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Abstract—In recent studies of multi-target tracking, high-
order association and its corresponding high-order affinity (or
similarity) is often preferred over pairwise comparisons to
capture high-order discriminative information. A naturally raised
challenge is to calculate affinity (or similarity) among more than
two target candidates. When target appearance is represented
by histograms, such as the popular SIFT and HOG descriptors,
pairwise matching measurements, such as Histogram Intersection
(HI) etc.are often combined to fit the high-order request in an
ad hoc way. However, such combinations may be ineffective and
inefficient.

In this paper, we address the pairwise matching issue by
proposing a novel multi-histogram similarity named Multiway
Histogram Intersection (MHI). MHI naturally extends HI by
summing over the “min” value of all histograms in each bin. MHI
applies to any number of histograms, fits the request of multi-
target tracking better and requires less time than previously used
affinities. To demonstrate its superiority, we integrate MHI into
a recently proposed rank-1-tensor-approximation multi-tracking
framework and apply it to vehicle tracking in wide aerial video
surveillance. The advantage of using MHI is clearly supported
by the experimental results against six common approaches on
two public benchmark datasets.

Keywords: multiway histogram intersection, feature compari-
son, tensor, multi-target tracking, WAMI, etc.

I. INTRODUCTION

To tackle multi-target tracking (MTT) problems, a good

affinity representation is always of great importance. Roughly

speaking, affinity can be viewed as the similarity between a

set of targets (or target candidates) and the observed image.

Similar appearances or motion patterns should yield higher

affinity scores and vice versa. While pairwise affinity has been

widely used in many vision tasks, MTT often prefers affinities

over more than two targets such as the likelihood over a set of

target candidates which form a trajectory or tracklet. Normally,

the trajectory or tracklet consists of a set of targets1 extracted

from consecutive frames, one target per frame. When there are

more than two targets involved, their affinity is often referred

to as a high-order affinity.

1For conciseness, in this paper we do not distinguish between target and
target candidates, since our focus is on the multiway affinity.

Attributing to the increasing popularity of encoding high-

order information in MTT (e.g., through multi-target associa-

tion), high-order affinity becomes an important factor in mod-

ern MTT algorithms. Since histogram-based representation

like Scale-invariant feature transform (SIFT) and Histogram of

oriented gradients (HOG) are widely used for target represen-

tation, measuring the similarity over a set of histograms plays

a key role in defining high-order affinity for MTT. Previous

studies (details in Sec. II) often construct such affinity on top

of pairwise histogram similarities, e.g., by averaging histogram

intersections over all pairs of targets. However, such affinities

do not capture the high-order information in a natural way and

may also suffer from low efficiency as illustrated in Sec. IV.

In this paper, we design a new high-order affinity, named

Multiway Histogram Intersection (MHI), to measure the sim-

ilarity of a set of histograms. Defined as the sum of multiway

min operation over each histogram bin, MHI naturally general-

izes the popular Histogram Intersection (HI) [32] from a pair-

wise affinity to a groupwise one. Compared with previously

used multiway versions of HI, MHI has several advantages

in both affinity accuracy and computational efficiency, which

make it suitable for MTT tasks.

For our application, we integrate MHI into a recently

proposed tensor-based MTT algorithm [30] by replacing the

original affinity with the one generated by MHI. The algorithm

is then tested on two recent challenging benchmarks for

tracking vehicles in wide area video surveillance. In both

experiments, our method not only consistently outperforms the

baseline algorithms with traditional affinities, but also achieves

the state-of-the-art results in comparison with recently tested

MTT algorithms.

The rest of the paper is organized as follows: Sec. II

introduces the related work. Sec. III and IV show the definition

of Multiway Histogram Intersection and its properties with

experiments. Sec. V explains how it can be used in multi-

target tracking. Sec. VI illustrates its performance on two real

datasets. Finally, Sec. VII concludes our work.
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II. RELATED WORK

Multi-target tracking has gained increasing attention due

to its wide application in many areas, such as surveillance,

security and biomedical applications. Most of the current

studies focus on designing models, frameworks and affinity

models. For an in-depth survey, readers are encouraged to read

[16]. Nevertheless, there are few efforts paid on the similarity

measurement. Yet, it is an important factor to improve the

performance.

In general, similarity measurements are components in

affinity models which contain appearance, motion, interaction,

and exclusion models [16]. Given a specific model, a similarity

measurement is used to compare a set of targets and use their

likelihood to determine if they should be in the same group or

different groups. For example, given a set of color histograms,

we can measure their appearance similarity; given point posi-

tions, we can measure whether the speed is stable or not etc..

More specifically, for histogram-based appearance models,

straightforward selections include L1, L2, χ2 distances [13],

Histogram Intersection [30], Bhattacharyya distance [35, 39],

correlation coefficients [12] or the earth mover’s distance

(EMD) [10, 26]. However, all the above mentioned distance

comparison methods perform pairwise comparisons.

When there are more than two targets to compare, e.g.,

targets in a trajectory (or tracklet), various strategies have been

designed for effective tracking. One way is to represent the

target set as single feature vector. For example, in [31] key

points are used to represent the tracklets, such as the beginning

or the end point of the tracklet. In [24] the average histogram

is used to represent the tracklet.

Another way is to first compute a set of pairwise simi-

larities using the above listed distance-based methods, then

combine them to get the final multiway similarity. A direct

solution would be using a greedy algorithm [35] or Hungarian

algorithm [20] to find correspondences between consecutive

frames. In [10, 12, 21, 30], linear combinations or multi-

plications over pairwise similarities are used. To solve the

association problem, a linear programming model is proposed

in [11], cost-flow network models are used in [1, 4, 21, 39],

or a low rank tensor decomposition is used in [29, 30].

When measuring trajectory affinities, most of these works use

pairwise distances computed from consecutive frames, i.e.,

(t1, t2), . . . , (tk, tk+1), . . . , (tn−1, tn) for the n frames. There

are also some studies that use all pairwise distances over all

pairs in a tracklet. For example, a complete graph over all the

candidates in a segment of frames is first constructed in [38];

then the generalized minimum clique problem is solved over

the graph. Intrinsically, the resulting clique uses information

from every pair. [27] stacks a set of histograms into a matrix,

then finds a row mapping between the two matrices that

minimize the residuals.

A third way is to learn an affinity representation from

the training data. For example, the HybridBoost algorithm is

used in [13] to learn ranking classifiers given any two pairs.

In [36, 37], a CRF model is created between tracklets and

the parameters are learned. Still, all of the aforementioned

literatures utilize pairwise comparison within and between

tracklets.

There are a few studies in the literature consider high-order

affinity for motion models. For a k-th order affinity, the method

in [19] uses the first (k− 1) items to fit a motion model, then

test how well the last one fits in the model. In [9], many 3-

order affinities are provided based on geometric invariance,

such as similarity, affine or projective invariance. But few

considers high-order appearance affinity.

Histogram intersection (HI) [32] is popularized for its

simplicity and effectiveness. Besides, HI is also robust to

occlusion, change of view, image resolution and certain degree

of background distraction. Later on, it is proved in [1] that HI

is a Mercer’s kernel, which enlarges its application across the

fields. In terms of SVM, [17, 33] show that by building a HI

kernel, SVM can achieve runtime complexity of logarithmic

in the number of support vectors. Furthermore, by some

approximating algorithms HI can reduce to even constant

runtime and space requirements. In tracking, HI is often

used in comparing image histograms. Other commonly used

measurements in tracking include χ2 distance, Bhattacharyya

distance and EMD. Bhattacharyya distance is popularized by

the MeanShift traker [7] as a successful tracker at the early

2000, while EMD [26] is designed for content-based image

retrieval (CBIR). None of these measurements can be easily

extended to high-order measurements, whereas HI can be

directly generalized as we explain in Sec. III.

III. MULTIWAY HISTOGRAM INTERSECTION

A. Definition

Let H = {H1, H2, . . . , HN} be a set of N histograms, each

histogram Hn = (hn(1), hn(2), . . . , hn(K))⊤ has K bins,

n = 1, 2, . . . , N . In the MTT scenario, these N histograms can

be extracted from N targets located at N consecutive frames.

We define the Multiway Histogram Intersection (MHI) of H
as

MHI(H) =

K
∑

k=1

min
(

h1(k), h2(k), ...hn(k)
)

. (1)

In other words, MHI is defined as the sum of the minimums

along each histogram bin over all input histograms in H. Note

that, though by definition we do not restrict histograms to be

normalized, in practice it is usually desirable to ensure all the

histograms are of the same scale.

MHI naturally generalizes the popular histogram interaction

(HI) that is defined over a pair of histograms. Or, HI can be

viewed as a special case of MHI for N = 2. In this way, MHI

inherits properties of HI for histogram similarity.
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The calculation of MHI can also be done incrementally by

MHI(H) =

K
∑

k=1

min
(

h1(k), h2(k), ...hn(k)
)

=
K
∑

k=1

min
(

h(N−1)
n (k), hn(k)

)

= HI(H(N−1), HN ) . (2)

where HI(·, ·) is the histogram intersection, and H(m) =
min(H1, . . . , Hm) is the element-wise minimum of the first

m histograms in H.

B. Other HI-based Affinities

Previously, there are two main ways to use HI to build high-

order affinity in MTT. The first way computes the average HI

over all neighbouring pairs of histograms in H, corresponding

to neighboring targets in a trajectory. This results in the

Neighboring HI (NHI) [30] as

NHI(H) =
1

N − 1

N−1
∑

i=1

HI(Hi, Hi+1). (3)

Similarly, the second method is to average HI over the com-

plete set of histogram pairs, yielding the so called Complete

HI (CHI) [38] as

CHI(H) =
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

HI(Hi, Hj). (4)

Comparing these two methods, CHI is better than NHI in

terms of capturing more reliable appearance similarity. Given

a short tracklet, we always assume the target appearance does

not change much. Thus, comparing all pairs reduces the chance

that a single appearance is similar to the previous one, but

differs significantly from even earlier ones, which happens

when using NHI. However, CHI is much more computationally

expensive as summarized in Table I.

As for MHI, it captures both advantages of NHI and CHI.

MHI naturally considers all the histograms in a trajectory

(or tracklet), meanwhile it is of low computational cost.

Furthermore, NHI and CHI need to be normalized by their

number of HIs when the number of hypothesises in a trajectory

varies. MHI is inherently between 0 and 1 no matter how many

inputs are involved. In other words, no explicit normalization is

needed to handle different input sizes, which is often desirable

in MTT settings.

The computational costs for the three affinities are summa-

rized in Table I. MHI needs the least number of operations.

NHI needs a set of additional “+” operations to calculate the

HI value for each pair, while MHI only needs to do it once.

CHI has a higher complexity because all combinations of pairs

are in the set.

TABLE I: Computational cost of HI-related high-order affini-

ties. N is the number of histograms and K is the number of

bins.
“min” operation “+” operation

MHI (N − 1)K K − 1
NHI (N − 1)K (N − 1)K
CHI N(N − 1)K/2 N(N − 1)K/2

IV. PROPERTY ANALYSIS

To study the performance of HI-related high-order affinities

including the proposed MHI, we run a set of synthetic exper-

iments as follows: Given a random histogram of bin size K
as the base histogram, we generate N histograms in which

we add some Gaussian noise N (0, σ2) to each bin of the

base histogram (we enforce bin values to be non-negative).

Then we record and plot the scores (affinity values) of each

measurement. The three main factors that are studied here

include:

• K: the bin size,
• N : the number of histograms involved,
• σ: the noise level of the histograms.

A. Bin size

Fig. 1: The affinity scores of different bin size.
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We fixed N = 10 and σ = 0.2K (because a histogram

needs to be normalized to 1, so the σ is smaller for a larger

K). We can see from Fig. 1, the bin size does not affect the

scores much. They quickly become stable when K ≥ 3 as the

bin size increases. However, MHI has a much lower stable

score than both NHI and CHI.

B. Number of histograms

We fixed K = 20 and σ = 0.01. We can see from Fig. 2,

NHI and CHI become stable very quickly after N >= 6
while MHI keeps decreasing. Also, MHI is much lower than

the other two at the same N . MHI keeps the minimum value

of each bin from all the histograms, so the bin with largest

negative noise is kept. On the other hand, HI and CHI are

based on pairs, so they average out the noise effect when more

histograms are involved.
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Fig. 2: The scores of different number of histograms
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Fig. 3: The affinity scores at different noise level.
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C. Noise level

We fixed N = 10 and K = 20 and the noise level is

L = 1/σ.

We can see from Fig. 3, the scores increased as the noise

reduced. Also, the steeper curve of MHI indicates it has a

wider noise response range. To test the extreme case, we

conducted another experiment in which we computed scores

of a set of randomly generated histograms. We fixed K = 20,

as the number of histograms (N ) increases, the score should

be always close to 0 ideally. The result is shown in Fig. 4,

MHI drops to close to 0 very quickly, while NHI and CHI

become stable at around 0.67.

To further understand the behavior of MHI, NHI and CHI,

we generate a pair of random histograms and compute their HI

score. Running 100K times, we draw its distribution in Fig. 5.

The distribution is similar to a Gaussian shape with mean value

at around 0.67. Although HI has the range from 0 to 1, the

random histogram scores are not near the bottom (around 0)

of the range. This suggests that in most scenarios, HI has a

much shorter range of its representation ability. However, in

multiway scenario, MHI compensates for this drawback of HI

and gives a wider representation range.

V. MULTIWAY HISTOGRAM INTERSECTION FOR

MULTI-TARGET TRACKING

The MHI measurement is suitable for any high-order

histogram-based matching. A natural scenario is multi-target

Fig. 4: The affinity scores of randomly generated histograms.
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Fig. 5: The distribution of affinity scores of HI estimated from

100K pairs of randomly generated histograms.
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tracking (MTT). In most MTT settings as mentioned in Sec. II,

the task is to aggregate the detected points or tracklets into

trajectories. No matter whichever algorithm one would use,

measuring similarity score of a hypothesis trajectory is always

needed. Previously, such higher order measurement is achieved

through combining pairwise measurements. MHI, on the other

hand, provides a straightforward comparison between any

arbitrary number of inputs.

There are many algorithms that could adopt MHI and

one of the recently proposed methods is the rank-1 tensor

approximation [30]. Rank-1 tensor explicitly requires a sim-

ilarity between a set of points and their appearance feature

histograms. In the rank-1 model, a tensor is a high dimensional

form of a matrix. Each dimension represents edge relationships

between two consecutive frames. In this sense, the index of

the elements in the tensor would represent a set of connected

edges which forms a potential trajectory. So the value in

that element, which is called affinity, can be regarded as the

similarity between those points that form such a trajectory.

The basic assumption is that the tensor is constructed from

a series of outer products of binary vectors, thus a rank-1

tensor. So given a tensor A estimated from the similarity

measurement, we want to minimize Eq. 5

min
λ,V

||A − λV (1) ∗ · · · ∗ V (K)||2F , (5)
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where V (k) is a binary vector indicating whether an edge exists

or not, λ is a scaling factor and ∗ means the outer product of a

tensor and vector. The approximation of Eq. 5 minimizes the

Frobenius norm of the difference between the tensor A and

its reconstructed rank-1 tensor. More detailed formulations and

solutions on the rank-1 tensor decomposition are discussed in

[30].

We use the source code provided by the authors of the

[30] with the same histogram features that are computed from

HOG [8]. Each candidate patch is normalized to a fixed size

and a 96-bin histogram is constructed to capture its gradient

distribution.

The main difference in our work compared to [30] is how

to construct the tensor A. Their original paper used NHI to

compute affinities in A. That is, given an element position

in A, the index represents a potential trajectory. They then

compute NHI from the appearances of the points in that

trajectory and use it as the affinity value. So, in the experiments

in Sec. VI, we simply replace NHI with MHI and fix some

scaling issues, whereas everything else is kept the same.

VI. EXPERIMENTS

A. WAMI data

Wide aerial motion imagery (WAMI) is a type of image

source that is shot from the air, where the targets are extremely

small compared to other indoor or outdoor scenarios. Typically

a target is around 20 × 20 in pixels and the image size is

normally greater than 2000 × 2000. One image may contain

hundreds of targets.

Compared with other types of sequences, WAMI datasets

are harder to deal with. Firstly, due to the small region

of targets and the gray scale image quality, the targets are

extremely noisy in terms of their appearance models. This is

a good test for different measurements whether or not they

can handle the noise well. Secondly, because the number of

candidates is very large and the capturing rate is very low in

such datasets, the potential number of candidate trajectories

can be huge.

The key issue is by assigning higher affinity values to the

correct trajectories and lower the values of the wrong ones, the

algorithms are more likely to pick up the true ones. So, WAMI

datasets are challenging scenarios for MTT affinity testing. A

summary of WAMI tracking methods can be found in [2, 3].

B. Other baseline measurements

Besides NHI in their original paper [30], we also propose

a few other baseline measurements to compare with. For

all the measurements mentioned below, we only replace the

tensor construction part as mentioned in Sec. V and keep all

the rest unchanged. The first one is the Complete Histogram

Intersection (CHI) as mentioned in Sec. III-B. Bhattacharrya

is used similar to NHI, except we replace the HI measurement

with Bhattacharrya distance. Jensen-Shannon (JS) divergence

is proposed in [14] and its generalized version can deal with

multiple distributions all at once. JS is defined as:

JSπ(p1, p2, ...pn) = H(
n
∑

i=1

πipi)−
n
∑

i=1

πiH(pi),

where pi are a set of distributions, πi are a set of weight

(or prior distribution), H(·) represents the entropy function.

Without any prior assumption, πi can be set to πi =
1
n

. If we

consider histograms as distributions, the purpose for Jensen-

Shannon divergence is very similar to the MHI measurement.

C. CLIF Dataset experiment

This experiment is conducted on Columbus Large Image

Format (CLIF) dataset [5, 15, 18]. The image size is 4016×
2672. We use the same three sub-sequences as in [28, 30], each

having 100 frames with detailed annotation. Sequence 1 is a

heavy traffic scene with more than 200 vehicles on average.

The other two are sparser with 80 vehicles on average.

The correct matching percentage Pc and wrong matching

percentage Pw are defined as:

Pc = 100×
Σtcm(t)

Σtg(t)
, Pw = 100×

Σtwm(t)

Σtg(t)
(6)

respectively, where cm(t) is the number of correct matching

and wm(t) is the number of wrong matching, while g(t) is

the ground truth. Note here, wrong matching may consist of

true detection matches true detection but wrong pair, or true

detection matches false alarm or even false alarm matches

false alarm. So the sum of Pc and Pw may not necessarily

add up to 1.

The results of the first 3 methods in Tab. II are copied

from [30]. It can be shown that by merely altering the affinity

measurement to MHI, we can obtain a consistently better

result than all the other baseline measurements and other

methods. Because both the correct percentage is increasing

and wrong percentage is decreasing, we can see MHI has a

better discriminative ability to show the similarity of a bundle

of objects.

Taking NHI and MHI for example, in Fig. 7, red is good

and green is bad. Red boxes 1 and 2 are good in both cases.

Thus, red boxes 1 to 5 show the correct trajectory and the

green boxes 3 to 5 show an incorrect trajectory. From the

corresponding histograms, the three green boxes have quite

similar histograms, thus have a high HI comparison value.

However, the three red boxes 3 to 5 are less similar thus yield

low HI values. NHI gives 0.51 to the red boxes trajectory and

0.68 to the red-green mixed trajectory. On the other hand, MHI

is determined by the lowest scores from all the histogram bins

as shown at the end of each histograms column. The correct

MHI has a higher score 0.36 than the wrong one 0.23. So,

MHI corrects such potential errors, thus has a higher accuracy

and lowers track switching.

D. WPAFB Dataset experiment

Using another WAMI dataset called WPAFB [34], we again

tested the MHI. The scene is similar to CLIF, but is much more
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Fig. 6: An example from the CLIF dataset and our tracking results. Top: a cropped region from a frame in CLIF. Bottom:

tracking results from our algorithm; cyan and red show individual trajectories for five frames and different colors show the

two directions.

TABLE II: Tracking results on the CLIF dataset. Note: results of HUN, ICM, TENSOR NHI are obtained from [30]. The best

performance is shown in red, the second is shown in blue.

Correct matching percentage Wrong matching percentage
Seq1 Seq2 Seq3 Seq1 Seq2 Seq3

HUN[30] 75.8 86.8 83.3 25.2 11.3 16.5

ICM[6] 83.1 89.6 87.3 16.5 10.3 12.9

TENSOR NHI[30] 91.1 92.1 91.4 11.9 9.4 9.4

CHI 90.5 92.7 93.5 6.8 3.3 5.6

Bhattacharrya 87.7 91.9 92.1 9.4 4.3 9.6

Jensen-Shannon 91.7 93.0 93.7 5.1 4.0 7.4

TENSOR MHI 93.2 93.3 94.4 3.5 3.4 5.2

complicated in the direction that a vehicle may move. We used

the pre-processed dataset by [23] as described in their paper

and is shown in Fig. 8. The image size is 1408× 1408. There

are 1125 frames with average target number of 24 per frame.

We obtained the initial detection result and ground truth

from the authors and used it as our input. However, the

detection contains a large amount of false alarms and only a

fraction of the ground truth. The ground truth contains 24,594

targets across all frames, while the detection contains about

13,000 targets with about 125,000 false alarms.

We used the same configuration as in Sec. VI-C. It focuses

on association only and assume all input are valid, thus it does

not tell if a candidate trajectory is false alarm or not. On the

other hand, [23] handles such false alarms naturally in their

algorithm, so the result may not be fair if we compare them

directly. We applied a simple method to eliminate many false

alarms. We labeled a small fraction of 10% of the detections

and threw them into an SVM with HOG features. The SVM

classifier was used to classify all the detections. We still fed all

the detections into the baseline methods and the MHI method.

The only post-processing we performed is if all the points in

a trajectory are classified as negative samples, the trajectory

was discarded. In this way, the number of false alarms was

greatly reduced.

The results are shown in Tab. III. It is similar as in

Sec. VI-C, where the MHI results show a better performance

than using NHI or other baseline measurements. Meanwhile,

the tensor method with MHI can achieve similar or better

performance than other state-of-the-art methods. Note here, we

did not perform any post processing except for discarding all

the negative trajectories, so the swaps and breaks are slightly

higher than the baseline methods.
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Fig. 8: Left: full view of a frame in the WPAFB dataset. Middle: the cropped part(the dash rectangle in the left image) used

in our experiment. Right: the trajectories generated using our algorithm.

TABLE III: Tracking results on the WPAFB dataset. Results of [21–23, 25] are obtained from [23].The best performance is

shown in red, the second is shown in blue.
MHI CHI Bhattacharrya Jensen-Shannon NHI[30] [23] [22] [21] [25]

Detect. Rate (Recall) 0.47 0.46 0.47 0.46 0.47 0.48 0.41 0.36 0.44
Precision 0.96 0.94 0.85 0.91 0.89 0.92 0.97 0.14 0.14
False Pos. per Frame 0.49 0.66 1.93 1.10 1.32 1.03 0.35 53.5 65.1
False Pos. per GT 0.02 0.03 0.08 0.05 0.06 0.04 0.01 2.23 2.72
MODA 0.45 0.43 0.39 0.42 0.41 0.44 0.39 -1.87 -2.27
Track Swaps 0.48 0.50 1.11 0.45 0.55 0.20 0.36 1.23 1.31
Track Breaks 2.06 2.09 2.45 2.00 2.13 0.99 1.77 2.80 3.10
MOTA 0.44 0.42 0.37 0.41 0.40 0.43 0.39 -1.90 -2.30

VII. CONCLUSION

In this paper, we present a new method for multi-target

tracking which is able to compare multiple histograms all

at once. The Multiway Histogram Intersection(MHI) tech-

nique is generalized from the Histogram Intersection method.

MHI both reduces the computational cost and increases the

representation power and accuracy. We conducted several

synthetic data analysis to understand the behavior of MHI

and showed its superiority over other HI-related methods in

different scenarios. Finally, we presented experiments on two

WAMI datasets and showed that using MHI is a better choice

over many other MTT approaches and it can achieve the

state-of-the-art performance. Besides a multi-target tracking

scenario, MHI can potentially be used in various fields as long

as multiple features need to be compared at the same time.
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