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Abstract - In this article we show an application of data 

fusion techniques to the field of quantitative risk 

management. Specifically, we study a synthetic dataset 

which represents a typical mid-level financial institution's 

operational risk loss as defined by the Basel Committee on 

Banking Supervision (BCBS) report. We compute the 

economic capital needed for a sample financial institution 

using a Loss Distribution Approach (LDA) by 

determining the Value at Risk (VaR) figure along with the 

correlation measures by using copulas. In addition, we 

perform computational studies to test the efficacy of using 

a "universal" statistical distribution function to model the 

losses and compute the VaR. We find that the Lognormal-

Gamma (LNG) distribution is computationally robust in 

fusing the frequency and severity data when computing 

the overall VaR.   

 

Keywords: Operational risk, Statistical Distribution fitting, 
Data Fusion, low-probability events, Value at Risk (VaR), 
heavy tailed distributions. 
 

1 Introduction 

The application of data fusion techniques to various 
different disciplines in applied sciences and engineering has 
been a popular research topic recently. In a nutshell, the 
paradigm of data fusion can be thought of "... the scientific 
process of integration of multiple data and knowledge 
representing the same real-world object into a consistent, 
accurate, and technically useful representation" [1]. In the 
present environment, the tool of "data fusion" has been 
numerously applied to various engineering fields such as 
sensor networks; defense and intelligence; aerospace; 
homeland security; public security; medical technology etc. 
There has been a somewhat paucity of  direct application to 
the field of quantitative risk management. This paper 
addresses one novel application which serves as an 
interesting applied problem valuable to practitioners in the 
field.   In the broadest sense of terms, quantification of risk 
management involves analyzing the events which tend to be 
remotely probable as opposed to focusing only on those 
which are reasonably possible. To better understanding the 
relevance of this field, we begin by introducing the concept 
of applying data fusion in the risk framework next. 

Afterward, we give a brief overview of the risk management 
framework. We then give a quick overview of the specific 
risk management framework, namely operational risk. 
Afterwards, we describe the specific problem of interest 
studied in this paper and the methodology used. Next we 
show our results and present discussions. Finally, we narrate 
our conclusions, current ongoing work and future research 
directions.  

1.1 Data Fusion in Risk Framework 

In most scientific and engineering fields, the investigators 
are interested in studying the behavior of events which are 
typically occurring (i.e. occur in the "body" of a statistical 
distribution). In most cases, events which occur rarely are 
classified as "outliers" and ignored (or even sometimes 
thrown out). It is in fact a part of human nature as argued by 
Nobel Laureate economist Daniel Kahneman in Prospect 
Theory [2] where he shows from psychological experiments 
that humans view near-zero probabilities as identical to zero 
probability. This mindset is the exact opposite of what is 
practiced in risk management, specifically operational risk 
management. The recent 2008 Financial Crisis, showed that 
the so-called "Black Swan" [3] events can occur and 
potential devastate the world economy. Thus, it may be 
"human nature" to ignore or neglect these low-probability 
outlier types of events, but in a risk management context, 
these events are crucial to be properly modeled and 
examined. While the mathematics behind low-probability 
events has been well-studied since the 1940s, applying it in 
a risk management framework is still considered somewhat 
of an art partially due to the difficulties that data come from 
various correlated sources. In the current risk management 
practice, many simplifications and assumptions are made to 
the mathematics which makes the risk management decision 
making process incomplete. The primary reason behind 
these simplifications is that there are multiple sources of 
data and the science of integrating them properly is not well 
understood and practiced. Therefore, we believe that using 
data fusion in this field is a promising application which has 
high economic significance. We will next motivate our 
work further by discussing the basic foundations of the risk 
management application.  
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1.2 The Risk Management Framework 

 Risk management framework has been developed 
extensively in the past couple of decades  mainly used for 
financial institutions. Most financial institutions for 
example banks, insurance companies, hedge funds, etc. are 
regularly exposed to several different types of risks which 
are easy to observe such as market risk along with credit 
risk. Market risk can be broadly thought of as changes to the 
overall/macro financial conditions (such as stock prices, 
interest rates) which can adversely affect the portfolio value 
of a financial institution. Credit risk can be broadly thought 
of the risk from a failing  counterparty. These two risks 
have been extensively studied and there is a good 
confluence between theory and practice. There is a third, an 
equally important, branch of risk management which is 
known as the operational risk management. This is a newer 
type of risk and is defined as the following: "The risk of 
loss resulting from inadequate or failed internal processes, 
people and systems or from external events" [4]. Examples 
of this can include a rogue trader, hurricane Katrina, credit 
card fraud, tax non-compliance etc. The losses resulting 
from this type of risk comes from multiple data sources and 
types. Thus the application of data fusion principles is apt 
for this field. To manage the risk, there is a regulatory 
agency called the Basel Committee for Banking Supervision 
(BCBS) which regulates and stipulates that financial 
institutions are required to mitigate themselves from  this 
type of risk by holding Economic Capital of an appropriate 
amount to absorb these losses. In otherwords, financial 
institutions are required to hold a "rainy day" fund to absorb 
shocks which result from operational risk. But how much 
should they hold? If they hold too little, then if a large 
shock occurs, then the financial institution can get wiped 
out. But if they hold too much capital, then they are losing 
out on opportunity costs of making profits. This is one of 
the fundamental questions. From a mathematical point of 
view,  this concept is described as Value at Risk (VaR). A 
VaR of V dollars represents that one is X% sure of not 
losing more than V dollars in time T. So the practitioner sets 
the time T and probability X a priori¸ and computes V 
accordingly. One of the goals in operational risk 
management is to accurately compute the VaR value of V 
when data comes from multiple sources. The other is to 
compute the expected (i.e. average) loss that one can expect.  
    
 Using the latest Basel III framework,  loss data are 
officially categorized according to seven Basel defined 
event types and eight defined business lines [5]. The 
business lines are the following: (1) Corporate Finance 
(CF); (2) Sales & Trading (S&T); (3) Retail Banking (RB); 
(4) Commercial Banking (CB); (5) Payment & Settlement 
(P&S); (6) Agency Services (AS); (7) Asset Management 
(AM); and (8) Retail Brokerage (RB) [5]. The seven event 
types for losses are the following: (1) Internal Fraud (IF); 
(2) External Fraud (EF); (3) Employee Practices & 
Workplace Safety (EPWS); (4) Clients, Products, & 
Business Practice (CPBP); (5) Damages to Physical Assets 

(DPS); (6) Business Disruption & Systems Failures 
(BDSF); and (7) Execution, Delivery, & Process 
Management (EDPM) [5]. After the 2008 financial crisis, 
the BCBS performed a "Loss Data Collection Exercise for 
Operational Risk" [5]. In this paper, we study one of these 
data sets (for an anonymized small financial institution). We 
use data fusion techniques to model three different business 
lines and their correlation structure to compute a final VaR 
figure.        

2 Operational Risk Framework 

Now that we have introduced the general framework 
above, we briefly narrate the fundamentals of the modeling 
of operational risk using the Loss Data Approach (LDA) [6-
11]. When modeling operational risk, there are two 
fundamental components: (1) Frequency of losses; (2) 
Severity of losses. The simplest explanation is that one is 
interested in how often losses will occur (frequency), and 
also how large will the losses be when they occur (severity). 
Banks and other financial institutions obviously dread the 
instances where large losses (severity) happen in large 
occurrences (frequency). This is known as a high 
probability high impact event. Contrary to the fears of many 
chief financial officers, these types of event almost never 
takes place. The reason is that most banks have proper risk 
management practices which would identify key risk 
indicators (KRIs) that can prevent/mitigate frequent 
occurrences of large losses. In otherwords, any good 
financial institution will have checks in place to ensure that 
their employees can not regularly steal billions of dollars. 
So if there is a rogue employee committing theft, it should 
be a rare event, and not a frequent event. Instead, what is 
more important is the low probability high impact, i.e. rare 
occurrences of large losses.  

 According to the guidelines from the BCBS, the 
aggregated losses from operational risk can be described in 
a paradigm such as the random sum model [6]. The joint 
loss process (consisting of frequency and severity) is 
assumed to follow a stochastic process {St}t ≥ 0 expressed as 
the following: 

     S୲ =  σ L୩  , L୩ ~ฎ୧୧ୢ  Fஓ               
୒౪୩ୀ଴                                (1) 

 
 The paradigm expressed by the above equation assumes 

that the severity (i.e. loss magnitudes) are independent and 
identically distributed (i.i.d.) sequence of {Lk}. Since the 
{Lk} are i.i.d., one can assume that they come from a 
cumulative distribution function (CDF), FȖ. This CDF can 
be statistically characterized as belonging to a parametric 
family of continuous probability functions. Likewise, the 
the counting process Nt is assumed to follow a discrete 
counting process or a probability mass function. The key 
point here is that in Eq. (1) there is an inherent assumption 
of independence between severity and frequency 
distributions. In Figure 1, we graphically illustrate how the 
frequency and the severity process are traditionally thought 
as "independent" (silo) processes which come together to 
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calculate the annualized aggregate loss. The frequency of 
losses are estimated along with the severity of the losses 
using two different statistical distributions. Then one can 
combine these approaches and use Monte Carlo (MC) 
simulation, to compute the annualized aggregate loss. Once 
the aggregate loss distribution has been determined, one can 
estimate the mean (expected) loss and also upper quantiles 
to get an estimate of the operational risk VaR. Most banks 
tend to estimate at least a 99.9% (if not higher to 99.99%, 
which would hold for a 1 in 10,000 year event). 

 
Figure 1. Illustration of computing the VaR 
 
The natural question that arises next is how does one 

measure the frequency and the severity? In practice, most 
banks have an internal loss data collection exercise which 
they calculate for every year. So the operational risk 
modeler can fit the losses that were collected (L1, L2, ..., LN)  
to get the severity distribution. Likewise a similar approach 
can be used to statistically estimate how often the losses are 
happening to get the frequency distribution. These are 
thought of as two distinct data sources that need to be 
"fused" to arrive at a combined estimate.  

2.1 Frequency Distributions 

There are three main types of distribution which can be 
used to the model the frequency of losses: (1) Poisson; (2) 
Binomial; and (3) Negative Binomial distribution. The 
Poisson distribution has a unique characteristic among the 
class of statistical distributions in that it's mean (ȝ) is equal 
to its standard deviation (ı). Also this distribution is 
characterized by a single parameter, Ȝ. This distribution is 
the easiest to model since it involves only fitting a single 
parameter. The binomial distribution can be fully 
characterized by two parameters, n (sample size) and p 
(probability). Similarly, the negative binomial distribution 
can also be characterized by two parameters, r (number of 
failures till success) and p (probability). In terms of mean 
and variance, the binomial distribution is appropriate when 
ȝ> ı, while the negative binomial distribution is appropriate 
when ȝ < ı.  
 

In most instances one can tell which frequency 
distribution to use by simply computing the relationship 
between sample mean and sample variance. Overall, there is 
not much difference when using different frequency 
distributions.  Figure 2 shows similarity of the frequency 

distributions between Poisson, Binomial and Negative-
Binomial distributions. It shows that in most cases there is 
not a great benefit to derive the ideal frequency distribution. 
A notable exception would be if historical loss data 
collection exercise of a bank shows say ȝ > ı in all cases 
(empirically). In this case, one should choose a binomial 
distribution as a fit for the frequency. Likewise the same 
would be true if the reverse was observed and then the 
negative-binomial distribution could be used.  

 

 
 
Figure 2. Comparison of different frequency distributions 

2.2 Severity Distribution types 

Unlike the case of the frequency, there are a plethora of 
valid statistical distribution that one can use to fit the 
severity data. We list (for illustrative purposes only) a 
sample of distributions that one may use: (1) Lognormal 
(since losses are always non-negative); (2) Burr XII 
distribution; (3) Generalized Pareto (GPD); (4) Weibull; (5) 
Pareto; and (6) Lognormal-Gamma (LNG) [7].  

 
Among the distributions, a unique one which we study in 

this paper is the three parameter Lognormal-Gamma (µ, σ, κ)  distribution.  The first parameter represents the mean, 
the second parameter represents the standard deviation, and 
the third parameter represents the kurtosis (fourth moment). 
This distribution comes from the statistical property of 
convolution of distribution functions. Analytically, the CDF 
for LNG [7] can be expressed as the following: 

 

F(x | µ, σ, κ) = ׬ ɀ(y|Ɉ)Ԅ(x|ρ,ɐଶ∞଴  * y)dy     (2) 

  

where γ(y| κ) corresponds to the pdf of the gamma 

distribution while φ(x| µ, σ2) is the pdf for the normal 

distribution which is characterized by a population mean µ 

and population variance σ2. 

 
Note that there is not a closed form solution for equation 

(2). Similar to the "error" (Erf) function for the Gaussian 
distribution cdf, the distribution for the Lognormal-Gamma 
has to be computed numerically. Thus the problem with this 
distribution is that one cannot write an analytical expression 
for the CDF, and thus generating random numbers takes 
longer since one cannot use the inverse CDF method from 
simulation. However it is extremely useful for our 
applications because the Lognormal distribution is a special 
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case of the Lognormal-Gamma distribution (i.e. when κ = 
3). So the strength of this distribution is that one can 

directly model and interpret "heavy tails" (i.e. those with κ 
> 3) for any dataset.  

 
Figure 3 illustrates a sample operational risk loss data set 

for the severity where there exists in almost all cases a loss 
data collection threshold, T [7]. The reason is that most 
financial institutions will only keep an inventory of these 
losses but not the small losses below a threshold T in their 
own Loss Data Collection exercise that they undertake [5].  
That is why in Figure 3, the loss severity histogram is 
shown starting from $10,000 and moving forward.  

 
Figure 3. Sample severity loss data 
 

3 Methodology 

As mentioned in the section 2, there has been an extensive 
loss data collection exercise collected by the BCBS in 2009 
[5]. Most of these loss data sets are highly proprietary in 
nature. However, many studies have reported the statistical 
parameter estimates (severity, frequency, and correlations) 
for typical financial institutions losses [5-7]. With this in 
mind and based on the first author's personal experience 
studying mid-level financial institution's loss data, we 
generate a synthetic dataset which resembles a mid-level 
financial institution involving three different business lines 
along with one event type of Internal Fraud. The three 
business lines are the following: (1) Corporate Finance; (2) 
Sales & Trading; and (3) Retail Banking. We first compute 
the VaR assuming independence between the business lines 
and then use the methodology of copulas to model 
correlation among the business lines. In order to do that, we 
examine if there is a unique and most appropriate severity 
distribution that can be used for modeling the loss severity. 
If a universal severity distribution can be found, then this 
will be useful for fusing the severity and frequency losses 
when computing the aggregated VaR figure. To this end, we 
simulate losses from different heavy-tailed severity 
distributions. We then fit the simulated data to various types 
of severity distributions and check if one type of severity 
distribution can perform well universally.  

3.1 Fitting the loss data 

There are two main statistical techniques to fitting the 
data: (1) Maximum Likelihood Estimation (MLE); and (2) 
Minimum Distance Estimation. In this paper, we focus on 
the MLE method because it is also primarily used by 
practitioner's in the operational risk field.  

 
The MLE method can be used for a data set of losses L1, 

L2, ..., LN which come from a distribution F with the 
parameter set ș. Then the MLE approach requires 
computing the log-likelihood (LL) function as the following 
for the density f: 

 

LL(Ʌ|L1,L2,...,LN)=log(ς ݂(L୧|Ʌ୬୧ୀଵ ))              (3) 
                             

The MLE approach is to find the value of Ʌ෠୑୐୉ which can 
maximize the LL function. In almost all cases, this can be 
computed numerically. As previously mentioned, one of the 
challenges for operational risk loss data, is that there is a 
data collection threshold. Therefore, we need to use the 
corrected MLE approach which accounts for left-censoring 
of the data [7]. This approach involves computing the new 
LL function as below with the data collection threshold T: 

 

LLTruncated(Ʌ|T,L1,L2,...,LN)=logቀൣς ௙(୐౟|஘౤౟సభ )൧
[ଵିி(୘|஘)]౤ ቁ     (4)                        

  

One can then maximize the Ʌ vector in Eq. (4), to obtain 
the correct MLE estimates. The frequency data can be fit by 
simply using the sample mean as the estimate for the 
Poisson distribution's parameter. 

3.2 Monte Carlo Method for Fusing  Severity 

& Frequency Distributions 

Now that the severity and the frequency distribution have 
been determined, we can calculate via Monte Carlo 
simulations, the economic capital (EC) for operational risk 
by integrating the two together. The algorithm is outlined in 
the following: 

 1.    Determine the Severity Distribution and optimal 
parameters from censored MLE fits 

 2. Determine optimal Frequency Distribution 
parameter  

  2.1 Set a simulation number (usually a minimum 
of 10,000 runs) 

 3.      Set the iteration counter t = 1. 
 4.  Draw a random number of losses from the 

Frequency Distribution, n 
 5.     Given the number n, draw n losses, L1, L2, ..., Ln  

from the severity distribution. 
 6.    Sum all n of the severity losses to obtain the 

aggregate value At (Aggregate Loss for time t). 
 7.     Set t = t+1, and go to step 4.  
 8.     Iterate till t hits the maximum iteration threshold. 
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 9.   {A1, A2, ..., At}  is the Aggregate Loss distribution. 
Empirically compute the mean, and  99.9 percentiles to get 
expected loss (EL) and VaR.  

 

3.3 Correlation among Business Lines 

In many instances, one can treat the severity and 
frequency data from different business lines as independent. 
However, for many smaller financial institutions, the losses 
tend to be correlated amongst different lines. Therefore, we 
need a robust statistical model to account for the correlation.  

 
The standard Pearson's correlation coefficient ȡ, is useful 

if we know a priori that the correlations are linear. 
However, if the  dependence across the distribution is not 
linear, we will have to employ other methodology such as 
copula [12-13] to model the correlations. 

 
Broadly speaking, copula is a mathematical method for 

modeling the joint distribution of simultaneous losses. It is 
used to model the dependence structure of a multivariate 
distribution (i.e. more than one business line for example) 
separate from the marginal distribution without having to 
specify a unified, joint distribution. Mathematically, 
suppose that the random vector Y = (Y1, Y2, ..., Yn) which 
consists of n random variables, has a multivariate CDF, FY 

with continuous marginal univariate CDFs, FY1
, ..., FYn

. 

With the inverse CDF method, one can easily show that 

FY1
(Y1) follows a Uniform[0,1] distribution. Then, the CDF 

of {FY1
(Y1), ..., FYn

(Yn)}, CY, is a defined as a copula. We 

will apply two well-known copulas,  Gaussian copula and a 
t-Copula to account for tail dependence between different 
business lines. 

4 Results & Discussion 

We begin by showing the characteristics of the data that 
we analyze from the loss data collection exercise.  

4.1 Characteristics of Data set 

Figures 4-6 show the scatter plots of the data for each pair 
of the three business lines. From the figures, it is clear that 
correlation is present amongst the business lines.  Also we 
notice some potential outliers which we mark in red.  

We apply the Gaussian and t-Copulas to estimate the 
correlation across the business lines. We use MATLAB to 
estimate the correlation structure using the Gaussian and t-
Copula (including the degrees of freedom (df)) via MLE. 
The results are shown in Table 1. 

 

 

Figure 4. Plot of the loss (severity) across business lines 1 
and 2; the red dots indicate potential "outliers" 

 
We next show the plots across Business Line 2 and 3 

along with Lines 1 and 3.  

 
Figure 5. Plot of the loss (severity) across business lines 1 

and 3; the red dots indicate potential "outliers" 

 
Figure 6. Plot of the loss (severity) across business lines 2 

and 3; the red dots indicate potential "outliers" 
 

Correlation Gaussian t-Copula (df) 

Lines 1 & 2 0.04 0.05 (33) 

Lines 1 & 3 0.23 0.26 (44) 

Lines 2 & 3 0.91 0.89 (55) 

Table 1: Copula results for the dataset  
 

4.2 Universal severity distribution for fusing 

severity and frequency  

 We need to now determine which severity distribution 
is most appropriate in fitting the loss data. In Section 2, we 
mentioned several distributions such as Weibull, 
Lognormal, Burr etc. Instead of arduously fitting all severity 
distribution types and then applying statistical goodness of 
fit tests (such as Chi-squared, Cramér-von Mises, 
Anderson-Darling, etc.) to identify the best one, we intend 
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to find a universal statistical distribution which can fit most 
heavy-tailed types of data well. 

In order to do so, we conduct extensive computational 
analysis. We simulated a large dataset (of size 10,000,000) 
of a heavy tailed distribution modeled by a Lognormal-
Gamma distribution with (ȝ=9,ı=2, ț=5). We then fit it to 
the following distributions: (1) Weibull, (2) Lognormal, (3) 
Lognormal-Gamma, (4) GPD, (5) Burr and (6) Pareto. 
Instead of doing graphical/statistical tests of goodness of 
fits, we compare the percentile values as shown in Figure 7 
below.  

Notice how one can get a quick estimate of the fit by just 
looking at the percentile comparisons. For example at the 
99.9%, the true value is around $28 million, and the GPD 
does an under-estimate of $10 Million, while the Burr does 
an underestimate of $12 million (if these were losses for 
example). Notice how the Weibull and Pareto fail 
completely to fit this heavy-tailed data. This is expected 
since Weibull is known to be a thin-tailed distribution, and 
Pareto is a single parameter distribution. Obviously, the 
Lognormal-Gamma fits itself quite well.  

 

 
 
Figure 7. Fitting randomized data; Burr and LNG perform 
well 
 

   The next experiment focuses on the aggregate 
distribution of losses, which is the  primary interest for risk 
practitioners. Here, we assume a Poisson frequency 
distribution with a fixed parameter value of Ȝ = 10 (10 
losses per annum), and calculate the VaR simulation as 
shown in Figure 8 below.  
 

It is interesting to note that while the Burr distribution has 
not performed well in the MLE fit, the Aggregate Loss 
distribution estimates are very reasonable. The true 
expected loss was actually around $6 million while the Burr 
distribution estimated it around $3 million. For the 99% 
value, the Burr estimated an $17 million value, while the 
actual value was near $29 million. The Peak-over-Threshold 
(POT) distributions such as GPD and Pareto completely 
overestimate the VaR and are not suitable for general 
practice.  
 

 
Figure 8. Using fusion of severity and frequency; LNG and 
Burr perform well when computing the overall VaR. 
 

Figure 9 shows the test results using the GPD as the true 
distribution.  Interestingly as shown in the figure, the GPD 
fails to fit itself at the $0 threshold. It can only fit itself from 
a certain positive threshold ($100K in this example). This is 
not surprising, since GPD comes from the Extreme Value 
Theory (EVT) class of POT distributions. We also notice 
from the figure that for the MLE portion only, the 
Lognormal-Gamma and the Burr does a reasonable job in 
the fit. Looking at the MLE portion only, the Burr does the 
best job. For the lower ends of the distribution, like at the 
25th percentile, the Burr is showing a value of around 
$6,641 while the actual value is $6,527. For the higher ends 
of the tail, the 99.95% actual value is around $141 million 
while the Burr is showing around $145 million. The 
Lognormal-Gamma performs the second best under the 
MLE fits criterion. However, we are primarily interested in 
the VaR analysis. Therefore, when one moves to the 
aggregate loss in Figure 9, we observe that the Lognormal-
Gamma performs as well as the Burr in fitting this 
theoretical Aggregate Loss distribution from a GPD severity 
and Poisson frequency of Ȝ ≈ 19. In reality, the GPD is not 
commonly used due to its numerical stability issues. 
However, the figure below shows that even if GPD was the 
"true" severity distribution, the three parameter Lognormal-
Gamma distribution can perform well to estimate the 
Aggregate Loss. While the three parameter Burr distribution 
may marginally perform the "best" amongst all 
distributions, it is not at all intuitive to interpret the meaning 
of the parameter estimates from a Burr distribution. On the 
other hand, for each of the three parameters of the 
Lognormal-Gamma distribution there is a  clear intuitive 
and statistical interpretation, namely, mean, variance and 
kurtosis. We therefore prefer the LNG over the Burr for 
overall VaR analysis. 
 

Percentile Lognormal-Gamma GPD Pareto Lognormal Lognormal-Gamma Burr Weibull

99.95 67,342,538                  42,937,414        -                 5,848,528   67,792,930              35,091,196      5,243,867         

99.9 28,738,314                  19,243,328        -                 3,917,913   28,555,005              16,204,984      4,044,601         

99.5 3,955,866                   2,980,913         -                 1,400,242   3,959,597                2,688,693        1,968,048         

99 1,660,437                   1,332,633         -                 850,126      1,662,351                1,236,956        1,344,850         

98 691,981                      593,784            -                 492,813      690,778                   566,493          863,546            

95 212,919                      201,338            -                 217,512      212,551                   198,482          418,356            

90 85,464                        86,675              -                 105,169      85,316                     87,166            204,730            

50 8,096                          7,977                -                 8,103         8,096                      8,053              7,857                

25 2,731                          2,561                -                 2,102         2,732                      2,505              721                  

0 0                                -                   -                 -             0                             -                 -                   

Parameters Theoretical

Mean 9

Standard Deviation 2

Kurtosis 5

True Severity Distribution Fitted Severity Distributions

LNG

Percentile Lognormal-Gamma GPD Pareto Lognormal Lognormal-Gamma Burr Weibull

99.95 67,342,538               42,937,414        -                 5,848,528   67,792,930              35,091,196      5,243,867         

99.9 28,738,314               19,243,328        -                 3,917,913   28,555,005              16,204,984      4,044,601         

99.5 3,955,866                2,980,913         -                 1,400,242   3,959,597                2,688,693        1,968,048         

99 1,660,437                1,332,633         -                 850,126      1,662,351                1,236,956        1,344,850         

98 691,981                   593,784            -                 492,813      690,778                   566,493          863,546            

95 212,919                   201,338            -                 217,512      212,551                   198,482          418,356            

90 85,464                     86,675              -                 105,169      85,316                     87,166            204,730            

50 8,096                       7,977                -                 8,103         8,096                      8,053              7,857                

25 2,731                       2,561                -                 2,102         2,732                      2,505              721                  

0 0                             -                   -                 -             0                             -                 -                   

Simulation Ȝ = 10
n 500,000

Percentile Lognormal-Gamma GPD Pareto Lognormal Lognormal-Gamma Burr Weibull

99.95 970,711,142             574,435,196      1.E+110 19,461,640 998,997,550             437,324,025    12,018,353        

99.9 422,623,229             272,744,582      1.E+102 14,371,042 441,888,771             200,306,580    10,128,089        

99 29,114,170               19,413,124        3.E+74 4,485,347   29,303,601              16,896,568      5,100,455         

95 4,351,288                3,404,891         5.E+54 1,865,052   4,376,122                3,112,206        2,793,277         

90 1,954,863                1,646,165         2.E+46 1,220,588   1,959,988                1,554,138        2,014,171         

75 687,292                   639,572            2.E+34 641,118      684,631                   626,369          1,140,538         

50 282,757                   283,867            6.E+23 325,484      283,998                   284,422          578,701            

25 136,377                   141,029            3.E+15 165,024      136,260                   142,344          269,970            

0 -                          -                   0.E+00 -             -                          -                 -                   

Expected Loss (EL) 6,065,383                9,266,219         5.E+180 598,329      9,294,097                3,087,695        903,043            

LNG

Parameters Theoretical

Mean 9

Standard Deviation 2

Kurtosis 5

True Severity Distribution Fitted Severity Distributions

Aggregate Loss Distribution Fitted Aggregate Loss Distributions
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Figure 9. Using fusion of severity and frequency; LNG 
performs reasonably well when computing the overall VaR. 

4.3 Fitting the Loss Data & Computing VaR 

From the previous section we found that the Lognormal-
Gamma performs well for fitting heavy-tailed distributions. 
Therefore we apply  it for our severity and Poisson for our 
frequency. We fit across two different thresholds of $0 and 
$100,000 ($100K). The reason is that the data had very few 
(less than 2% data) between $0 and $100K. The results are 
shown in Figure 10 where the estimated parameters of the 
Lognormal-Gamma distributions from the three business 
lines are given. 

 
   

 
Figure 10. Fit of the loss severity data using the 

Lognormal-Gamma (LNG) distribution;  
 
We use the Lognormal-gamma distribution also to 

measure the heaviness of the tail. We next proceed to fitting 
the frequency and then using Monte Carlo to compute the 
VaR.  With the copula correlations obtained from Table 1, 
we conduct the Monte Carlo simulation (using a $100K 
threshold) as described in Section 3.2 to estimate the overall 
VaR by integrating (fusing) severity and frequency of loss 
events across the three business lines. The results are given 
in Figure 11. Notice that the frequency we obtained was 
approximately 2.29 (per annum) for losses above the $100K 
threshold.  

 
The dataset in Figures 4-6 show that there are some 

outlier tail events and this the t-Copula modeling seems to 

be most suitable. As shown at the bottom of Figure 11, it is 
interesting to observe that due to the presence of 
correlations, the VaR t-Copula provides a most conservative 
economic capital value estimate. The difference is quite 
large (approximately 50% increase) from the naive 
independence assumption across business lines. This shows 
the importance of incorporating copulas when there is 
evidence of correlations across business lines.  
 

 
Figure 11. Result of the Monte Carlo simulation; the 

frequency fit is shown here along with the 500,000 
simulation runs. 

 

5 Conclusion and Future Research 

In this paper, we have studied an application of data 
fusion techniques to a problem in quantitative risk 
management. We study a synthetically generated typical 
mid-level financial institution's operational risk 
characteristics and computed the VaR value using 
correlations modeled by copulas. We found the presence of 
correlations across the Business Lines and the t-Copula 
estimate was most conservative and appropriate. We also 
studied data fusion technique of which severity distribution 
can be universally applied a priori. We found strong 
computational evidence of using the three-parameter 
Lognormal-Gamma distribution. We found that it can fit 
many types of heavy-tailed distributions reasonably well.  

  
We are still continuing further study for testing the 

efficacy of using Lognormal-Gamma distribution as a 
universal source. Also we will investigate the applicability 
of using Panjer's algorithm [14-15], a method from actuarial 
science, along with the Fast Fourier Transform (FFT) from 
signal processing. The FFT and Panjer methods can only 
work for specific frequency and severity distributions. We 
expect to conduct further study with the FFT and Panjer 
methods to see which can perform the best data fusion 
among frequency and severity. 
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