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Abstract—In this paper, we design a learning drift homotopy
particle filter algorithm. We employ the drift homotopy technique
in the extra Markov Chain Monte Carlo move after the resam-
pling step of the generic particle filter algorithm to efficiently
resolve the degeneracy of the algorithm. In this work, we use
the effective sample size as a learning parameter to control the
levels of drift homotopy which need to be considered in each
time step. The proposed algorithm adjusts the number of levels
of drift homotopy and reduces its computational time without
undermining the accuracy of estimation. We test the algorithm
on two synthetic problems, a partially observed diffusion in a
double well potential and a multi-target tracking setting.

Index Terms—Learning methods, DDDAS, drift homotopy,
Markov Chain Monte Carlo, particle filtering, sequential
Bayesian estimation.

I. INTRODUCTION

Many spatiotemporal phenomena require the estimation of
a partially observed model, which captures the dynamics of the
phenomenon under investigation. These dynamics are typically
observed as a result of collected data. For example, objects are
continuously moving in a field and a distributed surveillance
sensor network collects data about the position of moving
threats [4], [20], [24], [27].

Precisely, a system of interest can be modeled as a state
space hidden Markov model (HMM), which is engaged with
a pertinent likelihood function. Employing a Bayesian frame-
work, inference on the unknown quantities are deduced by
providing a posterior distribution at any given time, called a
filtering distribution. On the other hand, the theoretical solution
is often times intractable and thus several methods have been
investigated for approximating the filtering distribution.

Particle filtering is a popular method which approximates
the filtering posterior distribution by a set of weighted sam-
ples generated by a proper distribution which facilitates the
sampling called an importance distribution. Its choice depends
on the problem under investigation and several authors have
suggested a variety of methods, e.g. see the partial list [5],
[12], [11], [25], [26]. However, most of the particles have a
negligible weight which implies that their contribution to the
approximation is insignificant. A resampling step is in turn
used to mitigate the increasing variance of the weights as
time evolves. On the other hand, even with this extra step
the degeneracy of particle filtering still exists.

In this paper, we bypass this problem by proposing a
learning drift homotopy particle filter algorithm. We engage
the idea of appending an extra Markov Chain Monte Carlo

(MCMC) step after the resampling step, see e.g. [29], which
aims to move the particles to statistically significant regions.
In contrast, the issue with the extra MCMC step is to preserve
the nature of the posterior distribution and the speed of the
algorithm’s convergence. Therefore, we use a learning drift
homotopy technique to achieve these goals.

Drift homotopy strategies consider a sequence of stochastic
dynamics with drifts which interpolate between the original
and modified drifts. The interpolation engages several levels,
ℓ = 0, . . . , L, for which at ℓ = 0 the modified dynamics
are in effect, as opposed at ℓ = L where the original ones
are. All intermediate levels, 0 < ℓ < L are auxiliary and
basically facilitate the MCMC sampling. In other words, one
constructs paths for each stochastic equation in the sequence
at level ℓ by using an appropriate MCMC scheme with initial
condition the stochastic equation at level ℓ − 1. This allows
to gradually morph a path with a low weight to a path
with a significant weight while respecting the nature of the
filtering distribution [17], [18]. At the same time, a learning
parameter in the drift homotopy technique is used to reduce the
computational cost. It plays the role of controlling the levels of
drift homotopy required in the approximation of the filtering
distribution. Adopting the DDDAS framework [9], at each time
step, the learning parameter is configured automatically by
measuring the degree of degeneracy of the particle filter. This
mechanism is able to decrease the computational cost without
compromising the accuracy of estimation. We test this novel
method in the problem of a partially observed diffusion in a
double well potential, and in a multi-target tracking scenario.

The paper is organized as follows. Section II describes
the particle filter with MCMC moves. Section III provides a
detailed illustration of integrating the learning drift homotopy
technique in the appended MCMC step. Section IV exposes our
numerical results on two examples, and at last a conclusion is
offered at Section V.

II. PARTICLE FILTER WITH MARKOV CHAIN MONTE

CARLO MOVES

Consider {xk} the state of a hidden Markov model ob-
served by {yk} at a given time instant k ∈ N∪{0}. We assume
that at the initial time k = 0, x0 is distributed according
to p(x0). In addition, the transition density, p(xk|xk−1), and
the likelihood function, p(yk|xk), are given. Our goal is to
compute the posterior distribution p(x0:k|y1:k) or a pertinent
moment, E[f(x0:k)], where x0:k = {x0, · · · ,xk} denotes
the discrete history of the process up to a given time k
and E denotes expectation. Employing a recursive framework
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with Bayesian considerations, e.g. see [2], yields the basis of
sequential Monte Carlo (SMC) methods given by eq. (1)

p(x0:k|y1:k) = p(x0:k−1|y1:k−1)
p(xk|xk−1)p(yk|xk)

p(yk|y1:k−1)
(1)

Under general conditions, a closed form of the posterior
distribution is not tractable analytically based on eq. (1).
Particle filter, which is a sequential importance sampling
technique, approximates the filtering distribution by a set of
weighted particles. Imagine that the expectation, Ex0:k with
respect to the filtering distribution p = p(x0:k|y1:k), needs
to be estimated. Taking into account an importance density,
q(x0:k|y1:k), which facilitates the sampling, one may compute
the expectation as follows,

Ep(x0:k) =

∫

x0:k
p(x0:k|y1:k)
q(x0:k|y1:k)

q(x0:k|y1:k)dx0:k
∫ p(x0:k|y1:k)

q(x0:k|y1:k)
q(x0:k|y1:k)dx0:k

(2)

Considering i.i.d. samples, xi
0:k, i = 1, . . . , N , from the

importance distribution, q(x0:k|y1:k), the approximating eq.
(2) via Monte Carlo integration yields that

Ep(x0:k) ≈
∑N

i=1 x
i
0:kw

i
k

∑N
j=1 w

i
k

=

N
∑

i=1

xi
0:kw̃

i
k, (3)

where the normalized weights w̃i
k ∝ p(xi

0:k|y1:k)

q(xi
0:k

|y1:k)
satisfies

∑N
i=1 w̃

i
k = 1. Similarly, the filtering distribution can be

estimated by p̂(x0:k|y1:k) =
∑N

i=1 w̃
i
kδ(x0:k − xi

0:k), where
δ(·) is the delta function.

The choice of importance density is not unique. The study
in [11] provides the optimal choice for the importance density.
Optimality holds in the sense that it minimizes the variance of
the weights. The optimal choice does not have an analytic
solution in general. However, it can be used as a guide for
suboptimal choices. For instance, [13] establishes a Laplace
approximation of the optimal approximation and recently [14]
generalized this result using a skew-normal approximation. A
popular choice is to adopt the transition density, p(xk|xk−1),
as the importance density. Then the importance weights [2]
are propagated recursively according to

w̃
i
k ∝ w̃

i
k−1

p(yk|xi
k)p(x

i
k|xi

k−1)

p(xi
k|xi

k−1)
= w̃

i
k−1p(yk|xi

k). (4)

After updating the importance weights at any time step
k based on (4), resampling step is performed to decrease
the impact of the degeneracy of particle filter by removing
particles with low weights and replicating the ones with high
weights [2], [13], [12], [16], [21]. There are several ways of
executing a resampling step in particle filtering. For example,
[8] discusses in detail the popular multinomial resampling
scheme and suggests alternative resampling frameworks which
keep the number of particles constant such as the residual, the
stratified and the systematic resampling methods.

However, even with the resampling method, particle filter
requires a large number of particles in order to approximate
the filtering distribution. The reason is due to the fact that
many particles remain in statistically insignificant regions and
thus they do not contribute to the approximation of the filtering

distribution. Therefore, many authors [15], [29] have suggested
an extra MCMC step after the traditional resampling method.
For instance, [29] suggested a resampling step which produces
copies not only of the good samples according to the current
observations, but also of the values (initial conditions) of the
samples at the previous observation. These values propagated
good samples for the current observations. Although there are
several ways to incorporate such a step, it is crucial that the
filtering distribution p(x0:k|y1:k) is preserved. In this paper,
we address this point by introducing a learning drift homotopy
method as explained in Section III. Algorithm 1 provides the
pseudocode of a particle filter enhanced with MCMC moves.

Initialization at time k = 0 ;
for k = 1 : T do

Sample N unweighted samples xi
0:k−1 from

p(x0:k−1|y1:k−1);
Prediction: Generate N samples, x̃i

k from
p(xk|xi

k−1) and set x̃i
0:k = (xi

0:k−1, x̃
i
k);

Update: Compute the weights by (4);
Resampling: Generate N independent uniform
random variables {θi}Ni=1 in (0, 1). For

i, j = 1, . . . , N , let xi
0:k = x̃

j
0:k where

j−1
∑

l=1

w
l
k ≤ θj <

j
∑

l=1

w
l
k

MCMC step: Sample through MCMC the stationary
distribution

p(xk|xk−1)p(yk|xk)

end

Algorithm 1: Particle filter with MCMC moves

III. LEARNING DRIFT HOMOTOPY PARTICLE FILTER

Let’s consider that the system of interest evolves according
to the following discrete dynamics

xt+∆ = xt + a(xt)∆ + σ
√
∆ξt, (5)

where ∆ is the sampling time. The drift a(·) is some pertinent
function and σ is the diffusion coefficient which depends
on the phenomenon, and ξt is a Gaussian random variable.
The MCMC step of Algorithm 1 involves sampling from the
transition density p(xk|xk−1). Many phenomena require that
the sampling time, ∆, is very small, e.g. in continuous tracking
of a fast moving object. On the other hand, the observations
cannot be collected at every time step ∆. This yields that the
transition density between time k − 1 and k is written by the
following multidimensional integral,

p(xk|xk−1) =

∫ I−1
∏

λ=0

p(xλ+1
k−1|xλ

k−1)

I−1
∏

λ=1

dxλ
k−1, (6)

where xλ
k−1 = xk−1 + λ∆ is the state of the process for

λ = 0, · · · , I − 1 with the convention that x0
k−1 = xk−1 and

xI
k−1 = xk. In order to avoid the high dimensional integrals
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of eq. (6), one samples a conditional path from the transition
density p(xk,x

I−1
k−1, · · · ,x1

k−1|xk−1) given below

p(xk,x
I−1
k−1, · · · ,x1

k−1|xk−1) =

I−1
∏

λ=0

p(xλ+1
k−1|xλ

k−1). (7)

We observe that eq. (7) depends on the transition densities
p(xλ+1

k−1|xλ
k−1) for λ = 0, · · · , I − 1. For some dynamical sys-

tems, the diffusion coefficient, σ, of eq. (5) is small. This yields
a rare transition which in turn may propagate an erroneous
estimation of the filtering distribution of eq. (1). We bypass
this problem by introducing a novel learning drift homotopy
sampling method. Based on the drift homotopy method [28],
one considers modified dynamics for the process and engages
them in a sequential way with the original dynamics. In other
words, the following dynamics are considered

xt+∆ = xt + (1− ǫℓ)b(xt)∆ + ǫℓa(xt)∆ + σ
√
∆ξt (8)

where ǫℓ =
ℓ
L , ℓ = 0, · · · , L. One may observe that the original

dynamics given in eq. (5) are taken into account at terminal
level ℓ = L and the modified ones alone are considered when
ℓ = 0. The modified dynamics aid the transition from state
xk−1 to xk which is of paramount importance when a small
diffusion coefficient, σ, yields to a rare transition.

The consideration of eq. (8) deduces that instead of sam-
pling directly from eq. (7), one may sample from a set of L+1
distributions given as follows

pℓ(xk,x
I−1
k−1, · · · ,x1

k−1|xk−1)p(yk|xk)

=
I−1
∏

λ=0

pℓ(xλ+1
k−1|xλ

k−1)p(yk|xk) (9)

where pℓ(xk,x
I−1
k−1, · · · ,x1

k−1|xk−1), ℓ = 0, · · · , L is based
on eq. (8).

In other words, initially, one samples a conditional path
given by eq. (8) with ℓ = 0. As the level, ℓ, increases,
the conditional path is morphed to the path described by the
original dynamics of eq. (5). The choice of the modified drift,
b(xt) facilitates the conditional path sampling and therefore the
MCMC step in the Algorithm 1. In other words, the samples
from the ℓth level are used as the initial condition at the
(ℓ+1)th level. In this way, at the final level, one samples from
the original stationary density with a better initial condition,
which was obtained through the preceding levels. Intuitively,
the drift homotopy technique provides the MCMC step in
Algorithm 1 a better initial condition.

The studies in [23], [17], [18] considered a fixed number
of L levels which were employed. However, in most cases,
the MCMC may achieve a convergent result prior to going
through all the auxiliary levels of drift homotopy. In other
words, computational time is unnecessarily spent. However, if
one considers a surveillance distributed sensor network [27]
which employs a particle filter method for monitoring threats,
then it is of paramount importance to execute quickly and
accurately the procedure since there exist stringent power
constraints. In other words, a technique, which decreases the
number of levels such that computational time is saved, is
urgently needed. Therefore, we introduce a learning method
within the MCMC sampler in the particle filter. The learning

method automatically adjusts the number of levels, ℓk, at a
given time k.

The learning criterion is the effective sample size (ESS).
The ESS is a measure of how much the samples at any given
time k contribute to the approximation of the filtering distri-
bution of eq. (1). The novel learning drift homotopy particle
filter calculates the ESS after each level of drift homotopy at
each time step when observations are available. Suppose that
one generates N i.i.d samples from the importance distribution
q(x), then ESS is defined,

ESSℓ =
N

1 + CV2
N,ℓ

,

where CVN,ℓ is the coefficient of variation of the normalized
weights given by

CVN,ℓ =





1

N

N
∑

i=1

(

Nwℓ
i

∑N
j=1 w

ℓ
j

− 1

)2




1/2

,

where wℓ
i and wℓ

j denote the importance weights for the ith

and jth particles respectively after ℓth level of drift homotopy.
Notice the weights wℓ

i and wℓ
j are still calculated using (4) by

substituting xi
k by xi

k,ℓk
, where xi

k,ℓk
denotes the ith sample

at ℓthk level at time step k. Based on the definition of ESS, its
value is between 1 and N . If the particles with equal weights
1
N are considered, then the CVN,ℓ will be equal to zero. On the
other hand, if all the normalized weights but one are null, then
the CV2

N,ℓ will reach its maximum value N − 1 and therefore
the ESS will be just 1. Also, the ESS reveals that using N
weighed samples generated from the importance density to
approximate the filtering distribution is equivalent to using

N
1+CV2

N,ℓ

i.i.d samples drawn from the filtering distribution [8],

[21].

The novel learning drift homotopy particle filter employs
the ESS at each time step when observations are available.
Since ESS indicates the number of samples that essentially
contributes to the estimation, if the ESS exceeds an appropriate
threshold, it implies that the MCMC step converged to the
filtering distribution, and therefore no more levels in the drift
homotopy are needed. Algorithm 2 presents a pseudocode of
the learning drift homotopy particle filter.

Remark 3.1: Daum and Huang [10] also introduced a
homotopy technique different from herein. Their method con-
siders an appropriate ordinary differential equation (ODE) to
implement the Bayes rule rather than the pointwise multiplica-
tion of two functions, i.e. the prior and likelihood. Moreover,
the authors applied the homotopy technique at the densities
level whereas our scheme uses the homotopy in the dynamics.

IV. NUMERICAL RESULTS

In this section, we present two examples to illustrate the
advantages of the learning drift homotopy algorithm. The first
numerical experiment is performed for a problem of a partially
observed diffusion in a double well potential with small noise
and the second is a multi-target tracking problem. The goal is
to show how the learning drift homotopy technique helps to
design an efficient particle filter.
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Initialization at time k = 0 ;
for k = 1 : T do

Sample N unweighted samples xi
0:k−1 from

p(x0:k−1|y1:k−1);
Prediction: Generate N samples, x̃i

k from
p(xk|xi

k−1) and set x̃i
0:k = (xi

0:k−1, x̃
i
k);

Update: Compute the weights by (4);
Resampling: Generate N independent uniform
random variables {θi}Ni=1 from (0, 1). For

i, j = 1, . . . , N , let xi
0:k = x̃

j
0:k where

j−1
∑

l=1

w
l
k ≤ θj <

j
∑

l=1

w
l
k

MCMC step: Choose suitably modified drift and use
drift homotopy to construct a Markov chain for

z
i,ℓk
0:k with initial value xi

0:k. At ℓk = 0 begin with a
sample from the modified drift of eq. (8);
Sample through MCMC the density (9);
while ℓk = 1, ... do

take the last sample from the (ℓk − 1)th level
and use it as an initial condition for MCMC
sampling of the density at the next ℓthk level;
if ESS at level ℓk > threshold then

use the original dynamics with initial
condition the samples at the level ℓk

end
end

end

Algorithm 2: Learning Drift Homotopy Particle Filter

A. Double well potential

Consider a diffusion in a double well potential in discrete
time given by

xt+∆ = xt − 4xt(x
2
t − 1)∆ + σ

√
∆ξt, (10)

where the sampling rate is ∆ = 0.01, σ = 1
2 and ξt is a

standard normal random variable.

The drift of the dynamics describes a gradient flow for the
potential U(x) = x4 − 2x2 which has two equilibrium states
at x = ±1. Without the stochastic term, the solution will only
meander in the vicinity of one of the two equilibria. A weak
stochastic term as in eq. (10) will jitter the solution to walk
between the two equilibria but with rather low probability.

We set the observations to be small perturbations of the
equilibria points ±1, i.e. yk = ±1 + ηk, where ηk ∼
N (0, 0.04). Moreover, the observations are collected at every
1s and for T = 20s. We observe that the sampling time
of the process is much faster (∆ = 0.01s) than the data
collection (1s). This setting is difficult for the particle filter
to follow due to rare transitions. However, we employ here
the learning drift homotopy particle filter with a modified drift
b(xt) = −cxt(x

2
t − 1), where c = 0.4 in our experiment.

The modified drift corresponds to a double well potential with
much shallower wells. This choice of modified drift will ease
the transitions between the two equilibria.

We employ the Metropolis-Hasting algorithm as the
MCMC sampler at each level ℓk = 0, · · · , L of each time
step k. The acceptance rate is given in the following

αℓk = min{1, Jℓk(xk|x′
k)p

ℓk(x′
k|xk−1)p(yk|x′

k)

Jℓk(x
′
k|xk)pℓk(xk|xk−1)p(yk|xk)

}

where xk is the current state and x′
k is the proposed state

generated through the proposal distribution Jℓk(·) which has
a pertinent Gaussian kernel, and pℓk(xk|xk−1)p(yk|xk) is the
stationary distribution at level ℓk that can be approximated by
(9).

One may fix both the number of levels, and the steps of
MCMC sampling at each time step. However, this leads to
unnecessary consumption of the computational time which
may be disastrous if one tracks threats with a distributed
surveillance sensor network. Therefore, we use the novel
Algorithm 2 such that the number of levels, which are needed
in order to reach a convergent result, decreases drastically.
Fig.1 demonstrates the filtering estimation of the partially
observed diffusion in a double well potential based on the
learning drift homotopy particle filter. Also, the tracking error,
which is defined as the distance between estimated state and
the true state, is given in Fig.2. Moreover, a comparison of
two ways of implementations is shown in Table I and Table
II. Table I displays the results of a drift homotopy particle
filter with fixed number of levels (L = 40) and 150 MCMC
steps. Table II uses the learning drift homotopy particle filter
where the ESS threshold is set to be 75%. One may observe
that we have comparable errors however with significantly less
levels of drift homotopy and MCMC steps. In fact, there were
a few instances (t = 2, 6, 14) where sampling directly from
the modified dynamics (ℓ = 0) was sufficient for the filter to
reach a convergent result.
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Learning drift homotopy particle filter estimate

Observations

Fig. 1. In this simulation, we use learning drift homotopy particle filter with
10 samples for 20 time steps for the double well potential diffusion.

B. Multi-target tracking

We next study the performance of learning drift homotopy
particle filter for a multi-target tracking problem. We consider
two cases: a linear Gaussian model and a nonlinear non-
Gaussian case.

1933



Time steps L MCMC steps Error

1 40 150 0.016962

2 40 150 0.058091

3 40 150 0.026314

4 40 150 0.046993

5 40 150 0.032146

6 40 150 0.012817

7 40 150 0.012912

8 40 150 0.034872

9 40 150 0.044780

10 40 150 0.026893

11 40 150 0.029236

12 40 150 0.015401

13 40 150 0.071464

14 40 150 0.036774

15 40 150 0.038505

16 40 150 0.039479

17 40 150 0.071885

18 40 150 0.064279

19 40 150 0.000960

20 40 150 0.002162

TABLE I. THIS TABLE SHOWS, FOR FIXED 40 LEVELS OF DRIFT

HOMOTOPY AND 150 MCMC STEPS, THE ERROR AT EACH TIME STEP

WHICH IS SIMPLY THE DIFFERENCE BETWEEN TRUE STATE AND

ESTIMATION. THE NUMBER OF PARTICLES IS CONSIDERED TO BE 10.

Time steps ℓk MCMC steps Error

1 22 10 0.049871

2 0 1 0.046551

3 1 29 0.048307

4 2 49 0.044896

5 7 83 0.049962

6 0 12 0.004473

7 1 37 0.049107

8 6 57 0.045660

9 24 5 0.048551

10 5 97 0.047620

11 15 15 0.043014

12 9 92 0.046975

13 9 58 0.048404

14 0 45 0.049052

15 3 29 0.047892

16 11 82 0.046791

17 5 70 0.046585

18 6 15 0.041894

19 10 35 0.049664

20 6 44 0.047678

TABLE II. THIS TABLE SHOWS THE LEVELS PERFORMED BEFORE THE

FINAL LEVEL l = 40 AND THE MCMC STEPS, AND THE ERROR AT EACH

TIME STEP WHICH IS SIMPLY THE DIFFERENCE BETWEEN TRUE STATE AND

ESTIMATION. THE SAMPLE SIZE IS SET TO BE 10. THE ESS THRESHOLD IS

SET TO BE 75% OF THE SAMPLE SIZE.

2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

0.15

0.2

time step

 

 

Tracking error of learning drift homotopy particle filter

Fig. 2. Tracking error of the LDHPF shown in Fig.1

1) Case 1: Linear Gaussian model: Suppose there are m
targets and the state vector of the mth target at time k is
represented via xm

k = [xm
k , ẋm

k , ymk , ẏmk ], where (xm
k , ẋm

k ) and
(ymk , ẏmk ) are the position and velocity on the x and y axes
respectively. The dynamic of each target is given by

xm
k = A1x

m
k−1 +A2u

m
k , (11)

where the matrices A1 and A2 are as follows

A1 =









1 ∆ 0 0

0 1 0 0

0 0 1 ∆

0 0 0 1









,A2 =











∆2/2 0

∆ 0

0 ∆2/2

0 ∆











and ∆ = 1 denotes the time between observations. The
noise um

k is distributed according to a 2 dimensional Gaussian
distribution with mean 0 and covariance,

Σm
u =

(

0.7 0

0 0.7

)

.

In our simulation, a linear observation model is considered

yn
k = x̃m

k + vn
k , (12)

where x̃m
k = (xm

k , ymk )T is the position of the mth target at
time k and vn

k is a Gaussian noise with covariance

Σn
v =

(

0.004 0

0 0.004

)

.

We do not have prior knowledge of target-to-observation
association and therefore we use the Munkres algorithm [7]
to match the observations with targets.

2) Case 2: Nonlinear non-Gaussian model: In this numer-
ical experiment, a nonlinear non-Gaussian observation model
is considered which consists of the measurements of bearing
θ and the range r of a target. Let yn

k be the nth observation
from the mth target at time k, the observation model is defined
below

yn
k =

(

arctan(
ymk
xm
k

),
√

(xm
k )2 + (ymk )2

)
′

+ vn
k . (13)
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where vn
k , is distributed according to a suitable Gaussian

Mixture Model (GMM) with probability density

p(vn
k ) =

2
∑

ℓ=1

wv
ℓN (µn

ℓ,v,Σ
n
ℓ,v), (14)

where wv
1 = 0.8, wv

2 = 0.2 and µn
1,v = −0.01, µn

2,v = 0.01
and the covariance matrices are defined as follows

Σn
1,v =

(

0.004 0

0 0.004

)

,Σn
2,v =

(

0.0001 0

0 0.0001

)

.

Also in this case, the driving noise in the dynamics model is
considered to be a suitable GMM with two Gaussian mixands
defined as follows

p(un
k ) =

2
∑

ℓ=1

wu
ℓ N (µn

ℓ,u,Σ
n
ℓ,u), (15)

The means of the two Gaussians are also ±0.01 and the
covariance matrices are given in the following

Σn
1,u =

(

0.7 0

0 0.7

)

,Σn
2,u =

(

0.1 0

0 0.1

)

.

with weights wu
1 = 0.8, wu

2 = 0.2 respectively.

3) Drift homotopy for multi-target tracking model: The
modified dynamics of target m at level ℓ for target m are
given in the following

x
ℓ,m
i,k = A1x

ℓ,m
i,k−1 +A2u

m
k +A3

ℓ,m, (16)

where the subscript i = 1, · · · , N corresponds to the ith

particle, and N denotes the sample size used in the particle
filter, and

A3
ℓ,m = (1− ǫℓ)A2M

m
i,k−1,

where

Mm
i,k−1 =

2

∆2

(

µ̄m
x − xm

i,k−1 − 2ẋm
i,k−1∆

µ̄m
y − ymi,k−1 − 2ẏmi,k−1∆

)

,

ǫℓ = 1/L, and ℓ = 0, · · · , L and µ̄x and µ̄y correspond to a
mean drift while at the time offsetting the individual sample’s
properties

µ̄m
x =

1

N

N
∑

j=1

(xm
j,k−1 + ẋm

j,k−1∆),

µ̄m
y =

1

N

N
∑

j=1

(ymj,k−1 + ẏmj,k−1∆).

where j = 1, · · · , N is the index of the particle.

As shown in Fig. 3, when the number of levels increases,
the ESS grows and root mean square error (RMSE) reduces.
The RMSE is calculated at each time step by the following
formula (17).

RMSE(k) =

√

√

√

√

1

Mk

Mk
∑

m=1

‖ xm
k − E[xm

k |y1, · · · ,yk] ‖2,

(17)

Target ℓk MCMC steps ESS (50%)
1 7 9 7.513377

2 2 16 5.026966

3 0 41 5.016717

4 0 47 7.510589

5 0 33 5.007232

6 0 23 5.012302

7 0 1 9.986915

TABLE III. THIS TABLE SHOWS THE LEVELS PERFORMED BEFORE THE

FINAL LEVEL L= 20 AT A SINGLE TIME STEP k = 10. THE ESS THRESHOLD

IS CHOSEN TO BE 50% OF THE SAMPLE SIZE. SAMPLES SIZE IS SET TO BE

10 IN THE ALGORITHM.

where ‖ · ‖ is the norm of the state vector. xm
k is the true

state vector for the mth target and E[xm
k |y1, · · · ,yk] is the

expectation of the filtering distribution.

However, for each target and each time step, it may be
superfluous to process a fixed number of levels drift homotopy
of the algorithm. In this experiment, the generalized hybrid
Monte Carlo [1] is employed as the MCMC sampler. The
numerical results in Table (III) show that the algorithm needs
much less levels for some targets at some time steps to obtain
good tracking results. Also, the table specifies that the learning
drift homotopy particle filter is able to automatically choose
the terminating level and does not compromise the tracking
performance as shown in Fig. 4. For the nonlinear and Non-
Gaussian case, the tracking result is shown in Fig.5. Given
that a surveillance distributed sensor network operates under
limited power constraints and a quick detection and accurate
tracking of targets is needed, the the threshold of the ESS
has been chosen to a lower value, precisely, 50%. However, a
close examination on the RMSE comparison presented in Fig.
6 implies that the learning drift homotopy algorithm estimates
accurately the states of the targets while at the same time
decreases the computational time by not using all levels as
in the drift homotopy. Also, its performance is by far superior
in comparison to particle filtering as showing in Fig. 4.
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Fig. 3. This figure shows that as the level increases, the ESS increases and
RMSE decreases.
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Fig. 4. Tracking result is shown in this figure with 7 targets.
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Fig. 5. Nonlinear and nonGaussian tracking result is shown in this figure
with 7 targets.

V. CONCLUSION

In this paper, we introduced a novel learning drift homo-
topy particle filter algorithm. Our algorithm aims to surmount
the degeneracy of particle filter by introducing a sequence of
modified dynamics which facilitate the sampling. Furthermore,
the algorithm “learns” from the effective sample size to ad-
just the number of sequences which are needed in order to
reach the convergent result. This yields an accurate estimation
without spending excessive computational time. Our method
was successfully tested in a partially observed diffusion in a
double well potential and a multi-target tracking problem. This
algorithm will be fruitful when sensor nodes perform tracking
in a distributed way under limited computational capabilities
and stringent power constraints. [27]
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Fig. 6. This figure shows the RMSE comparison of the generic particle filter
(GPF) with 500 samples, the drift homotopy particle filter and the learning
drift homotopy particle filtering with 10 samples in both methods. We also
include the RMSE of the learning drift homotopy particle filter for a nonlinear
non-Gaussian model. The lower panel is a zoomed in and smoothed figure of
the upper panel that compares the RMSE of drift homotopy particle filter with
and without learning.
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