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Abstract—A new method to sparse eigen subspaces by using
the pdf-optimized zero-zone quantizers is proposed. It is called
sparse Karhunen-Loeve Transform (SKLT). The performance of
the proposed method is presented for sparse representation of
eigenportfolios generated from empirical correlation matrix of
stock returns in NASDAQ-100 index. Performance results show
that the proposed SKLT outperforms the popular algorithms to
sparse eigen subspaces reported earlier in the literature.

Index Terms—Subspace methods, dimension reduction, trans-
form coding, cardinality reduction, sparse matrix, eigen decom-
position, principal component analysis, Karhunen-Loeve Trans-
form, midtread (zero-zone) pdf-optimized quantizer, Lloyd-Max
quantizer.

I. INTRODUCTION

Karhunen-Loeve Transform (KLT), also known as principal

component analysis (PCA) and eigenanalysis, has been widely

utilized in eigen filtering and dimension reduction applications.

In some applications, each element of the principal compo-

nents (eigenvectors) has special meaning that often requires

further interpretation [1], [2], [3], [4]. Eigenvectors are re-

purposed for the generation and maintenance (rebalancing)

of eigenportfolios for investment and trading strategies in

finance. Therefore, non-zero loadings (elements) of a principal

component (PC, or eigenvector) bring extra cost in such

applications [4], [5].

Generating sparse PCs has been proposed in the literature.

The straightforward method for sparsity is a simple threshold-

ing [1]. It is easy to implement but it may cause unexpected

distortion [1]. Regularization is the most popular method that

has been utilized for sparsity. ℓ0 (norm-0) regularizer leads

to a sparse solution. Since it makes the optimization problem

non-convex, ℓ1 regularizer, so called lasso, is also widely used

as an approximation [2], [6]. ℓ1 regularizer based method

was proposed in [7] for sparse portfolios. SCoTLASS [2] and

SPCA [3] are the two prior methods that utilize the ℓ1 and ℓ2
regularizers for sparse approximation to PCs, respectively.

Although the sparse PCA is modeled in [2], [3] as an

explained variance maximization problem using ℓ1 and ℓ2
regularizers, those frameworks still lead to a non-convex opti-

mization problem due to other constraints. A convex relaxation

method called SDP Relaxations for Sparse PCA (DSPCA)

using semidefinite programming (SDP) was proposed as an

approximation to the original problem [4]. Another lasso based

approach, sparse PCA via regularized SVD (sPCA-rSVD), is

proposed in [8]. Simulation results for certain cases show

that sPCA-rSVD provides competitive results to SPCA. A

variation of sPCA-rSVD, sparse principal components (SPC),

that utilizes the penalized matrix decomposition (PMD) is

proposed in [9]. It utilizes the lasso penalty for sparsity.

Unfortunately, none of these methods result in desired spar-

sity with reasonable distortion regardless of their prohibitive

computational cost for high dimensions. Moreover, the lack

of mathematical framework to measure and adjust distortion

with ease, or explained variance loss, for a desired sparsity

level makes sparse PCA methods of this kind quite ad-hoc

and difficult to use. On the other hand, the simple (hard)

thresholding technique may cause unexpected distortion levels

as called variance loss although it is easy to implement

[1]. It performs better than SCoTLASS and slightly worse

than SPCA [3]. Soft thresholding (ST) is another technique

for sparse representation reported in [3]. Certain experiments

show that ST offers slightly better performance than simple

thresholding [3]. Therefore, threshold selection plays a central

role in sparsity performance as expected.

In this paper, we propose a subspace sparsing framework

that may be considered as an extension of the simple and soft

thresholding methods [10], [11], [12], [13]. We approach the

problem of sparse PCA from the quantization point of view

and exploit the mathematical tools used in the source coding

field [1], [10], [14], [15], [13]. The method utilizes the rate-

distortion theory in order to measure the representation error

(distortion) for the desired sparsity. We compare performances

of the proposed method with the ST [3], SPCA [3], DSPCA

[4] and SPC [9] using the metrics of non-sparsity (NS)

and explained variance (EV) as described in [3], [4]. As an

example, we sparse eigenportfolios of the stocks in NASDAQ-

100 index by using this method and highlight its merit in the

following sections of the paper.

The mathematical preliminaries are given in the next sec-

tion. In Sec. III, the proposed sparse KLT method is summa-

rized. The performance of SKLT is presented for sparse rep-

resentation of eigenportfolios in Sec. IV. Concluding remarks

are presented in Sec. V.
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II. MATHEMATICAL PRELIMINARIES

Linearly independent N orthonormal discrete sequences

(vectors), {φk(n)} 0 ≤ n ≤ N − 1, that form an orthonormal

subspace satisfy the properties [10]

N−1∑

n=0

φk(n)φ
∗

l (n) = δk−l =

{
1, k = l

0, otherwise
(1)

where n is the discrete-time variable. In matrix form, the basis

sequences φk = {φk(n)} are the rows of the transform matrix

as

Φ = [φk(n)] : k, n = 0, 1, ..., N − 1 (2)

with the matrix orthonormality stated as

ΦΦ−1 = ΦΦ∗T = I (3)

where ∗T indicates the conjugated and transposed version of

a matrix, and I is N ×N identity matrix.

θ = Φx (4)

is the forward transformation of a signal vector x where θ is

the transform coefficient vector. Similarly,

x = Φ−1θ = Φ∗Tθ (5)

is the inverse transform operator applied to θ that perfectly

reconstructs the signal vector. In transform coding (TC),

coefficients are quantized in the transform domain as

θ̂ = Q (θ) (6)

Then, reconstructed signal with quantized coefficient vector θ̂

is expressed as

x̂ = Φ∗Tθ̂ (7)

The reconstruction error in mean square error (mse) sense due

to quantization of coefficients is written as [10]

σ2
ǫ,TC =

1

N
E
{
x̃
T
x̃
}

(8)

for zero mean signal x where the quantization error is x̃ =
x− x̂. Similarly, the mse between the original and quantized

coefficients in the transform domain is calculated as

σ2
q,TC =

1

N
E
{
θ̃Tθ̃

}
=

1

N

N−1∑

k=0

σ2
qk,TC (9)

where θ̃ = θ − θ̂, and σ2
qk,TC = E

{∣∣∣θ̃k
∣∣∣
2
}

is the vari-

ance of the quantization error for the kth coefficient. Hence,

σ2
ǫ,TC = σ2

q,TC for an orthonormal transform that preserves

signal energy in the subspace [10].

Sparsity in transform coefficients is desired in TC while the

sparsity of transform matrix is desired for sparse representa-

tions including sparse KLT. Sparse transform aims to sparse

subspace (transform matrix) where basis vector components

are interpreted as loading coefficients in applications [16],

[17], [18], [19], [20]. Quantization of a given subspace Φ with

a quantizer Q, or a set of quantizers {Qk}, is defined as

Φ̂ = Q(Φ) (10)

In this case, Q is a pdf-optimized midtread quantizer designed

for the entire transform matrix. Then, transform coefficients

are obtained by using the quantized matrix (for quantized

subspace)

θ̂ = Φ̂x (11)

In sparse representations, projection of a given signal vector

onto quantized subspace is performed to obtain coefficients.

Note that the orthogonality of the eigenspace (eigenmatrix) is

compromised due to the quantization. Quantization error of the

subspace equals to the reconstruction error of the signal vector,

in mse, by using non-quantized inverse transform matrix. This

error is expressed as

σ2
q,S =

1

N2

N−1∑

k=0

φ̃k

T

φ̃k (12)

where φ̃k = φk − φ̂k.

In a sparse representation, pdf-optimized midtread quan-

tizer(s) are specifically designed for eigenmatrix or each eigen-

vector. pdf-optimized quantizer minimizes quantization error

in mse sense for the known function p(x). All bins of a pdf-

optimized quantizer have the same level of representation error

[11], [12]. The quantization error of an L-bin pdf-optimized

quantizer is expressed as follows

σ2
q =

L∑

k=1

xk+1
ˆ

xk

(x− yk)
2
p(x)dx (13)

where quantizer bin intervals, xk, and quanta values, yk, are

calculated iteratively. The necessary conditions for an mse

based pdf-optimized quantizer are given as [11], [12]

∂σ2
q

∂xk

= 0; k = 2, 3, . . . , L

∂σ2
q

∂yk
= 0; k = 1, 2, 3, . . . , L (14)

leading to the optimal unequal intervals and resulting quanta

values as

xk,opt =
1

2
(yk,opt + yk−1,opt) ; k = 2, 3, . . . , L (15)

yk,opt =

´ xk+1,opt

xk
xp(x)dx

´ xk+1,opt

xk
p(x)dx

; k = 1, 2, . . . , L (16)

where x1,opt = −∞ and xL+1,opt = ∞. Sufficient condition

to avoid local optimum in (14) is the log-concavity of the

pdf function p(x). Log-concave property holds for Uniform,

Gaussian and Laplacian pdf types [14]. The representation

point (quantum) of a bin in such a quantizer is its centroid

that minimizes the quantization noise for the interval. We are
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interested in pdf-optimized quantizers with adjustable zero-

zone, odd L or midtread quantizer, to sparse (quantize) eigen

vectors of an eigen subspace. We will present a practical

design example by using the proposed technique to sparse

subspaces in the following section.

The discrepancy between input and output of a quantizer

is measured by the signal-to-quantization-noise ratio (SQNR)

[13]

SQNR(dB) = 10 log10

(
σ2
x

σ2
q

)
(17)

where σ2
x is the variance of an input with zero-mean and

known pdf type, and expressed as

σ2
x =

∞
ˆ

−∞

x2p(x)dx (18)

The first order entropy (rate) of the output for an L-level

quantizer with such an input is calculated as [13], [21]

H = −
L∑

k=1

Pk log2 Pk (19)

where Pk =
´ xk+1

xk
p(x)dx.

III. SPARSE KLT

In this section, we explain the proposed method sparse KLT

(SKLT) to sparse eigen subspace. A detailed example of SKLT

on a finance application is given in the next section. The steps

of SKLT are summarized as follows.

1) For a given signal vector x with zero-mean and unit

variance assumption, correlation matrix R is calculated.

R is a real, symmetric and positive definite matrix.

2) Eigendecomposition of R is performed to obtain KLT

transform matrix AKLT that is comprised of N eigen-

vectors {φk} ; k = 1, 2, . . . , N with the eigenvalues or-

dered in descending order as λ1 > λ2 > . . . > λN > 0.

3) Probability density function (pdf) of eigen subspace (or

each eigenvector) components is modeled by inspecting

the components histogram in order to design initial pdf-

optimized zero-zone quantizers QI .

4) LI -level zero-zone quantizer QI optimized for modeled

pdf is designed. The level LI of the initial quantizer is

determined based on the computational cost and signal-

to-quantization noise (SQNR) of the quantizer. LI has to

be an odd number to create a zero-zone for the quantizer.

Note that the rate of the quantizer is be calculated as

R = log2 L (20)

5) Although the initially designed LI -level pdf-optimized

zero-zone quantizer QI has zero-zone that offers spar-

sity, the size of the zero-zone may not be large enough

to achieve the desired level of sparsity for certain appli-

cations. For the purpose, zero-zone of QI is increased

by inclusion of its neighboring bins that results in a

new L-level zero-zone quantizer Q. L of new zero-zone

quantizer that delivers the desired sparsity is calculated

using cross-validation. Sparsity is basically tuned by

increasing the size of zero-zone of the pre-designed LI -

level pdf-optimized zero-zone quantizers QI .

6) L-level quantizer Q is employed to quantize AKLT

shown as

ÂKLT = Q (AKLT ) (21)

One can also design quantizers specifically for each

eigenvector in particular for high dimensions if the

application needs different sparsity levels in each eigen-

vector. Then, quantization of each eigenvector is defined

as
{
φ̂k = Qk (φk)

}
∀k where Qk is the quantizer de-

signed for kth eigenvector.

7) Then, the transformation is performed using quantized

eigen subspace defined as

θ̂ = ÂKLTx (22)

IV. SPARSE REPRESENTATION OF EIGENPORTFOLIOS

In this section, we will employ SKLT described in Sec. III

for a finance application and compare its performance with

the ST [3], SPCA [3], DSPCA [4] and SPC [9] methods with

respect to the non-sparsity (NS) and explained variance (EV)

metrics.

A. Sparse Eigenportfolios for NASDAQ-100 Index

Pairwise correlations among stock returns populate the

empirical correlation matrix that reveals important information

about portfolio return and its risk. An important application of

eigenanalysis for empirical correlation matrix is the creation of

eigenportfolios for the given basket of stocks where elements

of eigenvectors used as the capital allocation coefficients for

each eigenportfolio [5], [19], [22]. Eigenportfolios are widely

used in various investment and trading strategies [23]. It is

required to buy and sell certain stocks in amounts defined by

the loading (capital allocation) coefficients in order to build

and rebalance eigenportfolios in time for the targeted risk lev-

els. Some of the loading coefficients may have relatively small

values where their trading cost becomes a practical concern

for portfolio managers. Therefore, sparsing eigensubspace of

an empirical correlation matrix may offer cost reductions in

desired trading activity.

Empirical correlation matrix of the end of day (EOD) stock

returns for NASDAQ-100 index with W = 30 day time

window ending on April 9, 2014 is measured [5]. The vector

of 100 stock returns at time n is created as [19]

r(n) = [rk(n)] ; k = 1, 2, . . . , 100 (23)
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Fig. 1: Normalized histogram of eigenmatrix elements for

empirical correlation matrix of end of day (EOD) returns

for 100 stocks in NASDAQ-100 index with W = 30-day

measurement window ending on April 9, 2014.

The empirical correlation matrix of returns at time n is

measured as

RE(n) ,
[
E
{
r(n)rT (n)

}]
= [Rk,l(n)] (24)

=




R1,1(n) R1,2(n) · · · R1,100(n)
R2,1(n) R2,2(n) · · · R2,100(n)

...
...

. . .
...

R100,1(n) R100,2(n) · · · R100,100(n)




where the matrix elements

Rk,l(n) = E {rk(n)rl(n)} =
1

W

W−1∑

m=0

rk(n−m)rl(n−m)

(25)

represent measured pairwise correlations for an observation

window of W = 30 samples. The returns are normalized to be

zero mean and unit variance, and RE(n) is a real, symmetric

and positive definite matrix. Eigendecomposition of RE , is

defined as follows

RE(n) = A
T
KLTΛAKLT =

N∑

k=1

λkφkφ
T
k (26)

where {λk,φk} are eigenvalue-eigenvector pairs. Note that

{λk} are sorted in descending order after the eigenvalues and

eigenvectors are calculated. Therefore, first principal compo-

nent (PC1) is placed in the first row of AKLT matrix.

The histogram of AKLT matrix elements is inspected to

model with a proper probability density function (pdf). It is

observed to be a Gaussian pdf as displayed in Fig. 1. Now, we

define the level LI of the initial zero-zone quantizer optimized

for Gaussian pdf. The level is set as LI = 65 in this paper

since the SQNR of the quantizer does not improve significantly

for LI > 65. In addition, it has a reasonable computational

cost.

Fig. 2 displays the rate-distortion performance of Gaussian

pdf-optimized zero-zone quantizer with respect to the size of

zero-zone. Rate of quantizer output is calculated by using first

order entropy defined as (19). One can calculate the level

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Rate (bits)

S
Q

N
R

Fig. 2: Rate (bits)-distortion (SQNR) performance of zero

mean and unit variance gaussian pdf-optimized quantizer for

L = 65 bins. Distortion level is increased by combining

multiple bins around zero in a larger zero-zone.

of the quantizer for the given rate by using (20). Distortion

caused by the quantizer is calculated in mse and represented

in SQNR as expressed in (17). In this figure, distortion level is

increased when the zero-zone of the quantizer increases with

more sparsity, and the rate decreases, accordingly [11], [12].

Thus, one can analytically calculate the resulting distortion

for the required sparsity. Therefore, the proposed SKLT is a

theoretically trackable method.

Although the initial value LI = 65 offers some sparsity,

the size of the zero-zone may not be large enough to provide

the desired level of sparsity. For such a case, a new L-level

quantizer, L < LI , is created by combining multiple bins

around the zero zone in a new larger zero-zone. The levels

of new quantizers are calculated with cross-validation. One

can also design different quantizers for each eigenvector if the

application justifies it. Rate-distortion performance of the new

L-level quantizer is calculated and displayed in Fig. 2.

A single quantizer is applied to the entire eigen sub-

space as ÂKLT = Q (AKLT ) or to one eigenvector (PC){
φ̂k = Qk (φk)

}
∀k. The component values of sparsed eigen-

vectors
{
φ̂k

}
are repurposed as the capital allocation co-

efficients to create the kth sparse eigenportfolio. Therefore,

transaction cost is reduced since some of the capital allocation

coefficients are quantized as zero.

B. Performance Comparisons

In this section, we compare performance of SKLT with

the ST [3], SPCA [3], DSPCA [4] and SPC [9] methods in

terms of explained variance (EV) metric for the given non-

sparsity (NS) level that is defined as the percentage of non-

zero components in a given sparsed PC (eigenvector). The

explained variance (eigenvalue) of the PCs are calculated as{
λk = σ2

k = φT
kRxφk

}
∀k where φk is the kth PC (eigen-

vector) for a given correlation matrix R. For the sparsed

PCs, new explained variances (eigenvalue) are calculated as{
λ̂k = σ̂2

k = φ̂k

T

Rxφ̂k

}
∀k where φ̂k is the kth sparse PC

(eigenvector). We are unable to provide their comparative rate-
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Fig. 4: (a) Explained variance of sparsed first PC and cumulative explained variance of sparsed (b) two PCs, (c) three PCs,

(d) four PCs, (e) five PCs, (f) six PCs, (g) seven PCs, and (h) eight PCs generated daily from empirical correlation matrix of

EOD returns between April 9, 2014 and May 22, 2014 for 100 stocks in NASDAQ-100 index by using KLT, SKLT, SPCA

and ST methods. Non-sparsity level is set to 85% for each PCs.

distortion performance due to the lack of model to generate

sparse PCs with other popular methods.

In this section, we assume that the required non-sparsity

level is known for the desired cost reduction. In fact, the

calculation of required non-sparsity level depends on the

application. It is not a trivial task and beyond the scope of this

paper. For the given non-sparsity level, we tuned the zero-zone

size of 65-level Gaussian pdf-optimized midtread quantizer

by combining multiple bins around zero in a larger zero-zone

to sparse the eigenvectors of eigen subspace represented by

AKLT. Thus, lower level quantizers for the required non-

sparsity level are created out of the pre-designed 65-level

Gaussian pdf-optimized midtread quantizer. Note that the level

of the quantizer is the sparsity tuning parameter for SKLT.

For other methods, sparsity tuning parameters are set to the

best possible values that provide the desired non-sparsity

level. It is noted that the trade-off between the savings due

to the forced sparsity of eigenmatrix and the profit-and-loss

(PNL) performances of such sparsed eigenportfolios need to

be quantified in such a real world investment scenario.

Fig. 3 displays the explained variance of sparsed first PC

(PC1) generated by SKLT, DSPCA, SPCA, ST and SPC

with respect to increasing non-sparsity level for empirical

correlation matrix of end of day (EOD) returns for 100 stocks

in NASDAQ-100 index with W = 30-day measurement

window ending on April 9, 2014. It is clear that SKLT

provides better explained variance than other popular methods

for the different non-sparsity levels. Note that SKLT also

provides better performance with respect to increased non-

sparsity level for daily generated empirical correlation matrix

of EOD returns between April 9, 2014 and May 22, 2014.

Fig. 4a displays the explained variance of sparsed first PC
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Fig. 5: (a) dR and (b) dA of sparse eigen subspaces gener-

ated daily from empirical correlation matrix of EOD returns

between April 9, 2014 and May 22, 2014 for 100 stocks in

NASDAQ-100 index by using SKLT, SPCA and ST methods,

respectively. Non-sparsity level of 85% for all PCs is forced

with W = 30-days.

generated by KLT, SKLT, SPCA and ST for 30 different

empirical correlation matrices of end of day (EOD) returns

of 100 stocks in NASDAQ-100 index with W = 30-days

measurement window for the same data. Non-sparsity level

is set to 85% for each PC. Since SPCA and ST perform

better than DSPCA and SPC for the 85% non-sparsity level as

displayed in Fig. 3, SKLT is only compared with KLT, SPCA

and ST for convenience. The original (non-quantized) KLT

gives us the upper limit for the explained variance. Fig. 4b, Fig.

4c, Fig. 4d, Fig. 4e, Fig. 4f, Fig. 4g, and Fig. 4h display the

cumulative explained variance of sparsed two, three, four, five,

six, seven and eight PCs for the same experiment, respectively.

Note that the cumulative explained variance of all sparsed

PCs for the same experiment has similar results with the ones

displayed in Fig. 4. SKLT provides better explained variance

performance than other methods even if the non-sparsity level

is decreased to 80% and 75%. These figures highlight the

superior sparsity performance of the SKLT method over the

popular algorithms proposed in the literature. In addition, the

SKLT is much simpler to implement than the others and

trackable.

The distance between the original RE(n) and the modified

correlation matrix R̂E(n) due to sparsed eigenvectors is

defined as

dR =
∥∥∥RE(n)− R̂E(n)

∥∥∥
2

(27)

where ‖.‖
2

is the norm-2 of a matrix. Similarly, the dis-

tance between the original and the sparsed eigenmatrices is

expressed as

dA =
∥∥∥AKLT − ÂKLT

∥∥∥
2

(28)

Fig. 5a and Fig. 5b display the dR and dA of sparse eigen

subspaces generated daily from empirical correlation matrix

of EOD returns between April 9, 2014 and May 22, 2014 for

100 stocks in NASDAQ-100 index by using SKLT, SPCA and

ST methods, respectively. Non-sparsity level of 85% for all

PCs is forced with W = 30-days. These measures show that

the proposed SKLT sparses eigen subspace of NASDAQ-100

index better than the SPCA and ST methods. Moreover, the

SKLT does not alter the actual covariance structure like other

methods due to forced sparsity as their methodology.

Although theoretically appealing, the optimization algo-

rithms like DSPCA, SPCA and SPC with constraints for forced

sparsity (cardinality reduction of a set) may substantially alter

intrinsic structures of original eigenportfolios. Therefore, such

a sparse representation might cause to deviate significantly

from the measured empirical correlation matrix. Hence, finan-

cial performance degradations may happen in eigenportfolios

generated by sparsity constrained optimization methods.

V. CONCLUSIONS

In this paper, we propose a simple method called sparse

KLT (SKLT) to sparse eigen subspaces. The proposed SKLT

method utilizes the mathematical framework developed for
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transform coding and rate-distortion theory. Due to the non-

convex nature of the problem, regularization based optimiza-

tion methods proposed in the literature are unable to guar-

antee good performance for an arbitrary covariance matrix.

The sparsity performance comparisons of eigenportfolios for

NASDAQ-100 index demonstrate the superiority of SKLT over

the popular algorithms reported earlier in the literature.
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