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Abstract—Transfer Subspace Learning has gained recent 

popularity in the literature for its ability to perform cross-dataset 

and cross-domain object recognition—enablers for data fusion. 

The ability to leverage existing data without the need for additional 

data collections is attractive for Automatic Target Recognition 

applications.  For Automatic Target Recognition (or object 

assessment) applications, Transfer Subspace Learning is a game 

changer for dynamic systems, as it enables the incorporation of 

sparse and dynamically collected data into existing systems that 

utilize large, dense databases. A baseline Transfer Subspace 

Learning technique is the Transfer Fisher’s Linear Discriminative 

Analysis, an approach based on Bregman divergence-based 

regularization. This paper modifies the implementation of the 

Transfer Fisher’s Linear Discriminative Analysis technique by 

combining it with Manifold Learning and adjusting it to allow for a 

more systematic search of tuning parameters. Specifically, the 

Diffusion Map approach is utilized, a Manifold Learning approach 

based on heat diffusion. The modified technique is then utilized for 

cross-data and cross-domain electro-optical vehicle recognition.   

Keywords—transfer learning; transfer subspace learning; electro-

optical imaging; vehicle recognition, manifold learning  

I. INTRODUCTION 

Transfer Subspace Learning (TSL) has found a diverse 
range of applications, including cross-domain face recognition 
and cross-domain text categorization [1] [2]. TSL is an enabler 
for data fusion and an enabler for dynamic model building--an 
important component for Dynamic Data Driven Application 
Systems (DDDAS) [3]. The focus of this study is to extend the 
TSL framework by combining it with Manifold Learning for a 
robust Aided Target Recognition (AiTR) system capable of 
achieving high vehicle recognition rates. We seek to build an 
AiTR system that is robust to different operating conditions [4]  
including sensor modality, lighting conditions, shadows, 
weather, sensor type, terrain, image quality, and quality of 
metadata [5]. A robust AiTR system would leverage all 
‘similar’ data to recognize a new target of interest instead of 
having to collect large amounts of data on a new target before a 
recognition model could even be built. Data collections are 
resource intensive and can cost on the order of tens of 
thousands of dollars depending on the scope of the collection, 
the number of sensors utilized, and the complexity of the 
scenarios. Often, AiTR systems are built utilizing data from a 

particular data collection but suffer from dramatic performance 
loss when utilizing data from a different data collection or 
under real-world scenarios. By utilizing TSL, AiTRs can be 
extended to dynamic systems where they are more robust and 
applicable to scenarios outside of the ones from which they 
were developed. 

We propose a combination of TSL and Manifold Learning 
to build the baseline dynamic AiTR.  Furthermore, we modify 
the implementation of the Transfer Fisher’s Linear 
Discriminative Analysis (TrFLDA) [1] technique to allow for a 
more systematic search of tuning parameters. We show results 
for cross-dataset vehicle recognition using electro optical (EO) 
imagery; specifically, we recognize a Toyota Avalon and a 
Nissan Sentra under vastly different lighting conditions. We 
also show results for cross-domain vehicle recognition utilizing 
the recognition of a Toyota Avalon and Nissan Sentra to 
recognize a Toyota Avalon and Mitsubishi Lancer. 

This paper is organized as follows. Section II discusses 
Transfer Subspace Learning and Section III provides an 
overview of Manifold Learning. Section IV discusses the data 
utilized in the study and the experimental setup. Section V 
details experimental results. Section VI provides a discussion 
and our conclusions.  

II. TRANSFER SUBSPACE LEARNING 

The purpose of Transfer Learning is to utilize information 
for recognition in one domain to recognize objects in a 
different but related domain. The seminal approaches include 
Transfer Adaboost [6] (TrAdaboost) which is an extension of 
the Adaboost algorithm for cross-dataset and cross-domain 
applications. It is common in the literature to report results 
using data from one data collection and reserve a part for 
training and a part for testing. However, cross-dataset 
recognition utilizes data from one data collection for training 
and data from a completely different data collection, under 
different operating conditions [4], for testing. The objects and 
their labels remain the same. For cross-domain recognition the 
objects and the labels are different but “similar”, where the 
definition of similar is application dependent. In [1] similar 
meant that the objects were all faces. The datasets utilized did 
not share the same subjects but they were all faces under a set 
of restricted poses. In this study, for cross-dataset recognition 
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we define similar to be the same set of sedans under two 
different lighting conditions and in cross-domain recognition 
we define similar to be any sedan.  

Traditional transfer learning techniques, such as 
TrAdaboost, were next extended to Subspace Learning which 
resulted in a family of Transfer Subspace Learning (TSL) 
techniques [1] [7]. These techniques extend traditional 
subspace learning to account for the changes in distribution in 
the source and target domains. That is, in situations where 
independence is violated, TSL can be used under cross-dataset 
and cross-domain applications when the source and target data 
are not independent and identically distributed (i.i.d). Hence 
TSL techniques attempt to correct for this problem by either 
aligning the dataset or at least minimizing the difference in 
their distributions. This study focuses on TSL based on the 
Bregman Divergence-Based Regularization [1].  

The assumptions of TSL based on the Bregman 
Divergence-Based Regularization are that the target domain 
has one labeled instance per class and that the amount of data 
in the target domain is less than the amount of data in the 
source domain. The goal is to find a subspace, W*, that 
separates classes and aligns the distribution of the source and 
target data. This optimal subspace is then used to train labeled 
examples from the target domain by using the K-nearest 
neighbors (KNN) classifier [8]. We follow the technique of [1] 
and randomly select a sample from each of the classes in the 
target domain to classify the target data. In computing the 
optimal subspace, W*, the key consideration is the trade-off 
between what can be learned from the current environment 
versus what is applicable to another environment. The 
variables that are important for separating classes in the source 
domain may differ from the variables that are important for 
separating classes in the target domain.   

In this study, the Transfer Fisher’s Linear Discriminative 
Analysis (TrFLDA) is utilized—one of six TSL approaches 
introduced in [1]. An assumption of TrFLDA, inherited from 
Fisher’s Linear Discriminative Analysis (FLDA), is that the 
number of samples must be greater than or equal to the number 
of classes, plus the number of dimensions of the data [9]. A 
thorough explanation of the algorithm for TrFLDA is given in 
[1]. In this paper we provide a summary of the implementation 
in Algorithm I. In the original implementation [1] and 
associated example code [10], the optimization problem in Step 
One is expressed as  

 

) ||( +minarg TSW
RW

PPDF(W)W*
Dxd

λ
∈

=                   (1) 

 

where F(W) is the objective function for the particular Transfer 
Subspace Learning (TSL) approach, ܦௐሺ ௌܲ צ ்ܲሻ  is the 

regularization term,  and λ  is the absolute weight assigned to 

the regularization term. Further, PS and PT are the probability 
density functions (PDFs) of the source data and the target data 
in the projected subspace, respectively.  
 For the TrFLDA analysis presented in this paper, F(W) is 
the objective function for FLDA given by 
ሺܹሻܨ  ൌ ሺ்ܹݎܶ ஺ܹܵሻܶݎሺ்ܹܵ஻ܹሻ (2)

 

where SA is the standard within class distance and SB is the 
standard between class distance for FLDA. The regularization 
term, which is the key to these techniques, is the Bregman 
divergence 
ௐሺܦ  ௌܲ צ ்ܲሻ ൌ ׬ ሾ ௌܲሺݕሻ െ ்ܲሺݕሻሿଶ݀ݕ (3)
 

which is a measure of the difference between the distribution in 
the projected subspace, W, of the source data and the target 
data.  The densities in the projected subspace are estimated 
using the kernel density estimation (KDE) technique [11]. 
There are several Bregman divergence measures to choose 
from such as mutual information, Kullback–Leibler (K-L) 
divergence, and Squared Euclidean distance (SED). For this 
effort, the SED was chosen as the baseline since it offers low 
computational cost [1] and in TrFLDA it may be more 
applicable than others since it appears it can better handle 
sparse data. In this study, the objective function of (1) is 
modified and is expressed as  
 

)|| P(PDF(W)W* TSW
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where ]1,0[∈λ  is the relative weight assigned to the 

regularization term. This formulation of the objective function 
allows for a more systematic search of the optimal weight to 
assign to the regularization term. Further, note that whereas in 
the original implementation ʄ could range over the positive 

reals, the new implementation restricts ʄ to the interval [0,1].  

This provides for a more systematic treatment as ʄ = 0 

corresponds to the non-regularized approach, while ʄ = 1 
corresponds to pure data alignment, with no learning from the 
original subspace being transferred. In the original 
implementation the latter scenario could be realized only 

asymptotically as ∞→λ . 
 

Algorithm I: Transfer Fisher’s Linear Discriminative 
Analysis (TrFLDA) 

Input: High-dimensional data in ܴ஽ (source and target data) 

Output: כࢃ א a linear mapping from R) ࢊൈࡰࡾ
D
 to R

d
)  

Output: Low-dimensional data in ܴௗ (where ݀ ا  (ܦ

Output: Recognition rate using KNN 

1. Find W
*
 by solving the problem ܹכ ൌ arg minௐאோವൈ೏ሺͳ െ ሺܹሻܨሻߣ ൅ ௐሺܦߣ ௌܲ צ ்ܲሻ 

using the gradient descent technique, as follows 
 

1.1. Compute the initial linear mapping W0 using the non-

regularization subspace learning approach ܹכ ൌ arg minௐאோವൈ೏  ሺܹሻܨ
For TrFLDA use Equation (2) for F(W)

 1.2. Choose a value for λ∈[0,1] (the regularization weight) 

1.3. Choose a value for K (the maximum number of iterations 

on the gradient decent method) 

1.4. Choose a value h (the optimization threshold) 

1.5. Choose a value for η(k) (the learning rate factor) 

1.6. For each iteration k∈{1,2,…K}, compute 

  
W

)P ||(P 

W

F(W)
)1((k)-W TS
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            For TrFLDA, 
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ሺܹሻ߲ܹܨ߲ ൌ ሺ்ܹܵ஻ܹሻݎܶʹ ஺ܹܵെ ʹሺܶݎሺ்ܹܹܵ࡮ሻሻଶܶݎሺ்ܹ ஺ܹܵሻܵ஻ܹ 

1.7. Terminate when the optimization threshold (݄ ) or the 

maximum number of iterations (݇) is reached  

2. Construct the reference set from the target domain data by 

randomly selecting one sample per class 

3. Apply the optimal subspace ܹכ to the reference set and 

the testing data from the target domain 

4. Apply KNN using the reference set for training and the 

target domain data for testing 

5. Calculate the recognition rate 
 
 

 

III. MANIFOLD LEARNING 

A. General manifold learning 

Manifold learning involves finding the underlying structure 
of data to achieve non-linear dimension reduction. The goal of 
these techniques is to learn a mapping from the original high-
dimensional data observation space to a lower-dimensional 
space that captures the underlying structure in the data. 
Manifold learning techniques are based on the assumption that 
the observed high dimensional data is parametrized by only a 
few degrees of freedom. These techniques evolved from 
Principal Component Analysis (PCA) [12], a linear method ill-
suited for analyzing non-linear phenomena. Manifold learning 
techniques were created to overcome this limitation. Common 
techniques in manifold learning include Isomaps [13], 
Laplacian Eigenmaps [14], Local Linear Embedding [15], 
Multi-dimensional Scaling [16], and Diffusion Maps [17], to 
name a few. The focus of our study is on Diffusion Maps as 
explained below.   

B. Diffusion maps 

Diffusion maps are a non-linear dimension reduction 
technique introduced by Lafon et al. in [17], [18], [19], and 
[20]. Diffusion maps are of particular interest for ATR 
applications as the technique is robust to data fusion.  That is, 
the input data can originate from sensors of different 
modalities. The technique is amenable to multi-sensor 
applications where data is collected from different sensors over 
the same area and of the same targets. The main benefits of the 
technique are that it is fast and robust to non-uniform sampling 
and noise. Two areas of active research are expanding the 
technique’s ability to handle sparse sampling and reducing 
sensitivity to tuning parameters.  

The diffusion maps technique derives a multi-scale, low-
dimensional embedding from high-dimensional data by 
considering a random walk over a graph of the data. For a 
thorough explanation of the technique see [21]. However a 
simple explanation of the approach is given in Algorithm II. 
There are five decisions in the algorithm. The first choice is the 
similarity metric to be used to measure ‘similarity’ between 
two data points. This is, of course, application dependent and 
different similarity measure choices will lead to very different 
results. To simplify the implementation, the Euclidean distance 
is often employed as the measure of ‘similarity’ between data 
points but any symmetric, non-negative distance function can 

be utilized. The second choice is to select a kernel in order to 
construct the graph. For simplicity the Gaussian kernel is 
regularly employed, but again this specific choice is 
application dependent. The Gaussian kernel has proven to be a 
good choice having been used in a number of applications from 
gender classification [22] to vehicle classification [23]. The 
three remaining choices are all tuning parameters—ı, t, d. The 
parameter d is the number of dimensions in the low-
dimensional space. The parameter ı is a positive scale 
parameter and controls the connectivity of the graph. This is 
the parameter that has been most studied and was the focus of 
the last publication by the authors in this area [21]. Lastly, the 
parameter t is the time in the random walk, i.e. the tth

 step of 
the random walk—it is the exponent of the transition 
probability matrix. 

 

Algorithm II:  Diffusion Maps 

Input: High-dimensional data in D
R , 

MtRxxxX D
M ,,,},...,,{ 21 σ⊂=  

Output: Low-dimensional data in dR , where d<<D, 
dRyyyY M ⊂= },...,,{ 21  

1. Normalize the high dimensional data  

2. Compute the Euclidean distance between samples 

3. Select a value for the positive scale parameter σ  

4. Construct the weighted graph G matrix using the 

Gaussian kernel,  )2/||||exp( 22 σjiij xxk −−=   

5. Compute the transition probability matrix iijij dkP /= , 

where ∑= =
M
j iji kd 1  

6. Select a value for t 

7. Compute tP  

8. Apply singular value decomposition (SVD) to tP to 

obtain its eigenvalues, }{ lλ , and eigenvectors }{ lψ  

9. Sort the eigenvalues and eigenvectors in descending order 

10. Compute the diffusion map defined as 
T

d
t
d

t
iti iixy )](),...,([)( 11 ψλψλ=Ψ=  

 
To improve vehicle recognition performance, diffusion 

maps and transfer subspace learning (TSL) are combined in 

this study. According to [1] and the associated example 

implementation [10] principal component analysis is first used 

on the source and target domain data to reduce the 

dimensionality to a manageable number of dimensions. In that 

study the data utilized were raw images. In our study we 

utilize diffusion maps to reach a manageable number of 

dimensions.  

IV. EXPERIMENTS 

A. Electro-optical synthetic vehicle data domes 
 

The data used in this study is a subset of the Electro-

Optical Synthetic Civilian Vehicle Data Domes dataset 

published and maintained by the Air Force Research 

Laboratory (AFRL) Sensors Directorate and presented in [24]. 
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This dataset is unique as the vehicles in the 

derived from three-dimensional (3D) po

physically accurate vehicle models. Hence, a

is synthetic, the models used for the vehicles 

from physically accurate dimensions. The c

consists of ten vehicle types, but due to render

will be fixed in future iterations on the data

four of the vehicles—Toyota Avalon, Jeep C

Civic, and Nissan Sentra. The dataset is als

images were generated using 17 different lig

resulting in 3601 different poses with phy

shadows. The original data consists of 480 

color images. The poses were systematically

three degrees in azimuth and elevation—he

elevation there are 120 poses. Figure 1 show

of camera and lighting location as well as a s

each of the vehicles. For a complete descrip

and directions on acquiring this data, see [24].
 

To reduce computational time, the imag

sampled from 480 × 640 to a resolution of 16

a bi-cubic down-sampling scheme and were

color to grey-scale images. 

For manifold learning we used the diffusio

described in Section III B. We kept the select

parameters consistent with our previous work

kernel width parameter, ı, is set to seven a

time parameter, t, is set to one. For the numbe

we selected M as 45 to be able to compare o

previous work which identified M=45 as ha

classification rates. 

(a) 

(b) 
                                                                           

Fig. 1. (a) The distribution of lighting 

blue triangles and camera positions in 

lighting condition 16 is highlighted as it

position at (0,0,41) (b) Sample vehicle im
 

dataset were all 

oint clouds of 

although the data 

were all derived 

complete dataset 

ring errors which 

aset, we only use 

Cherokee, Honda 

so unique in that 

ghting conditions 

ysically accurate 

× 640 resolution 

y captured every 

ence for a given 

s the distribution 

sample image for 

ption of the data 

. 

ges were down-

0 × 213 by using 

e converted from 

on map technique 

tion of the tuning 

k [21] where the 

and the diffusion 

er of dimensions, 

our results to the 

aving the highest 

 

 

positions in 

red circles; 

t is the nadir 

mages.  

B. Experimental design 

The datasets used in the exp

different camera positions entitled

One, Nine, and 10. Data from LC o

14.142, 21), is the source domain 

(12.247, 12.247, 31) and 10 (0, 17.3

The Toyota Avalon and the Nissan

cross-dataset experiments while th

Sentra, and the Mitsubishi Lancer 

domain experiments.  
 

First a diffusion map was create

LCs utilizing the preprocessing

described in Section IV A. A swat

instead of the full data dome sinc

full data dome are near 50%. This

baseline for a transfer learning stu

data swath of 120 degrees in az

elevation is utilized for all exper

261° in azimuth (samples 48-88)

(samples 1-13). This swath size r

images. Example images from the 

By visual inspection, note the large 

shadow in the swath. To quantif

image swaths for the three different

this study we utilize the average

(RMSE) [25] and give the results in
 

 

 
                            (a)                            

 
                        (c)                            

Fig. 2. Example images from

swath used in the study, imag

356, and (d) 533-the last image
 

 

TABLE I.  AVERAGE ROOT MEAN SQ

PIXEL INTENSITY BETWE

DATASETS (533 IMAGES TO

Average RMSE Source 

5.7211 Avalon LC-1 

5.7260 Sentra LC-1  

7.1563 Avalon LC-1 

7.3299 Sentra LC-1  

5.5932 Sentra LC-1  
 

 

 

periments are from three 

d Lighting Condition (LC) 

one, at coordinates (14.142, 

while data from LCs nine 

321, 31) are target domains. 

n Sentra are utilized for the 

he Toyota Avalon, Nissan 

are utilized for the cross-

ed for each of the different 

g and tuning parameters 

th of the data was utilized 

e recognition rates for the 

s rate is unacceptable as a 

udy. Instead, a rather large 

zimuth and 36 degrees in 

iments, specifically 141°–

) and 0°–36° in elevation 

results in a dataset of 533 

swath are given in Fig. 2. 

variability in the poses and 

fy the difference between 

t lighting conditions used in 

e root mean square error 

n TABLE I.  

 
       (b)  

 
       (d) 

m the Toyota Avalon 

e (a) one, (b) 178, (c) 

e in the swath.   

QUARED ERROR (RMSE) IN 

EEN SOURCE AND TAGET 

OTAL PER DATASET) 

Target

 Avalon LC-9

Sentra LC-9

 Avalon LC-10

Sentra LC-10

Lancer LC-1
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The diffusion maps for LC one, nine, and 10 are given in 

Fig. 2. By visual inspection one can see that the diffusion 

maps for LC-1 and LC-10 are closer in shape than the 

diffusion maps for LC-1 and LC-9. The data from all the 

dimensions of the diffusion maps is the input to the Transfer 

Learning process. The diffusion maps are well-behaved in the 

sense that the first few dimension can be easily explained by 

analysis, the minor axes of the manifolds correspond to the 13 

different elevation angles while the major axes of the 

manifolds correspond to the 40 different azimuth angles.  

 

Fig. 3. The diffusion maps for the Toyota Avalon and 

Nissan Sentra in three different lighting conditions. (a) 

shows both targets (b) shows just the Toyota Avalon, and 

(c) displays just the Nissan Sentra. 
 

V. EXPERIMENTAL RESULTS 

A. Cross-dataset vehicle recognition 

 
The first experiment investigates the performance of 

Transfer Subspace Learning (TSL) via Transfer Fisher’s Linear 
Discriminative Analysis (TrFLDA) for cross-dataset vehicle 
recognition. We seek high recognition rates of a Toyota 
Avalon and a Nissan Sentra under different lighting conditions. 
The source domain is Lighting Condition (LC) one and the 
target domain is LC-9. The TrFLDA assumption is satisfied, as 

the number of samples (533) is greater than the number of 
dimensions (45) plus the number of classes (2). A flow 
diagram for the cross-dataset experiments is depicted in Fig. 4. 

 

 
(a)

 
(b) 

Fig. 4. Flow chart for cross-dataset experiments (a) 

TrFLDA for Avalon and Sentra from LC-1 to LC-9. (b) 

TrFLDA for Avalon and Sentra from LC-1 to LC-10. Solid 

lines indicate notional PDFs for source data and dashed 

lines indicate PDFs for target data 

 

The baseline recognition rate for this experiment is 57.04% 
realized using FLDA on the source data, training the reference 
points and then using the reference points to classify the target 
data. In this particular experiment, since the labels are the same 
for both source and target domains, another baseline is 
calculated by utilizing the K-nearest neighbors classifier [8] 
and training with LC-1 and testing with LC-9. Using k = 1 the 
KNN results in a recognition rate of 75.7036% correctly 
classified instances, 167 missed Avalons, 92 missed Sentras, 
and a 0.5141 Kappa Statistic—a measure of how much better 
the classification is over random chance. TrFLDA results are 
compared to these baseline results. Recognition rates, the 
regularization term (ʄ), and the convergence iteration number 
for which the optimization converges for TrFLDA are given in 
TABLE II. For all three experiments described in Section IV, 
the number of maximum iterations (K) was set at 2000, the 
learning rate (ɻ) was set at 0.05, and the threshold (h) was set 
at 0.00001. At each iteration, the recognition rate is calculated 
using the resulting projection and the KNN (k=1) classifier. An 
exhaustive search was utilized for ʄ values ranging from [0.00-
1.00] at two decimal point increments. The best recognition 
rate of 74.2026% were found for values of Ȝ varying from [0.2-
0.3]. A selection of the results is shown in TABLE II.  

TABLE II.  TRANSFER FISHER’S LINEAR DISCRIMINATIVE 

ANALYSIS (TRFLDA) RESULTS FOR TOYOTA 

AVALON AND NISSAN SENTRA IN LIGHTING 

CONDITIONS 1 AND 9 
 

Ȝ Convergence 
Iteration 

Recognition  Rate

0 4 57.04% 

0.1 112 74.02% 

0.2 88 74.20%

0.3 78 74.20%

0.4 69 74.11%

0.5 62 74.11%

 
(a) 

 
(b) 

 
(c) 
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Ȝ Convergence 
Iteration 

Recognition  Rate

0.6 57 74.11%

0.7 52 74.11%

0.8 48 74.11%

0.9 45 74.11%

1 42 74.11%
  

 

0.21 87 74.20%

0.22 86 74.20%

0.23 85 74.20%

0.24 84 74.20%

0.25 83 74.20%

0.26 82 74.20%

0.27 80 74.20%

0.28 79 74.20%

0.29 79 74.20%
 

 

The second experiment is similar to the first but the source 
domain is LC-1 and the target domain is LC-10. The baseline 
for this experiment is a recognition rate of 93.996% realized 
using FLDA on the source data, training the reference points, 
then using the reference points to train the target data. Again, 
since the classes for the source and target domain are the same 
an additional baseline outside the transfer learning paradigm is 
calculated. That baseline performance for this experiment 
using KNN (k = 1)  results in a recognition rate of 94.6529% 
correctly classified instances, 0.8931 kappa statistic, 57 missed 
Avalons, 0 missed Sentras. TrFLDA recognition rates, the 
regularization term (ʄ), and the convergence iteration number 
for which the optimization converges are given in TABLE III.  
An exhaustive search was utilized for ʄ values ranging from 
[0.000-1.000] at three decimal point increments. The best 
recognition rate of 96.3415% was found for the value of Ȝ of 
0.01. A selection of the results is shown in TABLE III.  

 

TABLE III.  TRANSFER FISHER’S LINEAR DISCRIMINATIVE 

ANALYSIS (TRFLDA) RESULTS FOR TOYOTA 

AVALON AND NISSAN SENTRA IN LIGHTING 

CONDITIONS 1 AND 10 
 
 

ʄ Convergence 
Iteration 

Recognition  Rate

0 4 94.00%

0.1 143 87.34%

0.2 88 86.96%

0.3 66 86.87%

0.4 53 87.15%

0.5 45 87.34%

0.6 40 87.43%

0.7 36 87.62%

0.8 32 87.80%

0.9 32 88.27%

1 24 89.59%
  

 

0.01 147 96.34%

0.02 258 94.37%

0.03 266 90.34%

0.04 241 88.84%

0.05 216 88.18%

0.06 196 87.71%

0.07 179 87.71%

0.08 165 87.62%

Ȝ Convergence 
Iteration 

Recognition  Rate

0.09 153 87.34%
 

 

0.005 136 95.87%

0.006 143 96.06%

0.007 145 96.15%

0.008 146 96.25%

0.009 147 96.25%
 

 

0.011 149 96.25%

0.012 152 96.06%

0.013 158 95.87%

0.014 168 95.78%

0.015 182 95.59%

 

B. Cross-domain vehicle recognition 

     The third experiment is a cross-domain experiment using 

diffusion maps and TrFLDA as in the cross-dataset 

experiments in Section IV.A. The source domain is the Toyota 

Avalon and the Nissan Sentra under lighting condition (LC) 

one and the target domain is the Toyota Avalon and 

Mitsubishi Lancer also under LC-1. The baseline for this 

experiment is a recognition rate of 0.5% realized using FLDA 

on the source data, training the reference points, then using the 

reference points to train the target data. Since the classes for 

the source and target domains differ, a baseline recognition 

rate outside the transfer learning paradigm cannot be 

calculated unlike the first two experiments. The regularization 

term, ʄ, the number of iterations it took to converge, and 

TrFLDA recognition rates   are given in TABLE IV. An 

exhaustive search was utilized for ʄ values ranging from [0.0-

1.0] at one decimal point increments. Given those results ʄ 

values of 0.85 and 0.95 were also explored. The best 

recognition rate of 65.1% was found for values of Ȝ at 0.9 and 

0.95. This recognition rate greatly outperforms the baseline by 

15.1%. Future efforts will continue the exhaustive search and 

explore more efficient search methods to determine the 

optimal setting for Ȝ.  
 

TABLE IV.  TRANSFER FISHER’S LINEAR DISCRIMINATIVE 

ANALYSIS (TRFLDA) RESULTS FOR SOURCE DATA 

OF TOYOTA AVALON AND NISSAN SENTRA AND 

TARGET DATA OF TOYOTA AVALON AND 

MITSUBSHI LANCER 

ʄ Convergence 
Iteration 

Recognition  Rate

0 4 50.00%

0.1 251 61.73%

0.2 306 64.53%

0.3 247 64.63%

0.4 205 64.54%

0.5 176 64.92%

0.6 155 64.82%

0.7 138 64.92%

0.8 125 65.01%

0.9 115 65.10%

1 106 65.01%
 

 

0.85 120 65.01%

0.95 110 65.10%
 

1959



 

VI. DISCUSSION AND CONCLUSIONS  

The results indicate that the Transfer Subspace Learning 
(TSL) techniques are sensitive to tuning parameters. The 
modification we propose to the implementation of Transfer 
Fisher’s Linear Discriminative Analysis (TrFLDA) in Section 
II proves to be an improvement since the search space for ʄ is 

now bounded where ]1,0[∈λ . Note that there is not a guarantee 

that the search spaces for ʄ and ɻ are convex respectively so in 
certain applications an exhaustive search of the space would be 
necessary. Furthermore, a study into heuristics for these tuning 
parameters will be completed in future efforts.   

For all three experiments the recognition rates using 
TrFLDA outperforms the baseline recognition rates using 
FLDA. Similarly, for the cross-dataset experiments the 
recognition rates using TrFLDA either outperform or match the 
recognition rates using KNN. In the case where TrFLDA 
doesn’t outperform, in real-world applications TrFLDA would 
be preferred to KNN since the TrFLDA method only requires 
one labeled sample per class.  Labeling data for use in 
recognition algorithms is expensive and manually intensive. As 
such, a technique with one labeled instance per class that is 
capable of matching the performance of a technique where all 
instances are labeled is a significant contribution towards a 
robust and sustainable Aided Target Recognition (AiTR) 
system.  

The combination of TrFLDA with diffusion maps proved to 
be useful. One of the immediate benefits of the diffusion maps 
is first evident in the experimental design in Section IV.B. 
Notice how large the data swath is—the swath covers a span of 
120 degrees in azimuth and 39 degrees in elevation. Fig. 2 
displays four static images to help gain an appreciation for the 
variability in shadow and pose encompassed in the data swath. 
It is difficult to find a reference to other recognition systems 
that can handle such a diversity of target pose and still result in 
high recognition rates. As a comparison, the original TrFLDA 
study [1] utilized faces that varied in pose by 90 degrees in 
azimuth and zero degrees in elevation. Another benefit to the 
combination is the ability to explain the performance of 
TrFLDA based on the shape and scale of the diffusion maps. If 
the raw pixels were only considered, then based on TABLE I. a 
valid prediction would be that TrFLDA recognition rates 
would be higher for LC-1 and LC-9 than for LC-1 and LC-10. 
This is because LC-1 and LC-9 have a smaller difference in 
their RMSE measures and may be considered more ‘similar.’ 
However, the opposite result is observed as shown in TABLE 
II.  and TABLE III. – the TrFLDA recognition rates for LC-1 
and LC-10 outperform the recognition rates for LC-1 and LC-
9. This result is consistent with the visual inspection of the 
manifolds shown in Fig. 3. The diffusion map for LC-1 and 
LC-10 are actually closer in shape and proximity than the 
diffusion maps for LC-1 and LC-9. Hence, based on the 
diffusion maps, LC-1 and LC-10 are actually more ‘similar’ 
than LC-1 and LC-9.  Exploiting this observation and assessing 
its repeatability in other cross-dataset and cross-domain 
scenarios is the focus of the next stage of this research.  

It is important to note that the current implementation of 
TrFLDA is dependent on the choice of reference point for each 
class which is randomly selected. Variations on the order of a 
percentage point as a function of choice of reference point have 
been observed in this study. A more thorough quantification of 
the effect of reference point selection is warranted. 
Furthermore, it is likely that reference point sets which include 
multiple samples per class would outperform the current 
methodology.  This possibility will be explored in future work. 

 The dataset explored in this paper was for a single 
modality. The TSL framework can make important 
contributions to data fusion for data collections with multi-
modal sensor types. One such example application would be 
training in the visual space and extending the learning to the 
infrared (IR) space using similar context. This will be explored 
in future work with datasets available in the fusion community 
literature (see e.g. [26]-[31]). 

This paper presents the use of Transfer Subspace Learning 
(TSL) and Diffusion Maps for baseline vehicle recognition of 
fused datasets. Future work includes four areas. For the 
community the benchmark Electro-Optical Synthetic Vehicle 
Data Domes dataset will be extended and available for future 
analysis. Improvements include enclosing the vehicles in a 
circular containment instead of a square containment and 
component articulations of all vehicles including open hoods 
and open doors. Also, we seek to extend the TSL General 
Framework to include heuristics for the tuning parameters 
especial, ʄ, the regularization term, and, Ș, the learning rate 
factor. We will continue the study to include the other TSL 
approaches described in [1] including Transferred Principal 
Component Analysis (TrPCA), Transferred Locality 
Preserving Projections (TrLPP), and Transferred 
Discriminative Locality Alignment (TrDLA). Finally, we will 
extend the TSL framework to hierarchal transfer learning 
where for example the data learned on minivans and trucks can 
be extended to sedans given there is a hierarchal relationship 
between larger vehicles and smaller vehicles.  
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