
 

Pseudo-Real-Time Wide Area Motion Imagery (WAMI) Processing 

for Dynamic Feature Detection 
†
Ryan Wu, 

 †
Bingwei Liu, 

†
Yu Chen*,

 ‡
Erik Blasch, 

�
Haibin Ling, 

§
Genshe Chen 

†
Dept. of Electrical & Computer Engineering, Binghamton University, SUNY, Binghamton, NY 13902 

‡
Air Force Research Laboratory, Rome, NY 13440 

�
Dept. of Computer & Information Sciences, Temple University, Philadelphia, PA 19122 

§
Intelligent Fusion Technology, Inc. Germantown, MD 20876 

Abstract - Real-time information fusion based on WAMI (Wide-

Area Motion Imagery), FMV (Full Motion Video), and Text data 

is highly desired for many mission critical emergency or military 

applications. However, due to the huge data rate, it is still 

infeasible to process streaming WAMI in a real-time manner and 

achieve the goal of online, uninterrupted target tracking. In this 

paper, a pseudo-real-Time WAMI data stream processing scheme 

is proposed. Taking advantage of the temporal and spatial locality 

properties, a divide-and-conquer strategy is adopted to overcome 

the challenge resulted from the large amount of dynamic data. 

Each WAMI frame is divided into multiple sub-areas and certain 

specifically interested sub-areas are assigned to the virtual 

machines in a container-based cloud computing architecture, 

which allows dynamic resource provisioning to meet the 

performance requirement. A prototype has been implemented and 

the experimental results validate the effectiveness of our 

approach. 
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1. Introduction 

Situation awareness is critical for mission critical 

applications. Object assessment can come from many sources 

such as cyber, linguistic and surveillance data from which 

information fusion exploitation techniques are needed [1], [2]. 

Target detection from surveillance data is often achieved 

through an exploitation of sensor data, such as wide area 

motion imagery (WAMI) systems in a layered sensor 

environment [3]. Real time detection is ideal, since the faster 

targets are detected, the faster the opportunities to assess their 

activities through tracking and identification [4]. However, 

real-time tracking is difficult due to the complexity of the 

problem space, cluttered scenes with obscurations, varying 

sensor resolutions, different environmental conditions (e.g., 

illumination), and the intelligence of a target. Moreover, 

WAMI systems typically produce tens of thousands of moving 

target indicator (MTI) detections for a city-size urban area of 

only 40 square kilometers at video rates of up to 12 Hz [5], [6]. 

Compared with traditional video surveillance tasks, WAMI 

surveillance is characterized by its large amount of dynamic 

data. A typical low frame rate (1.25 Hz) WAMI sequence, 

generates a data flow of over 100M of data per second, or over 

400G per hour. The data scale can be even larger for high 

frame rate (e.g., >10Hz) and/or higher resolution videos 

(e.g., >10K×10K) [7], [8]. 

With such large data rates, there is a lack of real-time 

methods to integrate data. The existing methods are static 

updates at each incident site and therefore response in such 

systems is significantly slowed. The ability to integrate real 

time data to support situational awareness (SAW) target 

detection would be important. Inherently, effective responses 

for target detection rely on the level of SAW and data 

processing, sharing, computation, and analysis. WAMI video 

data has tremendous support to target detection in conjunction 

with other intelligence data, but it is very difficult to process 

and analyze the data due to its size and dynamics and security 

requirements [9]. 

Recent methods have utilized the Dynamic Data Driven 

Application System (DDDAS) [10], [11] for target tracking 

and information fusion [12], [13]. Recent examples coordinate 

UAVs and image sensing [14]. Liu et al. [15] have used the 

DDDAS concept to combine modeling, measurements, and 

software solutions for an information fusion method of tracking 

targets using a cloud architecture [16]. 

Cloud computing has been recognized as an ideal candidate 

that can meet the next-generation large data contextual 

challenges. However, the current mainstream hypervisor-based 

cloud architecture cannot satisfy the requirements of a granular 

architecture that allows new mission critical applications to be 

deployed using drastically less computing resources, reducing 

data management burdens, and maintaining high levels of 

security. A new solution is expected that dynamically adapts to 

the changing environment while minimizing the overhead at 

the service providers’ side. 

Virtualization technology for cloud computing platforms 

enables data security. The container-based virtualization 

method does not depend on hypervisor. Instead, the operating 

system is modified to securely isolate multiple instances of an 

operating system within a single host machine. The guest 

operating system instances are often called virtual private 

servers (VPS), containers, or virtual machines (VMs). Since 

neither hypervisor nor privilege instruction trapping/ 

translation is needed, near-native performance is achieved [42]. 

Another important feature is that all VMs share a single kernel. 

Sharing the single kernel allows for great flexibility in live 

resource reallocation and ultra-low overhead. We seek a 

container-based WAMI method. 

In this paper, a pseudo-real-time WAMI data stream analysis 

scheme is proposed. Taking advantage of the temporal and 

spatial locality properties, a divide-and-conquer strategy is 
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adopted to overcome the challenge resulted from the large 

amount of dynamic data. The WAMI frame is divided into 

multiple sub-areas, each of which is assigned to a container-

based VM. The sub-areas are processed independently of one 

another and the results are displayed in real-time to a human 

operator. When the operator identifies certain suspicious 

objects in a sub-area, the resources of the VM assigned to it are 

dynamically allocated to match the performance requirement. 

Then, the main processing engine keeps fetching new frames, 

dividing them, and assigning the corresponding sub-area to the 

VM for feature abstracting and target tracking. In this manner, 

we can process certain “key” areas in real-time even though we 

still cannot process the entire frame in real-time. 

The rest of this paper is organized as follows. Section 2 

provides a brief survey on the related work in WAMI 

processing. Section 3 introduces the rationale of the proposed 

pseudo-real-time processing approach, and Section 4 presents a 

system level description of the framework. Section 5 reports 

the experimental results in detail. Section 6 discusses the 

design tradeoffs and critical considerations. Section 7 wraps up 

this paper with some conclusions. 

2. Related Work 

The research in WAMI processing usually focuses on (1) 

developing data-driven models to characterize the dynamic 

objects in the scene, for an excellent overview, see Porter et al. 

[6]; and (2) improve visual target tracking performance using 

background registration to compensate the camera motion. 

Research shows that registration can significantly improve the 

quality of tracking algorithms [16], [17]. However, the 

registration process requires tremendous computing resources, 

causing the entire tracking application can only achieve frame 

rate of less than one frame per second on a commodity 

computer. This is obviously not suitable for real time tracking 

application.   

Another issue is the large data files for which researchers 

have addressed methods in WAMI compression [18], [19], [20]. 

WAMI processing requires data management [22], [23]. One 

example is a low-frame evaluation of WAMI tracking and 

performance assessment as shown by Ling et al. [24]. 

Numerous methods have been applied to WAMI, such as 

Sparse Representation [25], kernel learning [26], likelihood of 

features [27], Histogram Based Descriptors [28] to track many 

targets [29]. These tracking methods support activity 

recognition [30], context assessment [31], and enhanced 

situation awareness [32]. 

Context is an important element of WAMI analysis 

including spatial [33] and temporal context [34]. Context 

provides an assessment of the vehicle directions [35] and 

support pattern of life analysis [36]. The goal is to maintain 

Maximum Consistency Context [37]. Recent efforts have 

developed methods for testing [38] and real-world assessment 

[39]. From all of these works, registration, stream processing, 

and context-based tracking rely on the ability to robustly 

register the WAMI data in real-time. 

The Scale Invariant Feature Transform (SIFT) developed by 

David Lowe [40] is able to extract invariant features to be used 

by reliable and robust matching between views of a target or 

scene. The matching is so robust that it can endure distortion 

such as scaling, rotation and change of illumination. Using 

SIFT and Random Sample Consensus (RANSAC) [41] for 

registration between consecutive frames before applying 

tracking algorithms, the quality of tracking algorithms can be 

significantly improved [24]. 

Although the quality of tracking algorithm can be enhanced 

by registration, the processing frame rate is very low. Our 

previous effort of improving the processing speed for target 

tracking [42], [43] utilized container based virtualization to 

achieve flexible and scalable resource allocation in large scale 

mission system, which laid a foundation for work reported in 

this paper.  

3. Rationale of Pseudo-Real-Time Processing  

WAMI surveillance systems can monitor expansive and 

densely populated areas for targets. Modern imaging sensors 

produce high resolution frames that can capture important 

details scattered over a large area. Frames are typically passed 

through a feature detector, which identifies targets that can be 

tracked in subsequent frames. Accurate feature detection is 

fairly computationally expensive on current computer hardware. 

The high resolution that defines WAMI surveillance prohibits 

feature detection for all but extremely low frame rate streams.  

Real-time stream processing requires that the output frame 

rate be equal to the stream frame rate. The system must be 

capable of processing an entire frame before the next frame 

arrives. While this goal is realizable for low resolution streams, 

attempting to process WAMI streams in real-time consumes 

more computing resources than available in many systems.  

It is possible to achieve real-time processing of WAMI 

surveillance by modifying data stream. In one method, frames 

can be discarded to allow the image processing system time to 

keep up with incoming frames. However, this may severely 

impact the usefulness of detected features since targets would 

be able to cover larger distances between subsequent frames. 

With sufficient knowledge of the capabilities of the processing 

system, targets could subvert tracking efforts and pose 

undetected threats to the area. 

Alternatively, the frame resolution can be reduced to 

facilitate real-time processing. While this method does not 

suffer from the tracking problem introduced by the previous 

method, it arguably demotes the data stream out of WAMI 

classification. Capturing small details in the frame, a key 

benefit of WAMI surveillance, is sacrificed to achieve real-

time processing since such features may pass undetected or 

unrecognizable in the low resolution frames. 

In addition, both methods suffer a common weakness: 

dependency on the capabilities of the computing hardware. 

Sufficiently reducing the stream quality requires intimate 

knowledge of both the feature detector and the hardware that 

runs it. If either the processing (discarding frames) or hardware 

(resolution) is altered, then the stream quality must be 
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and commands are received. When waiting
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node performance. 
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manager is required to collect reports from the client. The 

resource manager does not redistribute resources for the 

duration of the test. 

The framework is tested for varying degrees of frame 

division. In the most extreme case the full frame is divided into 

a 4 by 4 grid, distributing processing work across 16 containers 

on a single node. For each trial the WAMI stream is processed 

by the framework and the elapsed time is recorded. The 

average worker output frame rate can be calculated by dividing 

the elapsed time by the number of frames in the data stream. 

The average worker output frame rates for varying degrees of 

frame division is shown in Table 1. The product of the number 

of rows and columns is equal to the number of containers 

involved in the test. 

The average frame rates are plotted against the number of 

containers in Fig. 4. The average frame rate increases linearly 

at a rate of approximately 0.5 FPS per container. This trend 

continues until 8 or more containers are used to process frames. 

After this turning point, the average frame rate settles to 

approximately 3.6 FPS.  

We finally test the framework’s ability to accelerate feature 

detection in sub-areas of the frame. After dividing frames into 

sub-areas, the client can issue a command to the resource 

manager to accelerate feature detection in a sub-area. The 

resource manager then allocates additional computing 

resources to the container responsible for the sub-area.  

The client divides the frame into 16 sub-areas, each of which 

is assigned to a different container. As in the previous setups, 

all containers run on the same node so only a single resource 

manager is required. This time the client issues an acceleration 

command for 4 sub-areas at the 10-second mark. The resource 

manager allocates more computing resources to the 

corresponding containers. At the 30-second mark, the client 

issues a deceleration command for each of the accelerated sub-

areas. The resource manager restores the default resource 

allocation to the containers for the remainder of the test. The 

output frame rate for each worker is recorded at 100 

millisecond intervals. The frame rate samples for accelerated 

and non-accelerated sub-areas are plotted against time in Fig. 5. 

Frame rate data for the other 14 sub-areas are omitted for 

clarity. 

Before any sub-areas are accelerated, the average output 

frame rate is approximately 3.5 FPS. However, individual 

samples can vary from as low as 3 FPS to as high as 7 FPS. As 

the number of containers increases, variance in worker output 

frame rates increase. Over time, the frame rates settle closer to 

the average. Most samples fall within 1 FPS of the average 

frame rate after several seconds into the data stream. Once the 

acceleration commands are issued at the 10-second mark, the 

frame rates of the two sub-frames clearly diverge. The 

accelerated sub-area maintains a relatively stable frame rate 

above 7 FPS. By comparison, the average frame rate of the 

non-accelerated sub-area decreases to approximately 2.5 FPS, 

but occasionally higher frame rates are recorded. The frame 

rates for both sub-areas rapidly converge after the deceleration 

commands are issued at the 30-second mark. Both acceleration 

and deceleration manifest within 1 second of the client issuing 

the command to the resource manager. 

6. Discussions 

The Pseudo Real-time Exploitation of Sub-Area (PRESA) 

framework possesses several advantages over applying the 

feature detector to each full frame. 

Frame division provides significance performance gains for 

feature detection. Using the same single node setup, enabling 

frame division with 8 or more sub-areas improves the average 

frame rate from 0.5 FPS to 3.5 FPS. This number of sub-areas 

matches the maximum number of concurrently running threads 

on the node. Furthermore, increasing the number of sub-areas 

beyond this point does not significantly reduce the average 

frame rate. This suggests that number of containers can be 

made arbitrarily large without incurring noticeable overhead, 

 

Figure 4. Number of Containers versus Frame Rate. Figure 5. Frame Rate over Time with Acceleration. 

1966



 

reducing the degree of fine-tuning required to achieve optimal 

performance with the framework when upgrading computing 

cluster hardware. 

Sub-area acceleration allows the framework to achieve even 

higher average frame rates than frame division alone. For tests 

involving 16 sub-areas, accelerated sub-areas are capable of 

maintaining a steady output frame rate over 7 FPS, twice the 

average frame rate of 3.5 FPS without redistributing resources. 

The results demonstrate that the high accelerated frame rates 

are possible because computing resources are taken away from 

non-accelerated sub-areas, which produce lower frame rates 

than normal. The framework allows for efficient utilization of 

limited computing resources by applying more to processing 

high-interest areas. An aspect of the framework that must be 

considered is the effect it has on feature detection quality. The 

performance gains provided by the framework are only useful 

if the detected features can be used to track targets. To assess 

this point, we compare the accuracy of detected features 

between the framework and the standalone feature detector. 

We generate a list of baseline features by applying the SIFT 

feature detector to a frame. The same frame is divided into 

varying numbers of sub-areas before the SIFT feature detector 

is applied. The resulting features are compared with the 

baseline features to rate the accuracy on a scale from 0% (no 

matching features) and 100% (identical features). Features are 

considered to be matching if their coordinates are equivalent 

when rounded to the nearest whole pixel. Features that do not 

match, either missed features not detected by the framework or 

false features not in the reference list, are counted as errors. 

The accuracy is computed by taking the difference between 

number of baseline features and the number of errors and 

dividing it by the number of baseline features. ݕܿܽݎݑܿܿܣ ൌ ȁܾ݈ܽ݁݊݅݁ݏȁ െ ȁݎ݋ݎݎܧȁȁܾ݈ܽ݁݊݅݁ݏȁ  

Figure 6 plots the framework accuracy when applying the 

SIFT feature detector against the number of sub-areas that the 

frame is divided into, ranging from grids of 1 by 1 to 10 by 10. 

The accuracy generally decreases as the degree of frame 

division increases. The rate of decrease diminishes as the frame 

is divided into more sub-areas. The accuracy remains strictly 

above 90% when the frame is divided into less than 10 sub-

areas, but numerous configurations of rows and columns can 

achieve similar accuracy for up to 40-50 sub-areas. This 

implies that the SIFT feature detector accuracy is affected by 

not only the degree of frame division but also the grid 

dimensions.  

Even so, the relationship between accuracy and degree of 

frame division observed with the SIFT feature detector cannot 

be immediately generalized to cover other feature detectors. 

Additional investigation is required to determine how different 

feature detectors are affected by spatial frame division, both in 

terms of accuracy and performance gains. 

7. Conclusions 

This paper presents a novel divide-and-conquer strategy that 

enables us to track suspicious targets in huge WAMI data 

streams in a pseudo-real-time manner. By identifying and 

assigning certain sub-areas of a WAMI picture to a container-

based virtual machine (VM), in which resource is managed 

elastically corresponding to the computing task requirements. 

Such that cloud computing platform can accelerate the 

processing speed of the areas where suspicious objects are 

allocated. Through intensive experiments, we have verified the 

effectiveness of the proposed scheme.  

While our work has conceptually validated the pseudo-real-

time WAMI process, there are still several challenging issues 

to be solved before the proposed scheme can be adopted in 

real-world applications. The team is exploring solutions from 

different aspects: 1) investigate more flexible and adaptive 

frame division methods to minimize impact on feature 

detection quality; 2) explore architecture level optimization 

that boosts the processing speed; and 3) design human-machine 

interface that allows human rationale be integrated into this 

dynamic tracking game.  
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