

Pseudo-Real-Time Wide Area Motion Imagery (WAMI) Processing

for Dynamic Feature Detection
†
Ryan Wu,

 †
Bingwei Liu,

†
Yu Chen*,

 ‡
Erik Blasch,

�
Haibin Ling,

§
Genshe Chen

†
Dept. of Electrical & Computer Engineering, Binghamton University, SUNY, Binghamton, NY 13902

‡
Air Force Research Laboratory, Rome, NY 13440

�
Dept. of Computer & Information Sciences, Temple University, Philadelphia, PA 19122

§
Intelligent Fusion Technology, Inc. Germantown, MD 20876

Abstract - Real-time information fusion based on WAMI (Wide-

Area Motion Imagery), FMV (Full Motion Video), and Text data

is highly desired for many mission critical emergency or military

applications. However, due to the huge data rate, it is still

infeasible to process streaming WAMI in a real-time manner and

achieve the goal of online, uninterrupted target tracking. In this

paper, a pseudo-real-Time WAMI data stream processing scheme

is proposed. Taking advantage of the temporal and spatial locality

properties, a divide-and-conquer strategy is adopted to overcome

the challenge resulted from the large amount of dynamic data.

Each WAMI frame is divided into multiple sub-areas and certain

specifically interested sub-areas are assigned to the virtual

machines in a container-based cloud computing architecture,

which allows dynamic resource provisioning to meet the

performance requirement. A prototype has been implemented and

the experimental results validate the effectiveness of our

approach.

Keywords - WAMI (Wide-Area Motion Imagery), Dynamic Data-

Driven Application Systems, Pseudo-Real-Time Processing,

Container-based Cloud.

1. Introduction

Situation awareness is critical for mission critical

applications. Object assessment can come from many sources

such as cyber, linguistic and surveillance data from which

information fusion exploitation techniques are needed [1], [2].

Target detection from surveillance data is often achieved

through an exploitation of sensor data, such as wide area

motion imagery (WAMI) systems in a layered sensor

environment [3]. Real time detection is ideal, since the faster

targets are detected, the faster the opportunities to assess their

activities through tracking and identification [4]. However,

real-time tracking is difficult due to the complexity of the

problem space, cluttered scenes with obscurations, varying

sensor resolutions, different environmental conditions (e.g.,

illumination), and the intelligence of a target. Moreover,

WAMI systems typically produce tens of thousands of moving

target indicator (MTI) detections for a city-size urban area of

only 40 square kilometers at video rates of up to 12 Hz [5], [6].

Compared with traditional video surveillance tasks, WAMI

surveillance is characterized by its large amount of dynamic

data. A typical low frame rate (1.25 Hz) WAMI sequence,

generates a data flow of over 100M of data per second, or over

400G per hour. The data scale can be even larger for high

frame rate (e.g., >10Hz) and/or higher resolution videos

(e.g., >10K×10K) [7], [8].

With such large data rates, there is a lack of real-time

methods to integrate data. The existing methods are static

updates at each incident site and therefore response in such

systems is significantly slowed. The ability to integrate real

time data to support situational awareness (SAW) target

detection would be important. Inherently, effective responses

for target detection rely on the level of SAW and data

processing, sharing, computation, and analysis. WAMI video

data has tremendous support to target detection in conjunction

with other intelligence data, but it is very difficult to process

and analyze the data due to its size and dynamics and security

requirements [9].

Recent methods have utilized the Dynamic Data Driven

Application System (DDDAS) [10], [11] for target tracking

and information fusion [12], [13]. Recent examples coordinate

UAVs and image sensing [14]. Liu et al. [15] have used the

DDDAS concept to combine modeling, measurements, and

software solutions for an information fusion method of tracking

targets using a cloud architecture [16].

Cloud computing has been recognized as an ideal candidate

that can meet the next-generation large data contextual

challenges. However, the current mainstream hypervisor-based

cloud architecture cannot satisfy the requirements of a granular

architecture that allows new mission critical applications to be

deployed using drastically less computing resources, reducing

data management burdens, and maintaining high levels of

security. A new solution is expected that dynamically adapts to

the changing environment while minimizing the overhead at

the service providers’ side.

Virtualization technology for cloud computing platforms

enables data security. The container-based virtualization

method does not depend on hypervisor. Instead, the operating

system is modified to securely isolate multiple instances of an

operating system within a single host machine. The guest

operating system instances are often called virtual private

servers (VPS), containers, or virtual machines (VMs). Since

neither hypervisor nor privilege instruction trapping/

translation is needed, near-native performance is achieved [42].

Another important feature is that all VMs share a single kernel.

Sharing the single kernel allows for great flexibility in live

resource reallocation and ultra-low overhead. We seek a

container-based WAMI method.

In this paper, a pseudo-real-time WAMI data stream analysis

scheme is proposed. Taking advantage of the temporal and

spatial locality properties, a divide-and-conquer strategy is

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 1962

adopted to overcome the challenge resulted from the large

amount of dynamic data. The WAMI frame is divided into

multiple sub-areas, each of which is assigned to a container-

based VM. The sub-areas are processed independently of one

another and the results are displayed in real-time to a human

operator. When the operator identifies certain suspicious

objects in a sub-area, the resources of the VM assigned to it are

dynamically allocated to match the performance requirement.

Then, the main processing engine keeps fetching new frames,

dividing them, and assigning the corresponding sub-area to the

VM for feature abstracting and target tracking. In this manner,

we can process certain “key” areas in real-time even though we

still cannot process the entire frame in real-time.

The rest of this paper is organized as follows. Section 2

provides a brief survey on the related work in WAMI

processing. Section 3 introduces the rationale of the proposed

pseudo-real-time processing approach, and Section 4 presents a

system level description of the framework. Section 5 reports

the experimental results in detail. Section 6 discusses the

design tradeoffs and critical considerations. Section 7 wraps up

this paper with some conclusions.

2. Related Work

The research in WAMI processing usually focuses on (1)

developing data-driven models to characterize the dynamic

objects in the scene, for an excellent overview, see Porter et al.

[6]; and (2) improve visual target tracking performance using

background registration to compensate the camera motion.

Research shows that registration can significantly improve the

quality of tracking algorithms [16], [17]. However, the

registration process requires tremendous computing resources,

causing the entire tracking application can only achieve frame

rate of less than one frame per second on a commodity

computer. This is obviously not suitable for real time tracking

application.

Another issue is the large data files for which researchers

have addressed methods in WAMI compression [18], [19], [20].

WAMI processing requires data management [22], [23]. One

example is a low-frame evaluation of WAMI tracking and

performance assessment as shown by Ling et al. [24].

Numerous methods have been applied to WAMI, such as

Sparse Representation [25], kernel learning [26], likelihood of

features [27], Histogram Based Descriptors [28] to track many

targets [29]. These tracking methods support activity

recognition [30], context assessment [31], and enhanced

situation awareness [32].

Context is an important element of WAMI analysis

including spatial [33] and temporal context [34]. Context

provides an assessment of the vehicle directions [35] and

support pattern of life analysis [36]. The goal is to maintain

Maximum Consistency Context [37]. Recent efforts have

developed methods for testing [38] and real-world assessment

[39]. From all of these works, registration, stream processing,

and context-based tracking rely on the ability to robustly

register the WAMI data in real-time.

The Scale Invariant Feature Transform (SIFT) developed by

David Lowe [40] is able to extract invariant features to be used

by reliable and robust matching between views of a target or

scene. The matching is so robust that it can endure distortion

such as scaling, rotation and change of illumination. Using

SIFT and Random Sample Consensus (RANSAC) [41] for

registration between consecutive frames before applying

tracking algorithms, the quality of tracking algorithms can be

significantly improved [24].

Although the quality of tracking algorithm can be enhanced

by registration, the processing frame rate is very low. Our

previous effort of improving the processing speed for target

tracking [42], [43] utilized container based virtualization to

achieve flexible and scalable resource allocation in large scale

mission system, which laid a foundation for work reported in

this paper.

3. Rationale of Pseudo-Real-Time Processing

WAMI surveillance systems can monitor expansive and

densely populated areas for targets. Modern imaging sensors

produce high resolution frames that can capture important

details scattered over a large area. Frames are typically passed

through a feature detector, which identifies targets that can be

tracked in subsequent frames. Accurate feature detection is

fairly computationally expensive on current computer hardware.

The high resolution that defines WAMI surveillance prohibits

feature detection for all but extremely low frame rate streams.

Real-time stream processing requires that the output frame

rate be equal to the stream frame rate. The system must be

capable of processing an entire frame before the next frame

arrives. While this goal is realizable for low resolution streams,

attempting to process WAMI streams in real-time consumes

more computing resources than available in many systems.

It is possible to achieve real-time processing of WAMI

surveillance by modifying data stream. In one method, frames

can be discarded to allow the image processing system time to

keep up with incoming frames. However, this may severely

impact the usefulness of detected features since targets would

be able to cover larger distances between subsequent frames.

With sufficient knowledge of the capabilities of the processing

system, targets could subvert tracking efforts and pose

undetected threats to the area.

Alternatively, the frame resolution can be reduced to

facilitate real-time processing. While this method does not

suffer from the tracking problem introduced by the previous

method, it arguably demotes the data stream out of WAMI

classification. Capturing small details in the frame, a key

benefit of WAMI surveillance, is sacrificed to achieve real-

time processing since such features may pass undetected or

unrecognizable in the low resolution frames.

In addition, both methods suffer a common weakness:

dependency on the capabilities of the computing hardware.

Sufficiently reducing the stream quality requires intimate

knowledge of both the feature detector and the hardware that

runs it. If either the processing (discarding frames) or hardware

(resolution) is altered, then the stream quality must be

1963

reconfigured for the new system. This system

and is difficult to upgrade.

We propose a Pseudo Real-time Exploitati

(PRESA) framework for processing WAMI fra

these pitfalls. Rather than attempt to process t

real-time, our framework instead aims to proce

the frame in real-time. When an area of interes

the frame, the computing resources are realloca

the processing rate of that sub-area to real-tim

allocation preserves the detail afforded by WA

and meets the time resolution requirement for

tracking within the sub-area. Once the target de

area returns to normal distribution, the framew

resources across the full frame. The fram

dynamic approach to resource allocation to a

power to where it is needed in the frame. Th

WAMI stream dictates how the hardware is uti

the other hardware determining the stream proc

The PRESA framework is built upon contai

computing platform to achieve the necessary

full WAMI frame is divided into a grid of unifo

areas. Each sub-area is assigned to a container

When a sub-area is marked for accelerati

processing, its associated container is allocate

of the computing resources. Even without a

PRESA framework spatially parallelizes fr

which may improve feature detector perform

for detectors that do not natively support

Containerization provides a level of abstra

hardware that allows the framework to operat

of the physical computer configuration. Co

distributed across multiple nodes in a compu

can migrate between nodes to handle dynamic w

4. Pseudo-Real-Time Processing Fram

Figure 1. Pseudo-Real-Time Processing Fr

lacks versatility

ion of Sub-Area

ames that avoids

the full frame in

ess a sub-area of

st is identified in

ated to accelerate

me. The resource

AMI surveillance

r accurate target

ensity in the sub-

work redistributes

mework takes a

apply computing

he content of the

ilized rather than

cessing.

iner-based cloud

y flexibility. The

formly-sized sub-

r for processing.

on to real-time

ed a larger share

acceleration, the

rame processing

mance, especially

multithreading.

action from the

te independently

ntainers can be

uting cluster and

workloads.

mework

The PRESA framework is divide

clients, workers, and resource man

interfaces to the framework and are

computers. Workers perform featur

frames according to client reques

within containers. A single resou

computing node to allocate resourc

requests to accelerate container

framework communicates informat

connections over the network. Fig

structure of the framework for a

resource manager.

When a user wants to proces

framework, the user opens a clien

parameters. The user specifies the g

the frame and the collection of w

process the stream. Once configur

area to each worker and opens a d

The client then issues a job req

indicates a frame and sub-area

information required to return de

client.

Workers wait to receive job inf

the network. Upon receiving a job

new thread for processing the requ

additional jobs from clients. Th

indicated by the request and applie

sub-area. The worker then sends th

back to the client according to

included in the request.

Once it receives detected feature

updates the corresponding sub-are

client then synchronizes the sub-ar

skipping frames if necessary. S

progress through the stream faster

areas, frame skipping is implement

from lagging behind. The client th

the worker. The client also calculat

the worker from the time interval

request. It then reports this frame r

responsible for the worker. In addi

issuing commands to the resource

area processing. When the user cl

frame, the client sends a command

allocate more computing resource

the sub-area. If the sub-area is al

client instead sends a command to

allocation.

The resource manager allocat

containers on its node. The resou

frame rate reports and acceleratio

Frame rate reports provide feed

controller that determines the comp

between accelerated containers. Ac

target frame rate for accelerated

manager only updates the resourc

ramework.

ed into three distinct groups:

nagers. Clients provide user

e designed to run on personal

re detection on sub-areas of

sts and execute exclusively

urce manager runs on each

ces to containers and receive

rs. Each element of the

tion with the others via TCP

ure 1 depicts the high level

 single client, worker, and

ss a WAMI stream in the

nt and enters the processing

grid dimensions for dividing

workers that will be used to

ed, the client assigns a sub-

display window for the user.

quest to each worker that

along with the network

tected features back to the

formation from clients over

 request, the worker starts a

uest and continues to accept

he thread loads the frame

es the feature detector to the

he resulting detected features

o the network information

es from a worker, the client

ea in the user display. The

rea to the rest of the frame,

Since accelerated sub-areas

r than non-accelerated sub-

ted to keep slower sub-areas

en sends the next request to

es the average frame rate for

l elapsed since sending the

rate to the resource manager

ition, the client is capable of

manager to accelerate sub-

licks on the sub-area of the

d to the resource manager to

s to the worker assigned to

lready accelerated, then the

 restore the default resource

es computing resources to

urce manager receives both

on commands from clients.

dback for the proportional

puting resources distribution

celeration commands set the

d containers. The resource

ce distribution client reports

1964

and commands are received. When waiting

connect, the resource manager blocks to redu

node performance.

Once the last frame of the WAMI stream i

client issues commands to each of the resour

restore the default resource allocation to all

releases the workers for other clients to use.

5. Experimental Study

5.1 Experimental Setup

Our experiments are conducted on a contai

computing platform at Binghamton University.

comprised of three identical computing nodes.

Xeon E5-2509 quad core CPU at 2.4GHz, 16G

3TB storage. The nodes run CentOS release 6

patched with OpenVZ [44] 2.6.32-042st

containers run Ubuntu 14.04.1 LTS and ar

OpenCV 2.4.8, which provides the scale-in

transform (SIFT) feature detector and client d

and Boost 1.54.0, which provides multithreadin

We tested the framework using the SIFT

with WAMI data stream composed of 161 fr

stream captures a large area from an aerial

represents the typical stream processed by the f

frame is a 2672 by 1200 pixel grayscale image

format. Fig. 2(a) is an example WAMI aerial

2(b) shows the SIFT detector key-points on

isolate the effect of the framework on com

utilization, we assume that a copy of the data

locally in each container. Determining the opt

moving WAMI data streams across a networ

scope of this study.

(a) A WAMI Aerial Picture.

(b) SIFT Detector Key-Points on WAMI

Figure 2. WAMI Aerial Picture Sam

g for clients to

ce its impact on

is processed, the

rce managers to

containers. This

iner-based cloud

. The platform is

Each node has a

GB memory and

.4. The kernel is

tab085.17. The

e installed with

nvariant feature

display interface,

ng support.

feature detector

frames. The data

l viewpoint and

framework. Each

e stored in JPEG

picture and Fig.

the picture. To

mputing resource

stream is stored

timal method for

rk is beyond the

5.2 Experimental Results

We first tested the framework w

single worker processes the WAM

baseline for comparing the effects

redistributing resources. The cli

assigns the worker to apply the SIF

frame. The resource manager on th

the client, but the resource alloca

duration of the test.

The worker’s output frame

millisecond intervals. The frame ra

through the data stream are plotted

single worker configuration require

minutes) to process the data stream

maintains a steady output of 0.5 f

most of the test duration.

Next, we test the effect of di

across multiple containers on a si

detail in Section 3, the framework i

into sub-areas that are processe

Spatially dividing frames parall

intensive feature detection operatio

frame along a grid into a number o

assigned to a container for process

located on a single node for this

I Picture.

mple.

Figure 3. Frame Rate over T

Table 1. Frame Rate for Var

with a naïve case in which a

MI stream. This provides a

s of dividing the frame and

ent loads the stream and

FT feature detector to the full

he node collects reports from

ation is not changed for the

rate is sampled at 100

ate samples for a single pass

d against time in Fig. 3. The

es more than 300 seconds (5

m in full frames. The worker

frames per second (FPS) for

istributing processing work

ingle node. As described in

is capable of dividing frames

ed by different containers.

elizes the computationally

on. The client divides the full

f sub-areas, each of which is

sing. Since all containers are

test, only a single resource

Time for Full Frame.

rying Frame Division.

1965

manager is required to collect reports from the client. The

resource manager does not redistribute resources for the

duration of the test.

The framework is tested for varying degrees of frame

division. In the most extreme case the full frame is divided into

a 4 by 4 grid, distributing processing work across 16 containers

on a single node. For each trial the WAMI stream is processed

by the framework and the elapsed time is recorded. The

average worker output frame rate can be calculated by dividing

the elapsed time by the number of frames in the data stream.

The average worker output frame rates for varying degrees of

frame division is shown in Table 1. The product of the number

of rows and columns is equal to the number of containers

involved in the test.

The average frame rates are plotted against the number of

containers in Fig. 4. The average frame rate increases linearly

at a rate of approximately 0.5 FPS per container. This trend

continues until 8 or more containers are used to process frames.

After this turning point, the average frame rate settles to

approximately 3.6 FPS.

We finally test the framework’s ability to accelerate feature

detection in sub-areas of the frame. After dividing frames into

sub-areas, the client can issue a command to the resource

manager to accelerate feature detection in a sub-area. The

resource manager then allocates additional computing

resources to the container responsible for the sub-area.

The client divides the frame into 16 sub-areas, each of which

is assigned to a different container. As in the previous setups,

all containers run on the same node so only a single resource

manager is required. This time the client issues an acceleration

command for 4 sub-areas at the 10-second mark. The resource

manager allocates more computing resources to the

corresponding containers. At the 30-second mark, the client

issues a deceleration command for each of the accelerated sub-

areas. The resource manager restores the default resource

allocation to the containers for the remainder of the test. The

output frame rate for each worker is recorded at 100

millisecond intervals. The frame rate samples for accelerated

and non-accelerated sub-areas are plotted against time in Fig. 5.

Frame rate data for the other 14 sub-areas are omitted for

clarity.

Before any sub-areas are accelerated, the average output

frame rate is approximately 3.5 FPS. However, individual

samples can vary from as low as 3 FPS to as high as 7 FPS. As

the number of containers increases, variance in worker output

frame rates increase. Over time, the frame rates settle closer to

the average. Most samples fall within 1 FPS of the average

frame rate after several seconds into the data stream. Once the

acceleration commands are issued at the 10-second mark, the

frame rates of the two sub-frames clearly diverge. The

accelerated sub-area maintains a relatively stable frame rate

above 7 FPS. By comparison, the average frame rate of the

non-accelerated sub-area decreases to approximately 2.5 FPS,

but occasionally higher frame rates are recorded. The frame

rates for both sub-areas rapidly converge after the deceleration

commands are issued at the 30-second mark. Both acceleration

and deceleration manifest within 1 second of the client issuing

the command to the resource manager.

6. Discussions

The Pseudo Real-time Exploitation of Sub-Area (PRESA)

framework possesses several advantages over applying the

feature detector to each full frame.

Frame division provides significance performance gains for

feature detection. Using the same single node setup, enabling

frame division with 8 or more sub-areas improves the average

frame rate from 0.5 FPS to 3.5 FPS. This number of sub-areas

matches the maximum number of concurrently running threads

on the node. Furthermore, increasing the number of sub-areas

beyond this point does not significantly reduce the average

frame rate. This suggests that number of containers can be

made arbitrarily large without incurring noticeable overhead,

Figure 4. Number of Containers versus Frame Rate. Figure 5. Frame Rate over Time with Acceleration.

1966

reducing the degree of fine-tuning required to achieve optimal

performance with the framework when upgrading computing

cluster hardware.

Sub-area acceleration allows the framework to achieve even

higher average frame rates than frame division alone. For tests

involving 16 sub-areas, accelerated sub-areas are capable of

maintaining a steady output frame rate over 7 FPS, twice the

average frame rate of 3.5 FPS without redistributing resources.

The results demonstrate that the high accelerated frame rates

are possible because computing resources are taken away from

non-accelerated sub-areas, which produce lower frame rates

than normal. The framework allows for efficient utilization of

limited computing resources by applying more to processing

high-interest areas. An aspect of the framework that must be

considered is the effect it has on feature detection quality. The

performance gains provided by the framework are only useful

if the detected features can be used to track targets. To assess

this point, we compare the accuracy of detected features

between the framework and the standalone feature detector.

We generate a list of baseline features by applying the SIFT

feature detector to a frame. The same frame is divided into

varying numbers of sub-areas before the SIFT feature detector

is applied. The resulting features are compared with the

baseline features to rate the accuracy on a scale from 0% (no

matching features) and 100% (identical features). Features are

considered to be matching if their coordinates are equivalent

when rounded to the nearest whole pixel. Features that do not

match, either missed features not detected by the framework or

false features not in the reference list, are counted as errors.

The accuracy is computed by taking the difference between

number of baseline features and the number of errors and

dividing it by the number of baseline features. ݕܿܽݎݑܿܿܣ ൌ ȁܾ݈ܽ݁݊݅݁ݏȁ െ ȁݎ݋ݎݎܧȁȁܾ݈ܽ݁݊݅݁ݏȁ

Figure 6 plots the framework accuracy when applying the

SIFT feature detector against the number of sub-areas that the

frame is divided into, ranging from grids of 1 by 1 to 10 by 10.

The accuracy generally decreases as the degree of frame

division increases. The rate of decrease diminishes as the frame

is divided into more sub-areas. The accuracy remains strictly

above 90% when the frame is divided into less than 10 sub-

areas, but numerous configurations of rows and columns can

achieve similar accuracy for up to 40-50 sub-areas. This

implies that the SIFT feature detector accuracy is affected by

not only the degree of frame division but also the grid

dimensions.

Even so, the relationship between accuracy and degree of

frame division observed with the SIFT feature detector cannot

be immediately generalized to cover other feature detectors.

Additional investigation is required to determine how different

feature detectors are affected by spatial frame division, both in

terms of accuracy and performance gains.

7. Conclusions

This paper presents a novel divide-and-conquer strategy that

enables us to track suspicious targets in huge WAMI data

streams in a pseudo-real-time manner. By identifying and

assigning certain sub-areas of a WAMI picture to a container-

based virtual machine (VM), in which resource is managed

elastically corresponding to the computing task requirements.

Such that cloud computing platform can accelerate the

processing speed of the areas where suspicious objects are

allocated. Through intensive experiments, we have verified the

effectiveness of the proposed scheme.

While our work has conceptually validated the pseudo-real-

time WAMI process, there are still several challenging issues

to be solved before the proposed scheme can be adopted in

real-world applications. The team is exploring solutions from

different aspects: 1) investigate more flexible and adaptive

frame division methods to minimize impact on feature

detection quality; 2) explore architecture level optimization

that boosts the processing speed; and 3) design human-machine

interface that allows human rationale be integrated into this

dynamic tracking game.

Acknowledgements

This work is supported by the US Air Force Research Laboratory

(AFRL) Visiting Faculty Research Program (VFRP) and the grant

from AFOSR in Dynamic Data-Driven Application Systems. Ryan

Wu was a summer undergraduate AFRL research fellow.

The authors also want to express our gratitude to Dr. Erkang Cheng

for his valuable suggestions and discussions on SIFT data set and

algorithms.

References

[1] E. Blasch, E. Bosse, D. A. Lambert, High-Level Information

Fusion Management and Systems Design, Artech House,
Norwood, MA, 2012.

[2] E. Blasch, A. Steinberg, S. Das, J. Llinas, C.-Y. Chong, O.

Kessler, E. Waltz, F. White, "Revisiting the JDL model for

information Exploitation," Int’l Conf. on Info Fusion, 2013.

[3] O. Mendoza-Schrock, J. A, Patrick, et al. “Video Image

Registration Evaluation for a Layered Sensing Environment,”
Proc. IEEE Nat. Aerospace Electronics Conf. (NAECON), 2009.

Figure 6. SIFT Accuracy Relative to Baseline.

1967

[4] E. Blasch, C. Yang, I. Kadar, “Summary of Tracking and
Identification Methods,” Proc. SPIE, Vol. 9119, 2014.

[5] R. Porter, C. Ruggiero, J. D. Morrison, “A Framework for

activity Detection in Wide-Area Motion Imagery,” Proc. SPIE,

Vol. 7341, 2009.

[6] R. Porter, A. M. Fraser, and D. Hush, “Wide-area motion imagery:

Narrowing the Semantic Gap,” IEEE Signal Processing
Magazine, IEEE, vol. 27, no. 5, pp. 56–65, September 2010.

[7] E. Blasch, G. Seetharaman, S. Suddarth, K. Palaniappan, G. Chen,

H. Ling, A. Basharat, “Summary of Methods in Wide-Area
Motion Imagery (WAMI),” Proc. SPIE, Vol. 9089, 2014.

[8] V. K. Asari, (ed.), Wide Area Surveillance: Real-time Motion

Detection Systems, Section Augmented Vision and Reality, Vol.

6, Springer, 2014.
http://link.springer.com/book/10.1007%2F978-3-642-37841-6.

[9] Z. H. Sun, M. Leotta, A. J. Hoogs, R. Blue, et al.., “Vehicle

change detection from aerial imagery using detection response
maps,” Proc. SPIE, Vol. 9089, 2014.

[10] F. Darema, DDDAS Workshop Groups. Creating a dynamic and

symbiotic coupling of application/simulations with

measurements/experiments. NSF DDDAS 2000 Workshop. 2000.
Available via www.1dddas.org [accessed Jan 2015].

[11] F. Darema, “Grid Computing and Beyond: The Context of

Dynamic Data Driven Applications Systems,” Proceedings IEEE,
93(3), p. 692-697, 2005.

[12] E. Blasch, G. Seetharaman, and K. Reinhardt, “Dynamic Data

Driven Applications System concept for Information Fusion,”
Procedia Computer Science, Vol. 18, pp. 1999-2007, 2013.

[13] E. Blasch, G. Seetharaman, F. Darema, “Dynamic Data Driven

Applications Systems (DDDAS) modeling for Automatic Target
Recognition,” Proc. SPIE, Vol. 8744, 2013.

[14] S. Ravela, “Quantifying uncertainty for coherent structures,”
Procedia Computer Science, 9:1187-1196, 2012.

[15] B. Liu, E. Blasch, Y. Chen, A. Hadiks, D. Shen, G. Chen, and A.

J. Aved, “Information fusion in a cloud computing era: A

systems-level perspective,” Aerospace and Electronic Systems
Magazine, IEEE, vol. 19, no. 10, pp. 16–24, 2014.

[16] M. D. Pritt, K. J. LaTourette, “Automated georegistration of
motion imagery,” Applied Imagery Pattern Recognition, 2011.

[17] Y. Wu, G. Chen, E. Blasch, H. Ling, “Feature Based Background

Registration in Wide Area Motion Imagery,” Proc. SPIE, Vol.

8402, 2012.

[18] K. Palaniappan, F. Bunyak, P. Kumar, I. Ersoy, S. Jeager, K.

Ganguli, A. Haridas, J. Fraser, R. M. Rao, and G. Seetharaman,

“Efficient feature extraction and likelihood fusion for vehicle

tracking in low frame rate airborne video,” Intl. Conf. on
Information Fusion, 2010.

[19] A.G.A. Perera, R. Collins, A. Hoods, “Evaluation of compression

schemes for wide area video,” IEEE Applied Imagery Pattern
Recognition Workshop, 2008.

[20] J. M. Irvine, S. A. Israel, “Quantifying Interpretability Loss due

to Image Compression, Ch. 3 in Video Compression, A.
Punchihewa (Ed.), InTech, 2012.

[21] P.C. Hytla, K.S., Jackovitz, E.J. Balster, J. R. Vasquez, M. L.

Talbert, M.L., “Detection and tracking performance with

compressed wide area motion imagery,” IEEE Nat. Aerospace
and Electronics Conference, 2012.

[22] E. Blasch, G. Seetharaman, S. Russell, “Wide-Area Video

Exploitation (WAVE) Joint Data management (JDM) for
Layered Sensing,” Proc. SPIE, Vol. 8050, 2011.

[23] E. Blasch, S. Russell, G. Seetharaman, “Joint Data Management

for MOVINT Data-to-Decision Making,” Int. Conf. on Info
Fusion, 2011.

[24] H. Ling, Y. Wu, E. Blasch, G. Chen, L. Bai, “Evaluation of

Visual Tracking in Extremely Low Frame Rate Wide Area
Motion Imagery,” Int. Conf. on Info Fusion, 2011.

[25] Y. Wu, H. Ling, E. Blasch, G. Chen, L. Bai, “Visual Tracking

based on Log-Euclidean Riemannian Sparse Representation,” Int.

Symp. on Adv. in Visual Computing - Lecture Notes in Computer

Science, 2011.

[26] P. Liang, G. Teodoro, H. Ling, E. Blasch, G. Chen, L. Bai,

“Multiple Kernel Learning for Vehicle Detection in Wide Area
Motion Imagery,” Int. Conf. on Info Fusion, 2012.

[27] I. Ersoy, K. Palaniappan, G. Seetharaman, R. M. Rao,

“Interactive target tracking for persistent wide-area surveillance,”
Proc. SPIE, Vol. 8396, 2012.

[28] A. Mathew, V. K. Asari, “Local Histogram Based Descriptor for

Tracking in Wide Area Imagery,” Wireless Networks and

Computational Intelligence Comm. in Computer and Information
Science, Vol. 292, 2012, pp 119-128, 2012.

[29] J. Prokaj, X. Zhao, G. Medioni, “Tracking many vehicles in wide

area aerial surveillance,” IEEE Conf. on Computer Vision and
Pattern Recognition Workshop (CVPRW), 2012.

[30] J. Choi, Y. Dumortier, J. Prokaj, G. Medioni, “Activity

Recognition in Wide Aerial Video Surveillance Using Entity

Relationship Models, 2012. In International Conference on
Advances in GIS, SIGSPATIAL, pages 466–469, 2012.

[31] X. Shi, H. Ling, E. Blasch, W. Hu, “Context-Driven Moving

Vehicle Detection in Wide Area Motion Imagery,” Int’l Conf. on
Pattern Recognition (ICPR), 2012.

[32] E. Blasch, G. Seetharaman, K. Palaniappan, H. Ling, G. Chen,

“Wide-Area Motion Imagery (WAMI) Exploitation Tools for

Enhanced Situation Awareness,” IEEE Applied Imagery Pattern
Recognition Workshop, 2012.

[33] P. Liang, D. Shen, E. Blasch, K. Pham, Z. Wang, G. Chen, H.

Ling, “Spatial Context for Moving Vehicle Detection in Wide

Area Motion Imagery with Multiple Kernel Learning.” Proc.

SPIE, Vol. 8751, 2013.

[34] P. Liang, H. Ling, E. Blasch, G. Seetharaman, D. Shen, G. Chen,

“Vehicle Detection in Wide Area Aerial Surveillance using
Temporal Context,” Int’l Conf. on Info Fusion, 2013.

[35] V. Santhaseelan, V. K. Asari, “Tracking in Wide Area Motion

Imagery Using Phase Vector Fields,” IEEE Conf. on Computer
Vision and Pattern Recognition Workshop (CVPRW), 2013.

[36] J. Gao, H. Ling, E. Blasch, K. Pham, Z.Wang, G. Chen, “Pattern

of life from WAMI objects tracking based on visual context-

aware tracking and infusion network models,” Proc. SPIE, Vol.

8745, 2013.

[37] X. Shi, P. Li, W. Hu, et al., "Using Maximum Consistency

Context for Multiple Target Association in Wide Area Traffic

Scenes," Int'l Conf. on Acoustics, Speech and Signal Processing
(ICASSP), 2013.

[38] Y. Pang, D. Shen, G. Chen, P. Liang, et al.., “Low frame rate

video target localization and tracking testbed,” Proc. SPIE, Vol.
8742, 2013.

[39] A. Basharat, M. Turek, Y. Xu, C. Atkins, D. Stoup, K.

Fieldhouse, P. Tunison, A. Hoogs, “Real-time multi-target

tracking at 210 megapixels/second in wide area motion imagery,”
IEEE Winter Conf. on Apps. of Computer Vision (WACV), 2014.

1968

[40] D. G. Lowe, "Distinctive image features from scale-invariant

keypoints." International journal of computer vision 60.2 (2004):
91-110.

[41] M. A. Fischler and R. C. Bolles. "Random sample consensus: a

paradigm for model fitting with applications to image analysis

and automated cartography." Communications of the ACM 24.6
(1981): 381-395.

[42] R. Wu, Y. Chen, E. Blasch, B. Liu, G. Chen, and D. Shen, "A

container-based elastic cloud architecture for real-time full-

motion video (FMV) target tracking," Applied Imagery Pattern

Recognition Workshop (AIPR), 2014 IEEE, vol., no., pp.1,8, 14-
16 Oct. 2014

[43] B. Liu, Y. Chen, D. Shen, G. Chen, K. Pham, E. Blasch, and B.

Rubin, “An adaptive process-based cloud infrastructure for space

situational awareness applications,” in Proc. SPIE, vol. 9085,

2014.

[44] SWSoft, “Openvz server virtualization,” http://www.openvz.org/,
2006.

1969

