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Abstract - This paper describes a continuous-time-state-

process, discrete-time-observation, Interacting Multiple 

Model (IMM) tracking algorithm, and its applications to 

financial market modeling and asset allocation. A 

system state is modeled as a continuous-time, affine-

Gaussian stochastic dynamical process driven by a white 

process noise, as well as structural changes modeled by 

a finite-state, continuous-time, Markov process. The 

system generally assumes multiple models with different 

state space dimensions and an affine-Gaussian state 

jump whenever a model transition occurs. The 

underlying problem is a standard filtering problem for 

estimating the system state based on a sequence of 

discrete-time, linear-Gaussian observations of partial 

system states. As our first attempt for applying the IMM 

methods to financial market modeling, we will use a 

rather naïve switching process using simple multiple 

linear stochastic system models. 

 

Keywords: Interacting Multiple Model (IMM) Tracking, 

Dynamic State Estimation, Markov Jump Linear Systems, 

Switching Financial Market Modeling, Asset Allocation. 

 

1 Introduction 

In this paper, we are generally concerned with financial 

market modeling and asset allocation problems, and 

specifically with the possibilities of Interacting Multiple 

Model (IMM) methods (which were developed as 

maneuver models for target tracking [1] in 1980s, and 

since then, have been refined in many directions) being 

applied to the financial market modeling. This paper will 

expand the continuous-time IMM extrapolation algorithm 

of [14] with a typical tracking stop-and-go target example, 

to a full IMM algorithm. This algorithm will then be used 

to analyze financial market behaviors that we model as a 

continuous-time stochastic dynamical system with 

discrete-time observations, in which the system structures 

are switched among multiple models. 

Since the time when the IMM approach to tracking 

maneuvering targets was first published ([4,5]), the IMM 

methods have been widely used to make tracking 

algorithms adaptive to a wide range of maneuvering and 

other abrupt structural changes in target motion dynamics. 

In fact, the IMM algorithms are one of the most well-

studied subjects in target tracking, as documented in [3-7]. 

As a target tracking algorithm, each model used in an 

IMM algorithm typically represents a standard target 

behavior such as an almost(nearly in [1])-constant-

velocity model, and an almost-constant-rate turn model. 

Alternatively, multiple models may represent different 

levels of white process noises in the target dynamics so as 

to expand the range of tracking (filtering) bandwidth 

adaptively. 

In a typical IMM implementation, both model switching 

and state transition are allowed to happen only on 

prescribed discrete time steps. Indeed, almost all the IMM 

literature starts with a discrete-time target dynamics 

formalism. A few exceptions include [7,8], in which the 

target dynamics are described by stochastic differential 

equations driven by Poisson processes as well as Wiener 

processes. This paper uses the mathematical model, 

described in [14], expressed by a continuous-time Markov 

process on a hybrid state space explicitly through the 

semi-group of state transition operators and its 

infinitesimal generator. Like the model described in [9], 

our model allows switching across spaces with different 

dimensions, and as in [7,10], our model allows the system 

state to jump whenever a model switching happens. These 

flexibilities have motivated us to explore the possibilities 

of applications to financial market modeling. As 

expressed in [17], our general motivation is to explore 

possibilities of applications of engineering techniques to 

the social and economic system analysis. 

In the next section, Section 2, we will define a 

continuous-time Markov jump linear/affine system as a 

Markovian process on a hybrid state space with a 

continuous time parameter, and based on it, we will define 

a filtering problem, a solution to which is given in Section 

3, where an IMM algorithm, with the continuous time 

extrapolation and discrete time updating, will be 

described. Section 4 shows a simple three-model financial 

market model with an IMM extrapolation algorithm. 

Numerical examples of financial market modeling and 

asset allocation analysis will be shown in Section 5, 

followed by our conclusions in Section 6. 

2 Jump Markov Model 

Consider M models, each of which is defined by a 

vector-matrix triple ( , , )m m mA b B  that defines an Itô’s 
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linear or affine stochastic differential equation as 

( )t m t m m tdx A x b dt B dw= + + , 1,...,m M= , which defines a 

continuous-time stochastic process tx  on a Euclidean 

space mE , with a vector-valued, unit-intensity Wiener 

process tw , on an appropriate time interval. Thus, within 

a model m, the target state tx  is continuous (no jump). 

We assume that model transition is expressed by a 

continuous-time, {1,..., }M -valued, time-homogeneous 

Markov process 
0[ , )( )t t tm ∈ ∞  with transition probability 
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We assume each model transition is accompanied with an 

affine-Gaussian jump. Namely, when a model transition 

from m to m′  happens at time t, the target state jumps 

from 
0

lim t h
h

x −↓  in 
mE  to

1
 

0
limt t h
h

x x +↓=  that is a generalized 

Gaussian vector with mean vector 
0

limm m

m t h m
h

F x g
′ ′

−↓ +  and a 

positive semi-definite covariance matrix m

mV
′

 in 
mE ′ , 

where 
m

mF
′

 and 
m

mg
′

are a matrix and a vector with 

appropriate dimensions. We use the convention that 
m

mF I=  (the identity matrix), 0m

mg =  (the zero vector), 

and 0m

mV =  (the zero matrix) for each m, preventing any 

jump within the same model. 

A more precise mathematical model can be expressed as 

a continuous-time, time-homogeneous Markov process 

0[ , )( , )t t t tx m ∈ ∞  on a hybrid state space
2
 

def

1
{ }

M

mm
E E m== ×  

that is a formal direct-sum of Euclidean spaces mE  with 

generally different dimensions, with a transition 

probability 
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1 We assume the right-continuity, to eliminate any ambiguity. 
2 Since {1,..., }nE M=ℜ ×  if 

n

mE =ℜ  for all 1,...,m M= , our choice of 

the state space provides a proper extension to the usual models used for 
multiple-model formulations. 

for each , 1,...,m m M′ = , each mx E∈ , each 
0[ , )t t∈ ∞ , 

and 1 2, 0h h > , where
3

, for each m and 0h ≥ , 

def

( ) mA h

mF h e∆ = , 
def

0
( ) m

h
A

m mg h e b d
τ∆ τ= ∫ , and 

def

0
( )

T
m m

h
A A

m mV h e Q e d
τ τ∆ τ= ∫  with T

m m mQ B B= . ( ; , )Vξ⋅  is 

the symbol for the generic generalized Gaussian 

distribution with mean vector ξ  and a positive semi-

definite covariance matrix V, of compatible dimensions, 

defined by its characteristic function as 

 

 
1 1

( ; , ) exp 1
2

T

m

T T

E
e d V Vζ ξ ξ ξ ξ ζ ζ ζ−  = − −  ∫   (3) 

 

for each vector ζ  with the dimension determined by the 

parameter pair ( , )Vξ . 

The discrete time observations, 
1 2 3, , ,...y y y , are defined 

by 

 

 
t kk

k m k t ky H x η= +   (4) 

 

1,2,3,...k = , for the time sequence, 
1 2 3, , ,...t t t , such that 

0 1k kt t t +≤ <  for each k, with observation matrices, 

1( ) ,  1,2,3,...M

mk mH k= = , of appropriate dimensions, and 

with zero-mean independent Gaussian vectors 
1 2 3, , ,...η η η , 

with covariance matrices
4

 ( )T

k k kR η η=  . The 

independent initial condition is given as 

 

 { }
0 0 0 0 0Prob , ( ; , )t t m m mx dx m m p dx x V∈ = =   (5) 

 

with an initial model probability 0mp , mean 0mx , a 

positive definite covariance matrix 0mV , for each m, and a 

time index 
0t  such that 

0 1t t≤ . 

Then the filtering problem defined by eqns. (1) to (5) is 

the problem for characterizing the a posteriori probability 

distribution, expressed by 1
ˆ =Prob{ | ,..., }

kmk t kp m m y y=  

and 
1Prob{ | , ,..., }

k k kt t t kx dx m m y y∈ =  for each 

1,...,m M= , each 1,2,3,...k =  It would be extremely 

difficult (if not impossible) to express 

1Prob{ | , ,..., }
k k kt t t kx dx m m y y∈ =  in any analytical 

(closed) form because of the infinity possibilities of how 

the system jumps occur, in any given interval [ ]1k kt t− . 

Like in [14], therefore, we will only consider the 

posterior model probability ˆ
mkp , and the first and the 

second moments of the posterior state probability 

3 By TX  we mean the transpose of a vector or a matrix X . 
4    is the symbol for the conditional and the unconditional 

mathematical expectation operators. 
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distribution, 
1Prob{ | , ,..., }

k k kt t t kx dx m m y y∈ = , given 

model m, i.e., 1
ˆ ( | , ,..., )

k kmk t t kx x m m y y= =   and 

1
ˆ ˆ ˆ( | , ,..., )

k k k

T T

mk t t t k mk mkV x x m m y y x x= =−  . 

Remark 1: The IMM filtering problem described in [7] 

is actually a continuous-time-dynamic-system, 

continuous-time-observation problem, where inter-model 

jumps are modeled by an affine function with coefficients 

that are functions of a Poisson random measure that also 

determines the model transitions. By removing the 

measurement-driven terms, the filtering process of [7] can 

be reduced to a continuous-time IMM extrapolation 

formula. The stochastic process of [7] is more or less 

classical jump Markov process, while our model is a 

continuous-time stochastic process that may jump around 

state spaces with different dimensions. In other words, the 

uniqueness of our model resides in the fact that the hybrid 

system state ( , )t tx m  jumps from a space { }mE m×  to 

another space { }mE m′ ′× , rather than jumps within one 

given Euclidean space, with the continuous time 

parameter. 

3 IMM Algorithm 

First we consider the extrapolation step as described in 

[14]. To do so, we need to define a semi-group of linear 

functionals 
h  on the space   of all the real-valued 

bounded continuous functions φ  on the hybrid space E 

by, for each [0, )t∈ ∞  and 0h ≥ , 

( , ) ( ( , ) | , )h t h t h t tx m x m x x m mφ φ + += = =  . Since 

( , )t tx m  is a time-homogeneous Markov process, the 

definition does not depend on t. Then the infinitesimal 

generator   of h  can be defined as 
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0
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2
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 (6) 

 

More precisely, when the limit, 1

0
lim ( )h
h

h φ φ−
↓ − , exists 

in the sup-norm of  , we say the functional φ  belongs to 

the domain of  , i.e., Dom( )φ ∈  , and the last 

expression of eqn. (6) is uniquely implied
5
 by eqns. (1) 

and (2). Then, for any Dom( )φ ∈  , we have [11] 

 

5 See Appendix A of [14] for the derivation of (5) from (1) and (2). 
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 +   ∫ 
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Taking the (unconditional) expectation of both sides of 

(7), under a condition that allows us to interchange the 

expectation and the time-integral, we have 
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                                    ( ( , ))
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x m dτ τ
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φ τ

+ +
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=
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 (8) 

 

or ( ( , )) ( ( , ))t t t t

d
x m x m

dt
φ φ=   . 

As in [14], let us define 

1( ) Prob{ | ,..., }mk t kp t m m y y= = , 

1( ) ( | , ,..., ) ( )mk t t k mkx t x m m y y p t= = , and 

1( ) ( | , ,..., ) ( )T

mk t t t k mkS t x x m m y y p t= = , for each 

1,...,m M= . Then it follows from (1), (2) and (8) that, for 

each [ ]1k kt t t +∈ , with C  defined as the M M×  matrix 

whose ( , )i j  element is ijc , 

 

 
1 1

ˆ ˆ[ ( ) ... ( )] [  ... ]exp( ( ))k Mk k Mk kp t p t p p C t t=−  (9) 
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( ) ( ) ( )

       ( ( ) ( ))
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M
m m

m m m m k m m k

m

d
x t A x t b p t
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c F x t g p t′ ′ ′ ′ ′′=
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+ +∑  (10) 

 

and 

 

 (
)1

( ) ( ) ( )

       ( ) ( ) ( )

       ( )( ) ( )( )

            ( ) ( ) ( ( ) ) ( )

T

mk m mk mk m

T T

m mk mk m m mk

M
m m T m m T

m m m m k m m m k m

m

m T m T m m T m

m m k m m m m m k

d
S t A S t S t A

dt

b x t x t b Q p t

c F S t F F x t g

g x t F g g V p t

′ ′ ′ ′ ′ ′ ′′=
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= +
+ + +
+ +

+ + +
∑  (11) 

 

The initial conditions for (10) and (11) are given as 

ˆ ˆ( )mk k mk mkx t x p=  and ˆ ˆ ˆ ˆ( ) ( )T

mk k mk mk mk mkS t V x x p= + . 

Eqn. (9) is a well known formula, while the derivation 

of eqns. (10) and (11) are given in [14]. 

For each [ ]1k kt t t +∈ , let 

1( ( ), ( ), ( ))M

t mk mk mk mp t x t S tΞ ==  and let ϕ  be the function 

that arranges all the elements in tΞ  into a vector in the N-

dimensional Euclidean space
6

, with 

6  We only need the values for the upper triangle elements for each 

symmetric matrix ( )kmS t . 
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1
(1 dim( ) dim( )(dim( ) 1) / 2)

M

m m mm
N E E E== + + +∑ . Then, 

since all the equations (9) to (11) are linear ordinary 

differential equations, we have ([14]) 

 

 1

0(exp( ) ( ))t DtΞ ϕ ϕ Ξ−=  (12) 

 

where D is an N N×  matrix uniquely defined by eqns. (9) 

to (11), and can be calculated by any one of the well-

known effective numerical methods. 

 Furthermore, if we assume ( ) 0mkp t >  for any 

1,...,m M=  and [ ]1k kt t t +∈ , it follows from (9) to (11) 

that 

 

( )
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V t A V t V t A Q p t

dt
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with 

 

def

1

( ) ( )
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T
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mk t t t k mk
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V t x x m m y y p t

p t p t

    = − − =      
  (14) 

 

and 
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1 1( ) ( ) ( ) ( ) ( )
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m m m

m mk mk m k m m k m
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mk m m k m

t p t x t p t F x t g

x t F x t g

∆ − −′ ′ ′ ′ ′
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= − −
= − +  (15) 

 

We should note that, in (13) to (15), we have 0m

mV =  and 

0m

m∆ = , for each m. 

The IMM update step, which would precede each 

extrapolation step described above, can be performed by 

the standard IMM update formula. Namely, for each 

1,...,m M= , assuming 
( 1) ( ) 0m k kp t− > , we have 

 

 
( 1) ( 1)

( 1) ( 1)

( ) ( )
ˆ

( ) ( )

m k k m k k

mk mk k mk

m k k m k k

x t x t
x K y H

p t p t
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 = + −     (16) 

 

 ˆ ( )mk mk mk mkV I K H V= −  (17) 
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  = −         (18) 

and 

 1T

mk mk mk mkK V H −= H  (19) 

with 

 

 T

mk mk mk mk kH V H R= +H  (20) 
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( 1) ( 1)
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( ) ( )1
exp

2 ( )det(2 )
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m k k m k k

mk k

m k kmk

p t x t
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p tp −

− −
−

  = − −   H
H

(22)
7
 

 

The matrix 
mkH  in (16) – (20) is the observation matrix 

and 
kR  is the covariance matrix of the observation noise 

kη , both in eqn. (4). 

Remark 2: In order to derive the first and the second 

moments through eqns. (10) and (11), to be precise, we 

need an extra step, since, for example, ( , ) ix m xφ =  if 

m m′= , 0 otherwise, does not define a bounded 

functional φ . In order to justify the use of eqns. (6) to (8), 

we may need to consider a series of stopped processes, 

each bounded by a compact set {( , ) | }x m x k≤  for each 

integer k, and to apply Dynkin’s lemma to obtain the 

desired result as a limit, as is done in [12] and [13]. 

 Remark 3: In a sense, a key to develop a very simple 

solution in the form of the linear ordinary differential eqn. 

(12) is our use of the particular form of the first and the 

second moments, ( )mkx t  and ( )mkS t , rather than a usual 

choice of conditional mean and covariance,

1( | , ,..., )t t kx m y y  and 

1 1 1( | , ,..., ) ( | , ,..., ) ( | , ,..., )T T

t t t k t t k t t kx x m y y x m y y x m y y−   . 

To the best of our knowledge, this fact was shown in [8] 

for the first time, and has been expanded to a general 

multiple-model, affine-Gaussian dynamics and jumps in 

[14]. As mentioned before, in contrast, the continuous-

time IMM formulation of [7], devised 30 some years ago, 

is based on a form of classical jump Markov stochastic 

process. 

4 A Simple Financial Market Model 

As a financial market model, we will use a simple 

multiple-model switching system, as in [18-20]. We have 

three models (i.e., 3M = ), (i) the “up” (“bull”), (ii) 

“steady,” and (iii) “down” (“bear”) models. Generally, by 

“u,” we mean the “price” in an appropriate sense, usually 

some sort of average price, and by “v,” its time derivative. 

The three models are defined as follows: 

(i) Up (Bull) Model ( 1m = ) is based on a biased 

Ornstein-Uhlenbeck process, defined by the affine 

stochastic differential equation, 

 

7 
def

T

A
x x Ax=  
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1 1 1( )

t t

t t t

du v dt

dv v v dt q dwβ
= =− − +   (23) 

 

with unit-intensity Wiener process tw , and three strictly 

positive parameters, 1 1 1( , , )v qβ . 

(ii) Steady Model ( 2m = ) is a one-dimensional 

stationary stochastic process defined by 

 

 
0 0 0( )t tdu u u dt q dwβ ′=− − +   (24) 

 

with unit-intensity Wiener process tw′ , and three strictly 

position parameters, 0 0 0( , , )u qβ . 

(iii) Down (Bear) Model ( 3m = ) is another biased 

Ornstein-Uhlenbeck process defined by 

 

 
1 1 1( )

t t

t t t

du v dt

dv v v dt q dwβ
= ′′=− + +  (25) 

 

also with unit-intensity Wiener process tw′′ . We may have 

a different set of parameters. But, for simplicity, we use 

the same set of parameters of Model 1. 

Thus we have 
1 3

1

0 1

0
A A β

 = =  −  , 
1 3

1 1

0
b b

vβ
 = = −   , 

1 3

1

0
B B

q

 = =     , 
1 3
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0 0
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Q Q
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 = =    , [ ]2 0A β= − , 

[ ]2 0 0b uβ= , 
2 0B q =   , and [ ]2 2Q q=  with 

( )2

1 3 ,E E= = −∞ ∞  and ( )2 ,E = −∞ ∞ . Assuming the 

symmetry, the transition probabilities of eqn. (1) is 

defined by 
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with two parameters, 1 0c >  and 2 0c > . [ ]2 2

1 3 1 0F F= =
, [ ]2 2 2 3

1 3 1 1 0g g V V= = = = , [ ]1 1

2 3 1 0
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[ ]1 1

2 1 30
T
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2 3 2

1

0 0

0
V V σ

 = =    , with 

2

1 1 12q β σ= . 

Then we can write eqn. (11) explicitly as 
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21 22

31 32 33
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D D D

Ξ Ξ
  =    

 (27) 
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T T T
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1 2 3( ) ( ) ( ) ( )
T

T T T

k k k kS t S t S t S t =       (with the vector 

representations 
kS  and 

mkS  for the matrices 
kS  and 

mkS ), 
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11 1 2 1

2 1

/ 2 0
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c c
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c c
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2 1

0 0 0

/ 2 0
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0 / 2

v c v

D u

c v v

β
β

β

    =    − − 

, 

1 2

1 1

22 1 0 2 1

2 1

1 1

1 / 2 0 0
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0 0 / 2 1
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c c

c

D c c c
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1 2 1

31 0

2 2

2 1 1
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2 1
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0 0 0 0 0 0 2

c c

c

c

D c c c

c c

c

c

β
β

β
β

−  − −  − − = −  − − −  − − 
 

The initial condition is given by the initial model 

probabilities 
0 1 / 3mp ≡ , for 1,2,3m = , and using the first 

measurement at time 1 0t t= , by 
11 1 1 1 10( ) [  ]Tx t y v p= , 

21 1 1 20( ) [ ]x t y p= , 
31 1 1 1 30( ) [  - ]Tx t y v p= , 

1

2

11 1 1 10 11 1 11 1 10( ) diag( , ) ( ) ( ) /T

vS t R p x t x t pσ=+ , 
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2

21 1 1 20 21 1 20( ) ( ) /S t R p x t p= + , and 

1

2

31 1 1 30 31 1 31 1 30( ) diag( , ) ( ) ( ) /T

vS t R p x t x t pσ=+ . 

The measurement matrices are given 
1 3 [1 0]k kH H= =  

and 
2 [1]kH = , for all 1,2,3,...k =   

5 Numerical Examples 

We applied the dynamic model described in the 

previous section to the S&P market. The historical data 

from 1980 to 2014 was tested [15]. Specifically, the close 

prices were used as the measurements and the three 

dynamic models: “up (bull)”, “steady”, and “down (bear)” 

as described in the previous section were used to assess 

the market condition. Figure 1 shows the S&P historical 

data and the monthly returns from 1980 to 2014. We 

randomly selected one daily, one weekly, and one 

monthly data sets, each with 100 data points to test the 

algorithm respectively. 

 
Figure 1.  Monthly S&P form 1980 to 2014 

 In each test, the resulting estimated probabilities of the 

three models are used to make the asset allocation 

decisions. Similar to other popular technical indicators 

such as stochastic oscillator (SO) or relative strength index 

(RSI) [16], the resulting “IMM” model probabilities are 

considered as a momentum indicator. This new indicator 

attempts to determine the potential market overbought or 

oversold conditions. For example, when the “up” model 

probability is the highest one among the three and is above 

a certain threshold, it may indicate an overbought 

condition, and when the “down” model probability is the 

highest one and is above a certain threshold, it may 

indicate an oversold condition. 

 With the IMM indicator, we dynamically allocate the 

asset and make trading decisions accordingly. A simple 

strategy is to short (sell) the S&P futures when the “up” 

probability is the highest one (overbought) and to long 

(buy) when the “down” probability is the highest one. We 

may also want to close our positions and sit on sideline 

when the market is uncertain (“steady” mode probability is 

the highest). However, this “contrarian” approach may not 

work well in the market with a strong up or down trend.  

To mitigate this risk, when the IMM “up” or “down” 

probabilities are in extreme values (say, > 0.95) which 

indicates a potential strong trend, the decision rule 

mentioned above will reverse to follow the market 

directions. 

 With the above simple asset allocation rules based on 

the IMM indicator, we conduct simulation and test its 

performance on the three randomly selected S&P data sets. 

We also compare their performances with the naïve buy-

and-hold policy. 

I. Daily Data 

 Figure 2 shows a randomly selected daily S&P closing 

prices and returns over a 100 days period. The daily 

returns represent the daily equity percentage changes of 

the buy-and-hold strategy. Figure 3 shows the probability 

trajectories of the three models estimated by the IMM 

algorithm. 

 
Figure 2. S&P Daily Data – 100 Days 

 
Figure 3. IMM Model Probabilities – S&P Daily Data 

 The corresponding trading decisions of the IMM 

dynamic asset allocation (IMM-DAA) strategy and its 

daily returns are shown in Figure 4. In the figure, decision 

“1” represents a long position, “-1” represents a short 

position, and “0” represents no position. Figure 5 

compares the equity curve over the 100 days period for the 

DAA strategy and the buy-and-hold (BH) policy. As seen 

from the figure, DAA performs significantly better than 

the BH strategy with only a few trading actions - a total of 

around 20 over the 100 days period. At the end of the 100 

days period, the cumulative return for BH is under 6% 

while DAA’s return is almost 14%. Note that the 

maximum drawdown
8
 of the BH policy is approximately 

7% while the maximum drawdown of the DAA is only 

about 5%.  

8 Drawdown is defined as the peak-to-trough decline during a specific 

period of an investment. A drawdown is usually quoted as the percentage 
between the peak and the trough [16]. 
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Figure 4. IMM-DAA Trading Decisions and Daily Returns 

 
Figure 5. Equity Curves – Buy-and-Hold vs. DAA 

II. Weekly and Monthly Data 

 Figures 6-9 show the results corresponding to the 

weekly and monthly data. Note that the decision rules 

based on the IMM indicators are exactly the same for the 

three data sets. The only parameter that has to be changed 

to adapt to the different time intervals is the variance of 

the process noise in the IMM model. Based on the Markov 

property, the standard deviation of the process noise 

(volatility) is proportion to the square root of the time 

difference between two subsequent observations. 

 
Figure 6. S&P Weekly Data 

 
Figure 7. Trading Performance - Weekly Data 

 
Figure 8. S&P Monthly Data 

 
Figure 9. Trading Performance – Monthly Data 

As shown in the figures, DAA either performs better 

than or close to the BH with significantly lower 

drawdown. For example, Figure 7 shows that while BH 

loses about 31% of the equity over the 100 weeks period 

with a maximum drawdown of about 54%, DAA only 

loses 11% with a maximum drawdown of 43% over the 

same period. Similarly, Figure 9 shows that while BH 

earns about 26% of the equity over a 100 months period 

with a maximum drawdown of about 54%, DAA earns a 

slightly less return of 21% over the same period with a 

significantly smaller drawdown of only 24%. 
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 Table 1 summarizes the performance results for the 

three randomly selected data sets. In the table, an industry-

standard performance indicator called the “Sharpe ratio”
9
 

is also presented for performance comparison. Higher 

Sharpe ratio indicates a better risk-adjusted return. It is 

clear from the table that the IMM based DAA (IMM-

DAA) is an effective and promising asset allocation 

method. 

 

Table 1. Performance Comparison 
 

 Rate of 

Return 

Maximum 

Drawdown 

Sharpe 

Ratio 

Daily - BH 5.95% 7.88% 0.878 

Daily- DAA 13.86% 5.40% 2.307 

Weekly - BH -31.26% 54.14% -0.615 

Weekly- DAA -10.88% 42.60% -0.134 

Monthly - BH 26.08% 53.54% 0.192 

Monthly - DAA 21.00% 23.62% 0.160 

6 Conclusion 

In this paper, we described a continuous-time, discrete-

observation, Interacting Multiple Model (IMM) algorithm, 

based on the continuous-time IMM extrapolation 

developed in [14], and applied it to financial market 

dynamic modeling. We modeled the system by a 

continuous-time, jump Markov process and estimated the 

system state based on a sequence of discrete-time, linear-

Gaussian observations. We utilized a rather naïve 

switching process with multiple linear stochastic system 

models to represent the S&P market dynamic model. The 

resulting IMM model probabilities are served as a 

momentum indicator to make the dynamic asset allocation 

decisions (DAA). We tested the resulting IMM-DAA 

strategies on several randomly selected S&P data sets of 

various time intervals. The results showed that the new 

strategy is either comparable or significantly outperforms 

the naïve buy-and-hold policy with much less risk. 
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