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Abstract—Video surveillance data analysis plays a key role in 
homeland security where non-linear target tracking through 
distributed camera systems is often necessary. However, such a 
tracking problem poses a grand challenge because the subject of 
interest can be lost through obscuration. In this paper, we propose 
a novel approach to solving the track obscuration problem by 
f using optical measurements and Received-Signal-Strength-
Indicator (RSSI) techniques. While the RSSI of wireless sensing 
systems is coordinated to allow for continuous tracking, a 
distributed camera system is applied to track a target in its line of 
sight. The video and RSSI measurements are fused to enhance 
the location estimate accuracy of the studied target. Our real-world 
experiments demonstrate the applicability and accuracy of the 
proposed approach. 
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I. INTRODUCTION 

Video surveillance has been widely used in a variety of 
places like airports, malls, libraries, and city streets.  Such 
surveillance plays an important role in homeland security. For 
example, in 2013, the Transportation Security Administration 
(TSA) reported that 1,813 firearms were discovered in carry-on 
bags throughout the United States with which 81% of them 
were loaded [1]. Among the detection model with carry-on 
items, the TSA also regulates how their agents determine and 
track individuals in the security check process through their 
Screening of Passengers by Observation Technique (SPOT) 
program [2]. Under the SPOT program, if an agent determines 
that a passenger proposes a potential threat, then the 
information is relayed to other TSA agents and a track begins. 
Video tracking in airports and urban areas are becoming 
more apparent with the recent academic developments [3,4] 
and industry solutions of Lockheed Martin’s BlipTrack 
system [5] and Apple’s iBeacon technology [6]. Under the 
approach of Blipsystem, the location and walking patterns of 
passengers are determined in addition to the congestion rate of 
a particular area. The track is based on signals projected from 
Wi-Fi or Bluetooth enabled mobile devices on each passenger, 
but lacks an identification link. Apple’s iBeacon technology 
utilizes passenger’s bluetooth-enabled mobile device. 
Identification is also drawn from the mobile device, but does 
not retain the detection of the passenger when the device is 
misplaced or lost. 

A. Video Tracking 

Target tracking through distributed camera systems is 
fundamental in video surveillance and it presents a grand 

challenge in maintaining the identification and directionality of 
the target as expressed by Lipton, et al [7]. Many approaches 
have been researched to address the directionality and 
maintenance of the tracking system including track-to-track 
fusion [8]. A major challenge in tracking systems through 
cameras is when the target of interest moves outside of the 
field-of-view(FOV) [9], [10], and [11] due to obscurity. To 
maintain video tracking, researchers have mainly suggested 
two approaches. 

 Estimation techniques such as nonlinear Kalman filters 
[12] and unscented filters [13] have been used to 
retain the track of the target of interest. However, such 
tracking may be very inaccurate when the target of 
interest is an intruder. 

 Wi-Fi enabled device tracking is also proposed to track 
the target of interest. However, Wi-Fi tracking poses a 
challenge as environmental factors can distort the 
signal strength. These influences create ambiguous 
results which ultimately lead to inaccurate locations. 

To improve the target tracking accuracy of the target of 
interest, researchers have applied information fusion to a track- 
to-track concept by combining tracking and identification 
[14]. For example, in 802.11 wireless (or Wi-Fi) tracking, a 
common metric used to locate a Wi-Fi enabled device is 
through the measurements of Received-Signal-Strength- 
Indicator (RSSI) [15]. The RSSI measurements are drawn 
from the attenuation of the propagation path between two 
devices [16]. From communication theory, if the transmit 
power is known, then the attenuation can be calculated by 
taking the difference of the received power from transmitted 
power [17]. Under the 802.11 protocol design, beacons can 
be obtained when an adapter is set to promiscuous mode and 
the values are extracted using radio tap headers [18]. To 
geolocate wireless devices, many aspects of interference are 
needed to obtain a precise measurement. Common areas of 
variable transmission include: multi-path fading [19], indoor 
shadowing [20], angulation, offset, lateration, and 
trilateration. These variables also include other aspects such 
as time of arrival (TOA) [16]. In combination, these 
categories can be used to refine the tracking measurement of 
RSSI by reducing the influences of interference and 
environmental factors. In order for us to refine the tracking 
metric, optical tracking using video cameras are applied to 
measure the uncertainty of Wi-Fi location. 
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Optical tracking through video cameras have been extensively 
researched and examined for decades such as Lipton et al. [7]. 
It is commonly known that a three dimension space is 
examined in multiple planes—image plane and world plane. 
Tracking under the world plane is drawn using the 
fundamental camera techniques of matrixes and ratios. 
World coordinates position the target to the three-dimension 
space and can be extrapolated using the camera focal length. 
In many situations, when a target becomes obscured and 
outside the FOV or line- of-sight (LOS), estimation 
techniques are drawn in aims to correct the tracking path and 
to retain the correct measurement. This paper focuses on 
information fusion of wireless and video information fusion 
to improve tracking and reduce faults. 

B. Information Fusion Systems 

Information fusion is a common technique to reduce the 
uncertainty of raw data sets and provide situation 
awareness [21]. It is given that both tracking in RSSI and 
optical tracking have various strengths and limitation against 
security threats, bad weather, and complex environments. 
Information fusion has been used to reduce measurement 
uncertainty, and through the researched model, both can 
complement one another to enhance tracking. 

Combining models, measurements, and software approaches is 
a concept of the Dynamic Data-Driven Applications Systems 
(DDDAS) [22,23] as shown in Figure 1. DDDAS examples 
include video surveillance using cameras [24], unmanned air 
vehicles [25], and private networks [26]. DDDAS is consistent 
with information fusion as demonstrated for object assessment 
[27], situation assessment [28], sensor management [29], and 
user refinement [30]. Here, the RSSI and optical fusion is 
motivated by the DDDAS measurement component. 

 

Fig. 1.  DDDAS Concept [22] 

In this paper, we propose a novel approach to solving the 
above non-linear tracking problem for threat detection by 
using optical fusion and Wi-Fi techniques. While the RSSI 
of wireless sensing systems is processed to allow continuous 
tracking, a distributed camera system is applied to track a 
target at its line of sight. We will demonstrate how to fuse 
two types of measurements together to improve the location 
estimate quality of the target of interest. We test the proposed 
approach in a real-world environment - the w-iLab.t test of 
iMinds [31]. Our experiment results have demonstrated that 

optical fusion and Wi-Fi techniques can complement each 
other very well and the proposed approach is applicable to 
real-world non-linear tracking for threat detection. 

The rest of this paper is organized as follows.  Section II gives 
the background and definition of this research problem. 
Section III outlines the methodology we propose for solving 
this research problem, Section IV presents our experimental 
methodologies and results. Section V discussed extensions of 
possibly expanding our proposed approach and experiments 
in the previous sections. Finally, Section VI concludes and 
presents future work. 

II. BACKGROUND AND RESEARCH PROBLEM DEFINITION 

Video surveillance systems have been widely installed and 
used in a variety of important places such as military bases, 
airports, streets, malls, train stations, and  school  buildings for  
homeland  security  guarantees.  However, as shown in Figure 
2, a camera can only observe a line of sight in a scene 
and many spots may not be monitored by cameras. 
Meanwhile, RSSI has been the ability to track a target not 
in the LOS. However, RSSI tracking techniques are not 
accurate due to wireless interference, refraction, diffraction, 
and scattering. Multipath fading is a known challenge 
when examining methods to reduce interference [32]. In 
wireless communication, refraction, diffraction, and 
scattering are common impacts to wireless propagation that 
leads to multipath fading [33]. We have seen this impact in our 
experiments when the distance of two given devices 
increases linearly. The propagation pattern reflects a non-linear 
approach [16]. As a result, the target tracking is lost and the 
accuracy becomes skewed. In one approach to correct the 
interference given from multipath fading, previous research 
studies [19] indicated that by either moving the physical 
location of the devices or changing the carrier frequency of 
the wireless communication enhances the precision of RSSI. 
This approach provides some forms of track improvement, 
but outlines issues when interference occurs. Although the 
paper refers to using 802.15.4 as their main component and 
802.11 Wi-Fi traffic being a main problem for interference 
due to transmission, this paper will utilize Wi-Fi frequencies 
as the propose method for RSSI tracking. 

 

Fig. 2.  Testbed Target Actual Path with Sensor Configuration 
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Our research problem is to nonlinearly track a target through 
distributed camera systems and Wi-Fi communications sys- 
tem accurately and efficiently for threat detection. Precisely 
speaking, as shown in Figure 2 (a topology view is given in 
Figure 3), we aim to track a target through video surveillance 
and Wi-Fi systems where camera observations are obscured. 
Specifically, how can we effectively fuse video tracking and 
Wi-Fi measurements together so as to obtain precise target 
tracking? In what follows, we  first  present  the  approach 
for solving the non-linear tracking  problem  and  then  give 
our evaluation  of the  proposed approach  through the field 
experiments on the w-ilab.t testbed of iMinds [31]. 

 
Fig. 3.  Topology Design and Layout. 

III. RESEARCH METHODOLOGY FOR SOLVING THE NON-

LINEAR TRACKING PROBLEM 

In this research, we propose a novel fused approach where 

video surveillance measurements and Wi-Fi communication 

measurements to predict the location of a target.  We applied 

our Wireless-Optical Fusion (WiOF) approach using Global 

Environment for Network Innovations (GENI) as one of the 

main resources to the examination of this fusion method. 

A. Global Environment for Network Innovations 

In order to establish a tracking metric for our fusion method, 
we employed the iMinds w-iLab.t testbed [31] for our study. 
We first give our experimental and data analysis methodology 
in this section and then discuss our experimental setup and 
results in Section IV. 

In order to express the logical view of our experiment, Figure 
3 depicts experimental testbed where cameras and sensor are 
installed to track an interested target that may be considered 
as a potential threat in the real-world scenario, such as in 
the airport and urban centers [1,2,34,35,36]. Under the 
design of the testbed environment, wireless sensors were 
positioned at a fixed distance of 6 meters by 3.6 meters in a 

grid formation over the span of a 1080m2 room in our 
experiments. The wireless sensors used in this testbed were 
embedded PCs using two Wi-Fi antennas. The target for this 
research was a moving robot with a predetermined path using 
a mounted Wi-Fi antenna and sensors to maintain a path. 
The path was designated based on the design structure of 
the testbed. Pan-Tilt-Zoom (PTZ) video cameras were also 

readily available for use to facilitate the optical portion of 
this research, and were placed in random locations. Lastly, 
the testbed utilizes piping and ventilation from the building’s 
heating and cooling system to create an ambiguous 
environment for interference in addition to obscurity from 
the camera’s point-of-view (POV). The topology entails 
multiple nodes and a post processing server to track the target - 
detailed as follows. 

B. Topology Setup and Design 

As mentioned above, the topology for this research entails the 

use of GENI [37] as the main focus for experiments. Under 

the scope of the research, the topology is represented and 

shown in Figure 4.  

 

Fig. 4.  Logic Design and Layout. 

Each wireless sensor is synchronized with network time 
protocol (NTP) to ensure that the tracking metric is consistent 
throughout the various readings in regards to time. Once time 
has been synchronized, each wireless sensor and video 
camera begins with the data collection process. To facilitate 
the wireless reading, Aircrack-ng [38] was used to sense and 
collect wireless data in promiscuous mode as represented by 
2 and 4 in Figure 4.  Prior to  the channel  being changed, 
the  previously  collected  data  is  transmitted  to  the  server 
in the format of “Epoch Time : MAC-Address : Reading.” 
Simultaneously, the video camera collects a recording of the 
targeted area and transmits the information to a reporting 
server as represented by arrows 6 and 7 in Figure 4. Once the 
data has been collected, post processing of the information is 
assessed as represented in arrow 8 in Figure 4. As denoted, 
wireless tracking outlines a significant portion of the research 
and therefore needs to be assessed to ensure track accuracy. 

C. Wireless Tracking Localization Problem 

In order for us to track the target under the scheme of 

RSSI, data was collected and reported to a server for post 

processing. As mentioned, data being transmitted to the 

server is in the format of “Epoch Time : MAC-Address : 

Reading” where “Epoch Time” is collected from the system 

time, the MAC-Address represents the targeted wireless 

device, and “Reading” is the RSSI value measured in dBm. 

Tracking calculations were measured using a localization 

equation [39] and [40] as represented in the following 

equation: 

2(xi  xi+1) x + 2(yi  yi+1) y  (d2
i+1  d2

i) 
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    = (x2
i  x2

i+1) + (y2
i  y2

i+1)  (1) 

where three sensors with the strongest readings of RSSI in 
each target area are used for wireless tracking, and they are 
referred to Sensor i, with i = 1, 2, 3. Three readings were used 
based on triangulation and that additional sensor 
measurements increase the position error. The various 
techniques to improve the accuracy were based on the 
previous research done by Pu et al. [16]. In order for us to 
track multiple devices within an area, wireless beacons are 
collected when each wireless adapter is placed in a 
promiscuous mode. While in the promiscuous mode, the 
wireless sensor cycles through each 802.11 wireless channel 
using deterministic or stochastic methods. This allows for the 
detection of both associated and unassociated wireless 
devices within a given area. When a wireless device 
becomes associated to a network, detection is difficult to 
achieve if the sensor is not on the same channel frequency. 
By cycling through each channel, the adapter can collect a 
wider scope of devices within a given area. The rate of 
the cycle is determined at a fixed interval in either 
microsleep (miliseconds) or sleep (seconds). To calculate the 
location of the device, an Euclidean space is determined. 
Under the design of the Euclidean distance, it is shown that 
interference is not factored when measuring RSSI. In doing 
so, we applied various techniques drawn by previous work 
[39] to locate the target. Specifically, each sensor will produce 
an over determined system in regards to the localization 
problem. This over determined system is estimated using a 
least squares method and graphed for analysis. Once wireless 
tracking is achieved, optical tracking is included for the fusion 
model. 

D. Optical Tracking Projection Transformation 

Under the scope of optical tracking in video, there are 
numerous methods reported. It is understood that each 
technique has its own limitation, such as a particle filter [41]. 
Under the design of the wilab.t testbed, the provided PTZ cam- 
eras can be remotely connected and captured for processing. 
In the camera design, the angle and location is predetermined 
prior to experimental analysis, which includes areas that are 
outside the field of view (FOV). Marking tape outlines a 1 
meter by 1 meter grid system as represented in Figure 5 per 
design of the testbed.  

 

Fig. 4.  Test Bed Floor Design as a Calibration Mechanism 

These lines will be used as reference points to track the 
moving target. The implementation of the video tracking is 
designed in MATLAB and uses functions and toolboxes 
that are developed for tracking. Specifically, projective 

transformations are applied to the video feed to convert 
the 2D image coordinate to 3D world. This method was 
selected as a camera is unaware of the physical location of 
the target in regards to world coordinates. A transformation 
method is needed in relation to the focal length f of the 
camera. To fully facilitate the research model, information 
fusion is applied to the world coordinate values obtained from 
the video and RSSI tracking. 

E. Track-to-Track Information Fusion 

Information fusion using track-to-track concepts is the main 
focus of this research. Under the ideology of this design, world 
coordinates from both wireless and optical tracking are 
applied in a fused model to further enhance the positioning 
of the target. Under the logical approach of the WiOF model, 
optical tracking takes precedence over the wireless tracking 
due to environmental factors and other various influences as 
represented in Figure 6. The application of the WIOF approach 
reduces the uncertainty when a target is outside the FOV and 
retains the track if it renters the view. In Figure 6, two sources 
of inputs are fed into the fusion model with a conditional 
statement to verify if the target is out of the FOV. This 
approach was selected based on the condition that wireless has 
environmental influences that can be negligible in the target 
localization. The selected track is then applied to the tracking 
mechanism and filtered for final output. During the filtering 
step of the logic model, a nonlinear Kalman filter [12] will 
be applied to the position to remove the noise of the wireless 
metric measurements and enhance the accuracy of the target’s 
position estimate. 

 

Fig. 6.  Information Fusion Logic Model. 

 

IV. EXPERIMENT RESULTS 

A. Wireless Calibration Metric 

We began our experiments by finding the relationship between 
RSSI  and  distances  that  are less  than  10  meters  and  
then studied the relationship for the case of distance greater 
than 10 meters. These results are applicable to the two 
different calibration cases in real world. 

In the initial approach of the WiOF tracking, a calibration 
phase was needed to measure the relationship of RSSI to a 
world coordinate space (distance). Under this calibration 
phase, the target was positioned at fixed locations between 6 
meters to 30 meters away at 6 meter intervals. In the 
configuration, RSSI was measured at a rate of one second 
for duration of five minutes and fitted with a logarithmic 
function using a nonlinear least squares method. The fit is 
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presented in Figure 7 and resulted in Equation (2) with a 

R2 value of 0.9289. 

 r = −4.783ln(x) − 40.271 (2) 

Within equation (2), r represents the input value of RSSI 
where -100 < r < 0 due to the design specification of the 
wireless adapter of each sensor and x represents t h e  
distance in meters. A limitation that was foreseen in the 
measurement of RSSI was the sampling method. It is noted 
that the wireless driver for each sensor would only evaluate 
RSSI to whole numbers (integers) and therefore—all 
measurements in this experiment in relation to RSSI would 
be presented as such. Under the preliminary calibration of 
wireless devices, it was discovered that the fitting 
application was not an effective method in regards to the 
localization technique for RSSI. Additional measurements 
were needed in the application to properly assess the 
relationship of RSSI to distance.  

 

Fig. 7. Logarithmic Fit for Wireless Calibration Using Nonlinear Least Square 

Under the second calibration attempt, the samples were taken 
at the closes possible distance of 0.152 meters up to the 
furthest distance of 54 meters. Samples were collected for 
duration of 10 minutes with variable angles and objects—
such as copper piping and heating, ventilation, and air-
condition (HVAC) units—to influence the measurement of 
RSSI. In Figure 8, a new fit is presented using a power 
fit with a non-linear least squares method.  

 

Fig. 8.  Power Fit for Wireless Calibration Using Non-Linear Least Square 

It was discovered that R2 was measured to be 0.9513 and 
the fitting is shown in Equation (3). 

 r = −42.98x0.1534 (3) 

Under Equation (3), further investigations concluded that this 
calibration metric was reasonable as this additional 
calibration method was used. It was determined that the 
relationship of RSSI to distance was not reasonable as 
expressed in Section IV-D and that the technique drawn 
from Oguejiofor, et al. [42] also had the results for RSSI 
to distance relationship. Specifically, the relationship of 
RSSI to distance is heavily sensitive to environmental 
factors and the readings within 10 meters seem to be 
reasonable. However, our experiments have shown that 
Equation (3) provides much more accurate relationship of 
RSSI to the distance for the readings within 10 meters, 
compared to Equation (2) and the results in [42]. Thus, we will 
use Equation (3) for the relationship in the rest of the paper. 
Once the evaluation of RSSI to distance was determined, video 
calibration was needed in order to ensure its accuracy to 
fulfill the fusion model. 

B. Optical Tracking Calibration Processes 

For the calibration of each optical device, cameras were 
calibrated initially using static images as represented in Figure 
8. As depicted in Figure 8, calibration was implemented using 
black and white tape that was set in the test bed configuration 
as indication points of world coordinates. The focal length f of 
the camera was collected from the manufacture’s 
documentation, and the angle of the view was retrieved from 
the camera’s software. As depicted, the calibration method 
presented a mean error rate of 0.70 pixels in regards to the 
accuracy of the optical tracking. In Figure 9, the 
coordinate system markers X and Y represents the 
projection of the camera in regards to the tracking 
location of the testbed. The green points of the calibration 
represent the detection locations of the gird lines in respect 
to the testbed while the red plus sign represents the 
calibrated position. It is shown that the aim of using the grid 
markings of the testbed as a calibration method was 
inconclusive within Matlab’s cameraCalibrator tool, and 
therefore—manual calibration was needed. 

 

Fig. 9.  Camera Calibration Mechanism 
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C. Manual Optical Tracking Calibration 

As the detection of the calibration function was inconclusive 
using the Matlab cameraCalibrator tool, a manual calibration 
was needed in order to ensure the effectiveness and accuracy of 
the optical tracking. It was known that the grid configuration 
of the testbed was established to be a 1 meter by 1 meter 
design and, therefore, it was reasonable to estimate the 
values needed to fulfill the projection transformation for 
optical tracking. 

Using the projection equation as represented in (4), world 
coordinates (X, Y) were easily retrieved as necessary 
information. Under the equation, f represents the focal 
length of the lens, (x, y) represents the coordinate location 
on the image (video), and Z represented the known location 
between the camera and the environment (world). Once 
the optical calibration phase was deemed reasonable, the 
target was set afoot in the testbed for tracking [43]: 

 x = f  
X

 Z
 ,          y = f  

Y

 Z
  (4)  

To verify the feasibility of the optical tracking, a target was 

instructed to move to a fixed path within the testbed. Under 

Figure 10, a particle filter (PF) was applied to a video 

recording with a target in the FOV. It is demonstrated in 

Section IV-D, the effectiveness of the PF tracking method 

in regards to the calibration phase. 

 

Fig. 9.  Testbed Target Actual Path with the Sensor Configuration. 

D. Tracking Measurement 

In  the  initial  measurement  of  each  experiment,  actual  

coordinate  data  was  collected  from  the  target  per  design  

of the  testbed  as  represented  in  Figure  10.  In Figure 10, 

multiple sensors are depicted in a grid-like formation, but per 

experimentation purposes—not all sensors were used. It is also 

depicted that a target is set in a particular path through various 

sensors, but this does not reflect all experiments in this paper. 

Under a preliminary experiment, three sensors were used at 

a fixed location in addition to a single camera. The target 

was instructed to move at a fixed path at a rate of 16cm/s to 

verify the measurements of both RSSI and optical tracking. 

Using optical tracking, Figure 11 demonstrates the particle 

filter applied to the video recording to track the target. 

 

Fig. 11.  Particle Filter Tracking. 

E. Fusion Tracking Model and Measurement 

Our proposed WiOF information fusion method performs 
track-to-track fusion of optical and RSSI data.  RSSI tracking 
has been studied independently of optical systems for 
wireless sensor networks, typically for indoor settings [44, 
45,46,47,48,49,50]. The WiOF method improves on RSSI or 
optical methods alone for robust tracking over camera 
occlusions or RSSI uncertainties.  

Figure 12 depicts the results of our proposed approach. As 
shown, the tracks from Section IV-D were plotted on the 
graph together using our WiOF fusion method. As shown, a 
target enters an area and maintains a particular direction and 
movement over a period of time. The position was tracked 
using the RSSI, but the track was not accurate. Once the 
subject enters the camera’s FOV, the tracking was then 
enhanced to precisely follow the target. When the target 
exits the fixed of view, the RSSI tracking is resumed. 

 

Fig. 12.  RSSI and Optical Fusion Tracking Results. 

A running error analysis demonstrated that the video results 
were more accurate with the RSSI than video results alone. 

V. DISCUSSIONS 

As denoted in Figure 12, the target entered the environment 
of the testbed at (10, 7.5) and continued its path to the end 
at (40, 7.8) where the actual location of the target is marked 
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as “Actual” in Figure 12. As the target entered the perimeter 
of surveyed area, three wireless sensors with the strongest 
reading of RSSI were used to locate the target as denoted by 
the red line. As the target continues its projected movement, 
RSSI tracking continues as previously mentioned in Section 
III-B where either existing or newer wireless sensors with 
a stronger RSSI reading were used to track the target. As 
the target continues its movement throughout the surveyed 
area, there were some moments where the RSSI tracking was 
relatively close to the actual path. This track result never 
matched the exact position, but was relatively close. At the 25 
meter marker on the x-axis, the target moves very irregular 
by a sudden movement to the right. Although the distance 
the target traveled on the y-axis was roughly 1 meter, the 
precision was not as accurate as hoped. Eventually, the target 
enters the FOV of the camera as denoted by the 30 meter 
marker on the x-axis. Optical tracking began its procedure to 
locate the target in addition to the RSSI tracking measurement. 
The target eventually left the FOV and continued for the 
remaining duration under RSSI tracking. It was depicted that 
the fusion model presented a novel approach to existing 
techniques. 

Using the depicted line drawn from the fusion track (blue), 
the location of the target was reasonable as the tracking was 
relatively close to the actual path. Although there were 
situations where the target made abrupt movements that were 
not detected or noticed in the RSSI tracking metric (25,7.1), 
the optical portion of the fusion model allowed for precision 
when visible under the FOV. It is demonstrated that further 
improvement is needed in this WiOF fusion model. 

It is apparent that the accuracy of the WiOF fusion method 
implementation presented some errors from the actual tracking 
path, but requires further improvement. Although the accuracy 
of the RSSI tracking measurement started relatively close to 
the actual path, it eventually drifts. Three wireless sensors were 
used to construct the RSSI tracking, but the rate of which 
the wireless sensor retrieves each value should be enhanced 
(quicken) to provide additional data points. Although each 
sensor cycled through 11 channels in the 2.4 GHz wireless 
spectrum to obtain all clients within an area—associated 
clients to the local Wi-Fi network would be believed to present 
different results that is more accurate. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have studied the problem of non-linear target 
tracking in video surveillance data analysis for homeland 
security. Such tracking is often done through distributed 
camera systems. However, such a tracking problem poses a 
challenge because the subject of interest is lost through 
obscurity. In this paper, we have suggested a novel 
approach to solving this problem by using optical fusion 
and RSSI techniques where wireless sensors are used to 
track an interested target as well with distributed camera 
systems. Specifically, in the proposed Wi-Fi-optical fusion 
approach, a distributed camera system is applied to track a 
target at its line of sight while the RSSI of wireless sensing 
systems allows continuous tracking. Furthermore, these two 
types of measurements have been fused together to estimate 
the location of the target. In order to evaluate our proposed 

approach, we have conducted the field experiments on the 
w-iLab.t testbed of iMinds at University of Ghent. We 
employed filtering techniques for removing the noises of 
measurements. Then, we examined the relationship between 
RSSI and distance. Finally, we have presented our 
evaluation of the proposed WiOF approach for estimating the 
location of an interested target. We have given a comparison 
of estimated locations with their actual ones. Our experimental 
results demonstrate the applicability and accuracy of the 
proposed WiOF approach. 

In the future, we plan to conduct a series of sophisticated 

experiments for the evaluation of the WiOF approach and 

study the non-linear tracking problem for the case of networks 

under attacks. Using the measurements from the optical and 

wireless systems; we seek to add kinematic and geospatial 

modeling with software improvements using a cloud 

architecture [51] and cyber trust [52] to enhance the DDDAS 

concept for both single and multiple target tracking. 
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