markov Logic Networks

Given a traditional first-order knowledge base, it can be viewed

as a set of hard constraints on the set of possible worlds, such

that if a world violates even one formula, the probability of

that world is zero. Often such hard constraints are not suitable

for modelling the real world because almost invariably there

will be some situation in which a given formula will not hold.

It is therefore desirable to introduce a means of softening

these constraints in some way. In a Markov logic network,

this is achieved by attaching a weight to each formula in

the knowledge base. A formula’s weight reflects how strongly

it imposes the constraint on possible worlds; the higher the

weight, the lower the probability that there exists a possible

world that violates it. More formally, a Markov logic network

may be defined as follows:

A Markov logic network (MLN) [8, p. 12] L is a set of m
pairs (Fi, wi) where Fi is a formula in first-order logic and

wi is a real number. Together with a finite set of constants

C = {c1, c2, . . . , c|C|}, it defines a (ground) Markov network

ML,C as follows:

1) ML,C contains one binary node for each possible ground-

ing of each predicate appearing in L. The value of the

node is 1 if the ground predicate is true and is 0 otherwise.

2) ML,C contains one feature for each possible grounding

of each formula Fi in L. The value of this feature is 1 if

the ground formula is true and is 0 otherwise. The weight

of the feature is the weight wi associated with Fi in L.

The joint probability distribution over the set of k binary truth-

valued ground predicates associated with this ground Markov

network takes the following form. Representing the jth binary

truth-valued ground predicate by a variable xj and denoting by
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x the random vector x = (x1, x2, . . . , xk), the probability that

x = X , where X = (X1, X2, . . . , Xk) is a possible world, is

given by2

P (x = X) =
1

Z
exp

(

m
∑

i

wini(X)

)

(1)

where ni(X) is the number of true groundings of Fi in the

world X and Z is a scaling term known as the partition

function which has the form

Z =
∑

X

exp(
∑

i

wini(X)). (2)

It is noted that as the weight for a given formula approaches

infinity, the probability of the formula approaches 1 if the

formula is true, while it approaches 0 if the formula is

false. Consequently, each weighted formula in a Markov logic

network converges to the hard (ie strict FOL) version of the

formula as the weight approaches infinity. It is further noted

that if a formula Fi has a weight wi, then the weight of

the negation ¬Fi of Fi is −wi. Finally, a formula with a

weight of 0 essentially contributes nothing to the overall joint

distribution since wini(X) = 0 for all possible worlds X . As

such, it represents a state of ignorance about the validity of

the formula.

Inference in a Markov logic network takes two basic forms.

Given a ground Markov network and evidence in the form of

truth value assignments for a subset of the ground (evidence)

predicates, the marginal probabilities of the remaining (query)

predicates can be calculated. Alternatively, the most likely

possible world or most probable explanation (MPE) can also

be calculated. In practice, however, it is generally infeasible to

calculate these quantities exactly, so it is necessary to estimate

them instead. In the case of marginal probabilities, several

algorithms based on Markov chain Monte Carlo (MCMC)

techniques have been developed to estimate them, with the so-

called MC-SAT algorithm being the most commonly used [8,

Chap. 3], [17]. In contrast, to calculate the most likely possible

world or MPE, which is interpreted as the possible world at

which the maximum a posteriori probablility (MAP) of the

joint distribution given the evidence is attained, a randomised

satisfiability solver known as the MaxWalkSAT algorithm is

typically employed [8, Chap. 3], [17].

IV. ENTITY RESOLUTION IN MARKOV LOGIC NETWORKS

Having defined MLNs, we are now in a position to demon-

strate how they may be applied to entity resolution for intel-

ligence applications.

2In defining the probability in this way, there are several assumptions being
made which ensure that the set of possible worlds is finite and that ML,C

represents a unique, well-defined probability distribution. These are that (i)
different constants refer to different entities (unless this is inferred by formulae
in the MLN), (ii) the only objects in the domain are those representable using
the constant and function symbols in C and L, and (iii) for every function
appearing in L, the value of that function applied to every possible tuple of
arguments is known and is an element of C [8, pp. 13-14].

A. MLN Worked Example

For illustration, we consider a situation where a Mystery

Person is to be added to an existing knowledge base containing

persons of interest and contextual information about them.

This contextual information includes attributes of people,

relations between people and relations between other entities

in the knowledge base. Conceptually, whenever a new entity

is to be added to the knowledge base (or indeed any new

information) we want to determine if this entity is already

represented in the knowledge base. For example, a person with

the same surname, who was born in the same town on the

same date is likely to be the same person, but not if they are

siblings.

The representation of real data is often inconsistent, which

makes comparison difficult, and relevant data is often sparse.

In this worked example we demonstrate how MLNs can handle

these kinds of comparisons, and also handle uncertainty. We

then show how contextual information can be taken into

account. Finally we combine these components into a global

comparison of entity similarity.

The example is evaluated using Alchemy [18], which is the

reference implementation of MLNs developed by Kok et al.

at the University of Washington.

1) Inference Over Tree-Structured Data: One important

aspect of spatial fidelity is the notion of containment. Suppose

we have biographical data represented at varying levels of

abstraction, such as in Table I, with the spatial containment

relations shown in Table II.

TABLE I
REPRESENTATIVE INPUT DATA FOR ATTRIBUTE born in

Person Relation Property Alchemy Input

Mystery Person born in Brisbane Born in(Mystery Person, Brisbane)

Bob born in Adelaide Born in(Bob, Adelaide)

Alice born in Kangaroo Point Born in(Alice, Kangaroo Pt)

Germaine born in Australia Born in(Germaine, Australia)

TABLE II
REPRESENTATIVE INPUT DATA FOR ATTRIBUTE contains

Location Relation Location Alchemy Input

Australia contains Queensland Contains loc(Australia, Queensland)

Australia contains Victoria Contains loc(Australia, Victoria)

Australia contains South Australia Contains loc(Australia, South Australia)

Brisbane contains Kangaroo Point Contains loc(Brisbane, Kangaroo Pt)

Queensland contains Cairns Contains loc(Queensland, Cairns)

Queensland contains SE Queensland Contains loc(Queensland, SE Queensland)

SE Queensland contains Brisbane Contains loc(SE Queensland, Brisbane)

South Australia contains Barossa Valley Contains loc(South Australia, Barossa Valley)

Adelaide contains Magill Contains loc(Adelaide, Magill)

Victoria contains Melbourne Contains loc(Victoria, Melbourne)

We would like to be able to program the system to ‘un-

derstand’ the spatial relationships between different locations

so that a query like “Who was born in Queensland?” would

return all people born in Queensland or its subregions (ie.

Alice and Mystery Person). In a logical programming language

this can be achieved by specifying the properties of the

containment relation, and a set of facts outlining the hierarchy

of containment. The basis of this problem is to determine the
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probability that any two described entities are in fact referring

to the same person. Thus, the relation same person is also

defined.

TABLE III
LOGICAL FORMULAE AND CORRESPONDING MLN RULES FOR contains

AND born in

Formula Encoding Syntax

1 Logical Formula ∀x, y, z contains(x, y) ∧ contains(y, z)
→ contains(x, z)

Alchemy Input Contains loc(a,b) ˆ Contains loc(b,c)
=> Contains loc(a,c).

2 Logical Formula ∀x, y contains(x, y) → ¬contains(y, x)
Alchemy Input Contains loc(a,b) => !Contains loc(b,a).

3 Logical Formula

Alchemy Input 8 !Contains loc(a,b)

4 Logical Formula ∀p, l1, l2 born in(p, l2) ∧ contains(l1, l2)
→ born in(p, l1)

Alchemy Input Born in(p,l2) ˆ Contains loc(l1,l2)
=> Born in(p,l1).

5 ∀p, l1, l2, l3 born in(p, l2) ∧ contains(l1, l2)
Logical Formula ∧ contains(l1, l3) ∧ l2 6= l3

∧ ¬contains(l2, l3) ∧ ¬contains(l3, l2)
→ ¬born in(p, l3)

Born in(p,l2) ˆ Contains loc(l1,l2)
Alchemy Input ˆ Contains loc(l1,l3) ˆ !(l2=l3)

ˆ !Contains loc(loc2, loc3)
ˆ !Contains loc(loc3, loc2)

=> !Born in(p,l3).

6 Logical Formula ∀p ∃l born in(p, l)
Alchemy Input exist l Born in(p,l).

The logical formulae in Table III define the conditions under

which their corresponding predicates are true, and which are

false otherwise. In logical programming languages such as

Prolog this is approximated by the semantics of negation-as-

finite-failure. That is, if we can fail to prove something, Q,

in a finite time then we can treat that as negation: not(Q).

In Alchemy, the default or prior probability is assumed to

be 0.5 unless otherwise stated. In order to get the desired

semantics we then add formula 3, which essentially sets the

prior probability of contains loc to near zero.

2) Observation Fusion: Of course the purpose of using

MLNs rather than a logical programming language is to be

able to represent and appropriately deal with uncertainties. In

principle the MLN formulation allows the use of probabilistic

(soft) formulae with hard evidence, but it is also possible to

use hard formulae, as we have been doing in this example, as

well as probabilistic (soft) evidence, which can be achieved by

adding a formula consisting of just the evidence predicate with

an appropriate weight to the MLN program. As the weights

for a single formula behave like log odds, the effective input

probability is given by the formula:

p =
ew

1 + ew
(3)

in which case the corresponding weight is given by the

formula:

w = log(
p

1− p
). (4)

For example, we can add the weighted formulae in Table

IV to an MLN program to soften the evidence for born in.

TABLE IV
ADDING UNCERTAIN EVIDENCE FOR ALCHEMY

Alchemy Input Equivalent Probability

3 Born in(Anne, Adelaide) 0.95

1 Born in(Anne, Magill) 0.73

0.5 Born in(Anne, Cairns) 0.62

-8 Born in(Germaine, Melbourne) 0.0003

0 Born in(Frank, Cairns) 0.5

The marginal probabilities for the born in predicate cal-

culated from this program (Tables I-IV) using MC-SAT in

Alchemy [18] are shown in Table V. We can see that the sys-

TABLE V
MARGINAL INFERENCE USING ALCHEMY

† INDICATES CELLS WHERE soft evidence FROM TABLE IV WAS PROVIDED
∗ INDICATES CELLS WHERE hard evidence FROM TABLE I WAS PROVIDED

Born in
Mystery

Anne Bob Frank Germaine Alice
Person

A
u

st
ra

li
a

Australia → 1.0 1.0 1.0 1.0 1
∗ 1.0

Q
u

ee
n

sl
an

d Queensland → 1.0 0.05 0.0 0.4 0.47 1.0

SE
→ 1.0 0.03 0.0 0.25 0.31 1.0

Queensland Brisbane
→ 1

∗ 0.02 0.0 0.2 0.25 1.0

Kangaroo Pt. 0.48 0.01 0.0 0.12 0.15 1
∗

Cairns 0.0 0.02
† 0.0 0.11 0.11 0.0

Victoria
→ 0.0 0.01 0.0 0.17 0.08 0.0

Melbourne 0.0 0.01 0.0 0.12 0.0† 0.0
→ 0.0 0.94 1.0 0.38 0.4 0.0

South
Adelaide

→ 0.0 0.92
†

1
∗ 0.25 0.23 0.0

Australia Magill 0.0 0.66
† 0.51 0.16 0.15 0.0

Barossa Valley 0.0 0.01 0.0 0.08 0.11 0.0

tem correctly propagates born in up the hierarchy of locations

specified. Qualitatively it also appears to handle observation

fusion using soft evidence (eg. Anne), and the appropriate

combination of hard and soft evidence (Germaine).

3) Contextual Information: Hierarchical relationships be-

tween geographic locations are just one example of the contex-

tual information that needs to be considered when performing

entity resolution in general. MLNs allow logical relationships

between ground predicates and other constraints to be cap-

tured and handled in a probabilistic framework. For example,

attributes can differ in their cardinality and whether they are

required or optional. These requirements can be encoded in

MLN formulae. The predicate born in is an example of an

attribute that is required and singular, whereas marriage date

would be optional and potentially multiple. Some attributes

represent properties of an entity that can change over time.

Entity resolution requires comparing the observed values of

such attributes over time to determine the extent to which

they agree or disagree. Allen’s interval calculus [19] provides

one way of classifying the temporal relationship between time

intervals which can be encoded by MLN formulae. We have

used this approach to enable comparison of entities based

on where they have resided during different time intervals,

represented by the relation lives in.

We can also make use of relations between entities, such

as kinship relations. For instance, sibling of is a symmetric,

transitive and irreflexive relation that is optional and poten-

tially multiple. These constraints can be modelled with MLN

rules and used to help with entity resolution.
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4) Entity Resolution: As mentioned earlier, to perform

entity resolution we introduce an explicit equality predicate,

same person, which is reflexive, symmetric and transitive. See

Table VI.

TABLE VI
LOGICAL FORMULAE AND CORRESPONDING MLN RULES FOR

same person

Rule Logical Formula Alchemy Input

1 ∀x same person(x, x) Same Person(a,a)

2 ∀x, y same person(x, y) Same Person(a,b)
→ same person(y, x) => Same Person(b,a).

3 ∀x, y, z same person(x, y) Same Person(a,b) ˆ Same Person(b,c)
∧same person(y, z) ˆ Same Person(b,c)
→ same person(x, z) => same person(a,c).

We also need to modify the constraint on the predicate

born in from Table III to include the predicate same person,

so that formula 5 becomes:

∀p1, p2, l1, l2, l3 born in(p1, l2) ∧ contains(l1, l2)

∧ contains(l1, l3) ∧ same person(p1, p2) ∧ ¬(l2 = l3)

∧ ¬location match(l2, l3) → ¬born in(p2, l3). (5)

where location match is a symmetric predicate defined in

terms of contains that is true if and only if its two arguments

are consistent with each other.

In addition, we add one further formula that states the prior

probability that two people, born in the same place, are the

same person:

[0.5] ∀p1, p2, l1, l2 born in(p1, l1) ∧ born in(p2, l2)

∧ location match(l1, l2) → same person(p1, p2)
(6)

where the leading [0.5] is the weight applied to this rule in

Alchemy.

For illustration, we consider a situation where a ‘Mystery

Person’ is to be added to an existing knowledge base. We will

then evaluate the same person predicate to determine which

entities are most likely to be the same person.

Table VII summarises the data that are being compared

in this entity resolution example. The table identifies which

attributes of the existing entities are consistent (coloured in

green) or inconsistent (coloured in red) with the entity that

is to be added. The observation that Anne is a sibling of the

Mystery Person generates a conflict with (ie. cannot match)

Anne because Anne cannot be her own sibling.

All of the constraints imposed by these attributes are en-

coded as MLN rules. Alchemy is then used to convert them to

a ground Markov network, which includes all possible ground-

ings of the evidence and query predicates, and to determine the

marginal probabilities of same person for each pair of entities

in our knowledge base via an MCMC-based algorithm. The

results of doing so via the MC-SAT algorithm are shown in

Table VIII (partial matches of different entities are coloured in

orange, while matches of entities with themselves are shaded

grey). This shows that the Mystery Person is most likely to be

Alice, which is as expected since there are three instances of

agreement between their attributes, and no conflicts. Each of

the other people has at least one conflicting attribute, which

is why all others have very low probability of match with the

Mystery Person. Note that the evaluation indicates a moderate

probability that Anne could be the same person as Bob, Frank

or Germaine. This is because Anne has no known conflicting

attributes with Bob, Frank or Germaine. The match with Bob

is most likely because Anne and Bob’s reported birthplaces

are in agreement (Magill is part of Adelaide).

Another interesting observation is that, while Bob could be

Anne and Anne could be Frank, the system concludes that

Bob cannot be Frank, even though same person is explicitly

transitive. This is because Bob and Frank are siblings - so they

cannot be the same person.

TABLE VII
ATTRIBUTE COMPARISON TO MYSTERY PERSON AT A GLANCE.

Relation
Mystery

Anne Bob Frank Germaine Alice
Person

gender Female Male Male Female

born in Brisbane Magill Adelaide !Melbourne Kangaroo Pt.

lives in SE Queensland Kangaroo Pt. Cairns Brisbane
(interval) 78-138 125-150 94-113 104-129

lives in Melbourne Victoria Melbourne
(interval) 145-160 140-150 151-160

sibling of Anne Frank

TABLE VIII
OVERALL ESTIMATE OF ENTITY SIMILARITY. ALICE AND THE MYSTERY

PERSON ARE THE CLOSEST MATCH; AND ANNE COULD POTENTIALLY BE

BOB, FRANK OR GERMAINE.

Same person Mystery Alice Anne Bob Frank Germaine
Person

Mystery 1.0 0.98 0.0 0.01 0.01 0.0
Person

Alice 0.98 1.0 0.01 0.0 0.0 0.01

Anne 0.0 0.01 1.0 0.47 0.19 0.17

Bob 0.01 0.0 0.47 1.0 0.0 0.0

Frank 0.01 0.0 0.19 0.0 1.0 0.0

Germaine 0.0 0.01 0.17 0.0 0.0 1.0

V. DISCUSSION AND LESSONS LEARNT

While we regard the results of the example in Section IV as

quite promising, our experience with MLNs has shown that

developing and configuring them for conservative use where

quality assurance is paramount can at times be quite chal-

lenging. In order to help progress the employment of MLNs

for multi-level information fusion applications, in this section

we discuss several issues for consideration when configuring

MLNs, not only for entity resolution, but also for more general

problems.

To begin with, a cautionary approach to building the MLNs

is advised. Trying to introduce too much evidence or too many

‘submodels’ all at once to solve the problem might work, but

if unexpected results occur, trying to debug or trace back the

source of the error is difficult. Starting with a basic model and

checking at each step to ensure consistent results are being

given ensures that any potential anomalies can be more easily
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found. By using small amounts of data and constant testing,

the complexity of an MLN can be slowly increased until the

problem at hand is modelled satisfactorily.

In regards to quality assurance, another issue to take into

consideration when configuring MLNs is how the formulae

are processed by some of the software implementations of

MLNs. Adhering strictly to the definition of an MLN, one

would expect that the formulae for the MLN model would be

treated as a whole, which is to say that for any possible world,

the overall truth value of a formula Fi would be evaluated by

assigning the truth values for that possible world to the ground

predicates in Fi and using Boolean algebra to evaluate the final

result. However, this is not the default behaviour of some of

the main MLN software implementations including Alchemy,

which we have used for this paper. How they handle each soft

formula Fi with weight wi is to compute the CNF of Fi and

then treat the N disjuncts in the CNF as N individual soft

formulae each with a weight of wi/N . The resulting ground

Markov network is completely different and so in general

will yield different results, as various of the individual CNF

components will likely be satisfiable in some possible worlds

in which the original formula Fi is not. For some domains,

this added flexibility may be desirable, but in the intelligence

domain, where the strength of the assessments must also be

taken into account, it is completely undesirable. It is noted

that this behaviour can be overridden in Alchemy and does

not apply to hard formulae which are treated indivisibly, but

not being aware of this unexpected behaviour in the first place

can be a trap for the unwary.

TABLE IX
ASSERTED PROLOG FACTS FOR ATTRIBUTE contains

Location Relation Location Prolog Input

Australia contains Queensland contains loc0(australia, queensland)

Australia contains Victoria contains loc0(australia, victoria)

Australia contains South Australia contains loc0(australia, south australia)

Brisbane contains Kangaroo Point contains loc0(brisbane, kangaroo pt)

Queensland contains Cairns contains loc0(queensland, cairns)

Queensland contains SE Queensland contains loc0(queensland, se queensland)

SE Queensland contains Brisbane contains loc0(se queensland, brisbane)

South Australia contains Barossa Valley contains loc0(south australia, barossa valley)

Adelaide contains Magill contains loc0(adelaide, magill)

Victoria contains Melbourne contains loc0(victoria, melbourne)

Finally, for potential users of MLNs who are familiar

with the negation-as-finite-failure behaviour of Prolog, it is

important to note that MLNs do not behave in this manner.

This point was raised in Section IV-A1. To clarify the nature

of the issue which we identified, consider the FOL predicate

contains. The evidence for this ground predicate is specified in

Table II and the formulae governing its (hard) FOL properties

are specified in formulae 1 and 2 of Table III. Consider a

similar formulation in Prolog using the asserted facts in Table

IX, along with rules 7 and 8 below (where contains loc0

signifies an asserted fact and contains loc signifies an inferred

fact):

contains loc(X,Y ) : − contains loc0(X,Y ). (7)

contains loc(X,Z) : − contains loc0(X,Y ),

contains loc(Y, Z). (8)

While all versions of Prolog will reply in the affirmative to

the query contains loc(australia,melbourne) because

contains loc(victoria,melbourne) : −

contains loc0(victoria,melbourne). (9)

and

contains loc(australia,melbourne) : −

contains loc0(australia, victoria),

contains loc(victoria,melbourne). (10)

are both satisfied, it will reply in the negative to a similar

query such as contains loc(south australia,brisbane) because

this fact has not been asserted and no instantiation of rules

7 and 8 enable it to be inferred. In reality, South Aus-

tralia does not contain Brisbane, so the Prolog knowledge

base is behaving as desired. However, what happens in the

corresponding MLN is that (i) the ground predicate Con-

tains loc(South Australia,Brisbane) becomes a query variable

in the ground Markov network because it hasn’t been asserted

as evidence and (ii) while it is not logically entailed by the

evidence and the hard FOL formulae 1 and 2 of Table III,

it is consistent with them. Consequently a non-zero prob-

ability of Contains loc(South Australia,Brisbane) being true

is returned. To suppress this type of behaviour, we added

formula 3 from Table III to introduce a negation-as-finite-

failure type effect into Alchemy for the contains predicate.

By assigning a weight of 8 to !Contains loc(a,b), it has the

effect of assigning almost zero probability to any ground

predicate Contains loc(a,b) meeting the two conditions above,

while returning a unit probability to any other grounding

Contains loc(c,d) which is either asserted as evidence or

entailed by evidence and formulae 1 and 2 in Table III.

VI. CONCLUSION

In this paper, we have discussed the use of Markov logic

networks for incorporating multi-level information such as

uncertain attribute data of entities and contextual information

into the entity resolution process and have demonstrated how

this provides a framework that is well suited for handling

the real-world issues encountered in intelligence-based entity

resolution problems. Due to their basis in FOL, MLNs are

conceptually easy to understand and reasonably intuitive,

allowing an intelligence analyst to be able to comprehend

them and even make recommendations on how they could be

constructed according to the operating environment, although,

as we have identified, there are still technical issues to be

properly understood which are blocking the systematic use

of such a technology at this stage by other than experts.

More effort also needs to be devoted to incorporating temporal

reasoning into MLN models (support for integrating floating

point operations would also be highly desirable for this).

The example we presented demonstrated primarily how

MLNs may be applied to assist with entity resolution. How-

ever, as we noted in the introduction, there is also scope
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to use MLNs to assist in data cleaning and observation

fusion. Yet another area of intelligence where MLNs are

applicable is that of situation and threat / impact assessment.

In particular, given contextual information about individuals

and their known previous movements, MLNs can be employed

to determine their next likely movements or even infer their

likely intentions. Some research in this area has already been

conducted. Snidaro et al. have looked at MLNs in this context

but in the maritime environment [20], [21], and Mooney et

al. have investigated abductive MLNs for activity recognition

[22], [23], while Ao et al. have incorporated MLNs inter alia

into a scientific inquiry fusion theory for high level information

fusion [24].

Lastly, one issue that we haven’t addressed so far is the

speed of inference and the scalability of the models. While

Alchemy has been useful for demonstrating the proof-of-

concept of employing MLNs for intelligence purposes, these

two issues remain valid concerns. Efforts to address them are

being made by a research program at Stanford University.

To date, they have implemented another software application

called Tuffy [25] which (i) uses a bottom-up approach to

grounding which is faster than the top-down approach of

Alchemy, (ii) is underpinned by a relational database man-

agement system to address scalability problems, and (iii)

implements novel partitioning, loading and parallel algorithms.

Currently, they are working on a successor to Tuffy called

DeepDive [26]. Investigations into the evaluation of these

approaches will be the subject of further research.
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