
Business Data Fusion

Surya Yadav, Gautam Shroff, Ehtesham Hassan and Puneet Agarwal

TCS Innovation Labs, New Delhi, India

Abstract—Enterprise business intelligence usually relies on
data from multiple sources being carefully joined based on
common attributes and consolidated into a common data ware-
house. This process is often plagued by difficulties and errors
in resolving join-attributes across sources while consolidating
information into a data warehouse. Moreover, it may often be
impossible to accurately join data from diverse external data
sources. Nevertheless, each such data source can still provide use-
ful information on correlations amongst the attributes it captures,
and enterprises are increasingly looking to replace the traditional
data warehouse with ‘data lakes’ based on new technology, such
as Hadoop, in order to derive statistical insights. We describe
an approach for ‘business data fusion’ applicable in such a
scenario: We define ‘distributional queries’ and their utility in
multiple scenarios, including for correlating diverse data sources,
and show that these are equivalent to probabilistic inference.
In order to efficiently execute such queries, relationships and
correlations across data sources are summarized via a Bayesian
network, which is learned in an expert-guided manner so as to
incorporate domain knowledge. We present empirical results of
our approach applied to (a) summarize large volumes of vehicular
multi-sensor data in a sensor-data-lake, to efficiently provide
probabilistic answers to support engineering analysis without
repeatedly accessing the raw data; and (b) demonstrate how
potentially diverse and unrelated public and private data sources
can nevertheless be approximately and efficiently joined to derive
useful statistical insights via distributional queries implemented
using Bayesian inference.

I. INTRODUCTION & MOTIVATION

The traditional analytics life-cycle in large enterprises goes

as follows: operational data is extracted from transactional

systems, such as point-of-sale, inventory etc., and loaded into

a data warehouse, undergoing a multitude of transformations,

including de-normalization, aggregations, dropping attributes,

etc. Great care is taken to ensure that related pieces of data can

be joined using common attributes, thereby enabling ‘business

intelligence’ queries on the data warehouse, or on subsets

called ‘data marts’. Sometimes the analytics life-cycle ends

here, with operational and strategic decisions being supported

by querying the past data, or ‘looking in the rear view mirror’.

Of course, in order to look ahead, organizations increas-

ingly employ predictive analytics to varying degrees, using

statistics, data mining, and machine learning techniques. For

such purposes, selected slices (or ‘data cubes’) are extracted

using relational (i.e., SQL) queries and loaded into statistical

analysis tools such as SAS or SPSS, in order to perform regres-

sions, time-series forecasting, or similar predictive analyses to

support ‘looking ahead’.

In sharp contrast, modern ‘web companies’ such as Google

or Facebook follow a different approach. Data is maintained

in a large distributed file system, typically based on ‘big-

data’ technologies such as Hadoop, or Google’s GFS: There is

Fig. 1. Traditional BI vs Data Lake

no concept of a carefully curated data warehouse. Analytical

queries, be they relational or statistical in nature are carried

out directly on this common data store, typically in parallel

using the map-reduce programming paradigm and its many

extensions: Such techniques have been shown to be better

suited for statistical processing and queries, which often touch

large tracts of the data, as compared to say traditional index-

based database query systems.

The above approach has many advantages: The time taken

to design and implement a large enterprise data warehouse

is often measured in years; this is saved completely. Next,

predictive analytics can be performed on the entire data rather

than only selected subsets that are limited in size by the

inherent in-memory architecture of most statistical packages.

Moreover, the results of such analysis are themselves stored

in the same global data store, and can be used by others as

inputs for further analysis. Finally, additional data elements,

be they fresh data sources or merely new attributes can be

easily added without having to worry about the integrity of a

common data warehouse schema.

For the above reasons, many traditional enterprises such

as retail chains, banks, and manufacturers are beginning to

employ an analytics architecture similar to that used by the

web companies, loosely referred to as a data lake (as opposed

to the more traditional data warehouse). Figure 1 illustrates the

difference between a traditional BI life-cycle and a data-lake.

Still, fundamental challenges still remain, for which the data

lake alone is no panacea: (i) Even if disparate data sources

are stored in a data lake, the issue of how these should be

joined together remain. (This has prompted some prominent

database researchers to refer to the data-lake phenomenon as

a data swamp [1].) (ii) Further, when data volumes are very

large, queries can still take inordinate amounts of time unless

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 1876

backed by sufficiently powerful hardware. (iii) Lastly, as the

number of attributes grows the well known problems of high

dimensionality appear: In particular, data cubes defined by

very selective constraints on a large number of attributes may

be empty, i.e., there may not be any actual instances observed

in the data available. Nevertheless, conclusions about such

subsets are in fact possible using statistical rather than query-

based analysis.

II. KEY CONTRIBUTIONS

In this paper we describe a business data fusion architec-

ture to address each of the challenges described above. We

pre-processes data stored in a data-lake based on a Bayesian

network defined on all the attributes involved in the data,

possibly spanning disparate sources. Each attribute forms a

random variable in this Bayesian network. (The network itself

can be either crafted using domain-based understanding of

dependencies and correlations, or using traditional structure-

learning approaches, or a combination.)

Attributes in disparate data sources that can be directly

mapped to each other are assigned to the same network

variable. For example, items or parts in different data sources

that are described by an industry-standard coding scheme

could be treated as a single item variable. Attributes that can

only be related approximately are retained as separate network

variables, with their mutual correlations being captured in the

conditional probabilities of the Bayesian network. For exam-

ple, different surveys might have captured data using different

spatial tesselations of geographical regions, e.g. counties vs zip

codes; nevertheless, mutual overlaps between such regions can

be computed using maps, i.e., GIS layers. Thus the conditional

probability of a particular county lying in each possible zip

code can be computed using a map. Similarly, product-related

data codified using different product-category definitions could

be approximately related using sample instances that are

codified across multiple categorizations.

Conditional probabilities in the Bayesian network are com-

puted via pre-processing. Queries are performed on the net-

work using probabilistic inference. Wherever possible, a tree-

structured network is used, even if it is only an approximation

to the actual conditional independence relationships between

attributes: In a tree-structured Bayes net each conditional prob-

ability table is two-dimensional, making inference efficient.

In many ways, the pre-processing for computing conditional

probabilities is similar to calculating materialized views in a

database, albeit in a probabilistic manner.

Our approach address the main challenges described in

the previous section as follows: (i) Attributes in disparate

data sources are approximately joined in a principled manner

using conditional probabilities derived from other appropriate

sources as available, e.g., maps, sample categorizations, etc.

(ii) When volumes are large, compressing data into condi-

tional probability tables accelerates query times in much the

same manner as materialized views; (However, our approach

additionally incorporates approximate correlations between

attributes as well as can rely on an approximate, e.g. tree-

structured, network to further minimize query execution.

Of course, unlike a database, we only provide approximate

results.) (iii) Our approach obviates the problem of there

being possibly no actual instances satisfying complex query

conditions: probabilistic inference will always yield an an-

swer, which is the best probabilities answer possible based

on the assumptions underlying the Bayesian network itself.

In summary our approach for business data fusion using

Baeysian networks allows for approximate joins, accelerates

query processing on voluminous, i.e., ‘long’ data sets, as well

as addresses the obvious challenges faced in querying very

‘wide’ data.

We submit that when fast, approximate results are sufficient

(as is the case in predictive analytics as opposed to regulatory

reporting) our approach makes the enterprise data lake a viable

and useful proposition as it marries approximate data mapping

and probabilistic query processing in one framework based on

the well established principles of Bayesian inference.

The remainder of the paper is organized as follows: We

begin by placing our contributions in the context of related

work in Section III. Next we formally describe the business

data fusion problem in Section IV, by introducing the con-

cept of ‘distributional queries’, with examples, and showing

their equivalence to probabilistic inference. We describe our

approach to efficiently compute distributional queries via

Bayesian networks in Section V. In Sections VI-A and VI-B

we describe performance and accuracy of our technique with

experimental results for two cases: First, a real-life scenario

of large-scale sensor data analysis where our technique was

used to enable real-time ‘what-if’ queries without touching

the raw data. Next, we describe a hypothetical scenario where

disparate data sources that are not naturally related could

nevertheless be approximately joined to provide insight. We

conclude in Section VII by summarizing our results and also

suggesting how to extend our approach to cover data mining

in addition to query processing.

III. RELATED WORKS

Fusion of data from multiple sensors [2], [3], [4], [5], [6] has

been addressed via models such as JDL[7], Dempster-Shafer

model [8] as well as Bayesian models[9]. However, this stream

of work is focused towards object/target identification, threat

assessment in defence arena, or classification. Ye et al.[10] in

the field of bio-informatics have attempted joining multiple

datasets using kernel learning, for diagnosis of Alzemier

disease but targeted at classification. In contrast, we focus on

joining seemingly disparate datasets so as to be able to answer

‘distributional’ queries, as defined above.

Many aspects of our approach is similar to using material-

ized views [11] to speed up subsequent query processing: A

materialized view calculates and stores sets of aggregations

on joins of multiple tables, whereas in our approach we

compute conditional probability tables as parameters in a

Bayesian network. Materialized views aim at efficiently but

exactly answering a specified class of relational queries: In

1877

the approach proposed by Harinarayan et al. [11], specific cells

of a data-cube are pre-computed so that a large set of queries

can be exactly and efficiently computed. In contrast, we focus

on being able to approximately answer any distributional

query on a collection of datasets. Additionally, because our

approach employs Bayesian data fusion, we return a posterior

conditional distribution even in cases where there are no

records in the collection of datasets satisfying all the query

conditions.

Our approach is most similar to that of Margaritis et al.

in [12] who also use Bayesian inferencing to answer database

queries, while observing that Bayesian inference also underlies

cost-based query optimization inside many database systems.

We extend their work by introducing fusion of seemingly dis-

parate datasets that have no exact join key or mapping between

tuples. Additionally we further employ a SQL engine, albeit

on a database of parameter tables, to execute probabilistic

inference: thus also pointing to possible connections between

how SQL queries are executed efficiently and techniques for

inference on Bayesian networks.

A comprehensive survey of data fusion approaches has been

given in [13], [14], however they assume the availability of

a join key between target datasets, or an exact mapping table

between the join keys of target datasets. Data fusion in the GIS

field is concerned with matching of images taken at different

from different angles and at different times [15], or with

multi source classification [4]. Fusion of seemingly disparate

datasets, when an exact mapping table is not available, has also

performed using multiple different techniques such as, using

approximate string match [16] or using logical constraints [17].

By focusing on distributional queries that are equivalent

to probabilistic inference, we submit that our approach takes

a step towards bringing together the database and machine-

learning approaches to deriving insights from data, and in

doing so also provides a lens through which to also correlate

seemingly disparate datasets, assuming they each comprises

sample instances from a common underlying population of

object or entities.

IV. THE PROBLEM

A. Distributional queries on database

Consider the scenario of data from multiple sensors, such as

those now commonly present in most modern vehicles, aircraft

and similar complex machinery, as illustrated in Table I: Each

record of raw data is tuple of real numbered sensor values.

In discretized form, i.e., as D in the table, real values of

each sensor are converted to bin numbers; for example, the ES

sensor might be discretized using ten bins - 100 to 200, 200

to 300, etc. (Note: exactly such a dataset has been discussed

in detail in the Section VI.)

Engineering analysis of such data usually involves comput-

ing and visualizing the distribution of a particular sensor’s val-

ues, i.e., how often each bin is populated in the data. Equally

interesting is the joint distribution of two sensors, i.e., how

often each pair of bin-values are populated, resulting in a two

dimensional display. (Figures 4 illustrate such distributions.)

TABLE I
EXAMPLE 1: VEHICLE SENSOR DATA

Raw Data

t ES TF NT CP

10 701 56.91 3.36 8

11 702.3 57.69 10.34 8

12 698.4 58.63 14.91 8

13 697 59.41 19.73 8

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

99 700.4 57.84 6.84 11

D: Discretized Data

t ES TF NT CP

10 7 6 1 8

11 7 7 5 8

12 6 8 5 8

13 6 9 7 8

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

99 7 7 2 11

More importantly, it is especially of interest to determine

the distribution of one or more target set of sensors given

certain conditions on the remaining sensors: For example, the

distribution of TF (total fuel consumption) when ES (engine

speed) is low but NT (net torque) is high.

In general, let the dataset be denoted as D(a), where a

denotes M attributes a1 . . . aM ; in the above, these correspond

to different sensors. Further, suppose each attribute ai takes ni

discrete values, bi1 . . . bini
. The computation of a distribution

for attribute ai can be expressed in relational algebra as

computing ni queries on D of the form

Gcount()σ[ai=bij]D (1)

for each j = 1 . . . ni. Here, Gcount() refers to aggregate

function count() under a select operation(σ) with condition

ai = bij .

More generally, for k target attributes ai1 . . . aik , a k di-

mensional distributional query under conditions Q, where

Q specifies a set of conditions on some or all of the re-

maining n − k attributes can be computed by executing

ni1 × ni2 × . . . nik queries, each of the form:

Gcount()σ[ai1
=bi1j1

,ai2
=bi2j2

,...,aik
=bikjk

,Q]D (2)

for each possible combination of j1 . . . jk, i.e., where every jl
can take nl values 1 . . . nl.

For example the distribution of ES sensor under the condi-

tions that TF lies in its bin 7 or 8, and CP lies in its bin 5,

can be obtained by evaluating ten relational queries of form:

Gcount()σ[ES=j,TF∈[7,8],CP=5]D (3)

for the ten bins of ES, j = 1 . . . 10 (here we have assumed

that ES has been discretized into ten bins).

Note that each set of distributional queries can be computed

in a single pass over the entire database, or using an index of

some form if the condition Q is highly selective. Of course,

when data volumes become very large, having to access the

data for each query becomes a significant overhead, especially

when queries are not highly selective, making indexes irrele-

vant and necessitating a scan through the entire data. (Further,

as pointed out by Jacobs [18], often even loading datasets in to

a traditional database is not worth the benefit of rapid querying

using indexes.)

Joining Multiple Datasets: In the above scenario, all the

data was present in a single table. In case data comes from

1878

diverse sources, an additional complication arises, i.e., that

of joining different sources based on common or related

attributes. Consider the example of data of interest for a

marketing professional: e.g., income from census data(D1),

profession from a marketing survey(D2), and location of a

person over time from a mobile operator(D3), as shown is

Table II, details of which are discussed later in Section VI.

(Note that dataset may have been collected by surveying

or monitoring a different set of people, albeit in the same

overall geography, i.e., the data represents the same underlying

‘ground truth’, and each sample is assumed to be equally

unbiased.)

In this scenario, we have three databases D1, D2, and

D3 representing the income, location, profession of people in

different regions, captured by the attributes R1, R2 and R3.

NOTE however, even if the same geographical segmentation

is used for each of the region attributes, we cannot use this

common region attribute to meaningfully join the three tables,

since each of the joins D = D1 ⋊⋉R1=R2
D2, D2 ⋊⋉R2=R3

D3,

or D1 ⋊⋉R1=R3
D3 are many-many relationships. So, while

these joins are defined, they do not serve any meaningful

purpose.

TABLE II
EXAMPLE 2: DISPARATE MARKETING DATASETS

D1 D2 D3

R1 Income R2 Location R3 Profession

1 110089 2 Resturant 1 Lawyer

2 116702 1 School 3 Surgeon

1 103868 2 Hotel 3 Architect

1 135433 2 School 2 Farmer

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2 147453 1 Shop 2 Architect

Instead, what we are really interested in is some mechanism

of querying a hypothetical joined dataset D, such as depicted

in Table III, which might have been possible to compute

if each of the tables had a common attribute that uniquely

identifying an individual. Unfortunately, no such attribute is

available.

We submit that it is still possible to derive meaningful

insights from such disparate datasets, albeit under some strong

assumptions. Suppose we view each of the datasets Di as

random samples from the hypothetical distribution D. Unfor-

tunately, each such sample is itself incomplete, with two out

of three attributes missing, as shown in Table III. What is the

best that can be done, if anything at all?

Note that this is an extreme example of a missing-data prob-

lem, commonly encountered in machine-learning. Such situa-

tions are usually tackled by attempting to fill in the missing

values as best as possible using other attributes present. So, for

example, one might try to fill in the Location and Profession

columns by computing those that maximize the conditional

probability P (Location, Profession|Income,Region). In

general, we try to fill in missing attributes with the combi-

nation that maximizes their joint probability conditioned on

TABLE III
EXAMPLE 2: HYPOTHETICAL JOINED DATASET

D

R Income Location Profession

1 110089 ? ?

2 116702 ? ?

1 103868 ? ?

1 135433 ? ?

.

.

.
.
.
.

.

.

.
.
.
.

2 ? Restaurant ?

1 ? School ?

2 ? Hotel ?

2 ? School ?

.

.

.
.
.
.

.

.

.
.
.
.

1 110089 ? Lawyer

3 116702 ? Surgeon

3 103868 ? Architect

2 135433 ? Farmer

.

.

.
.
.
.

.

.

.
.
.
.

whatever attributes are observed:

argmaxP (∀ai ∈ M|∀aj ∈ O) (4)

where M,O stand for the missing and observed attributes

respectively.

In practice, this may be difficult to compute without even

further assumptions. Nevertheless, supposed we are able to

assume that all the attributes of interest are independent of

each other, given those that are observed: (In our example

above, this translates to Location, and Profession being inde-

pendent of each other at least within each Income, Region

combination. In other words, any correlations between the

missing variables can be explained by those that are observed

(this not neccesarily a valid assumption, of course). This is

the naive Bayes assumption commonly used in data fusion

and machine learning, using which (4) becomes:

argmaxΠ∀i∈MP (ai|∀ai ∈ O)P (∀ai ∈ O) (5)

In our specific example this means filling in missing values

by maximizing the product of P (P |I, R), P (P |I, R) and

P (I, R) instead of P (L,R|R,R) (P,L, I, R being Profession,

Location, Income and Region, respectively).

Incongruous Join Keys: Further, it is important to note that

if each of the datasets Di are truly disparate, each dataset may

use different geographical segmentations for their respective

region attributes. So R1 = 1 and R2 = 1 may not in fact be

the same region. Further, one dataset may have used of regions

coarser than the other, and regions from different datasets may

overlap with each other in practice, e.g. zip codes and counties.

In such a situation the above procedure for filling in missing

values of D also breaks down.

Nevertheless, provided additional data is available, we can

still proceed: For example, we might augment these three

datasets with an additional dataset that helps derive the rela-

tionship between the different region attributes. Such a dataset

could, for example, be derived from a map, where all the

1879

regions are marked out. We randomly sample points on such

a map, noting for each point all three of its region values, i.e.,

according to R1, R2 and R3. The joined table D would now

have additional rows where only these three region attributes

are filled, and such rows would provide the link for estimating

missing values. However, since the linkages are now indirect,

and, as we show below, it is easier to address the problem

using full probabilistic inference rather than via first filling in

missing values followed by executing relational queries.

In general we can formulate the problem scenario as fol-

lows: Given datasets Di’s, we assume them to have some level

of overlap in terms of attributes ai: For every i there exists a

j, such that ai∩aj 6= φ, as seen in the above example. Further,

if this is not true i.e., there is no explicit overlap between two

or more datasets, we assume that we can augment our data

with additional datasets so that this is the case.

Last but not least, we also assume that our collection of

datasets are fully connected: If we define a graph having the

Dis as nodes and an edge between Di and Dj if these share

at least one common attribute, then the collections of datasets

are connected if this graph is fully connected, i.e., comprises

of one connected component. In case this is not true, we once

again assume that we can augment our collection of datasets

to make it true.

We concern ourselves with distributional queries on a con-

nected collection of datasets, where the attributes of each

dataset have been discretized. As in the example above, such

a collection can be viewed as comprising of independent

samples of a ‘joined’ dataset D, where a chain of common

attributes connects the tables.

B. Distributional queries as probabilistic inference:

As already mentioned, we can view the joined dataset

D(a) of Table III in the discussion above as comprising of

samples from a joint distribution P (a) across random variables

corresponding to the attributes a.

Distributional queries are then equivalent to probabilistic in-

ference, i.e., the set of queries (1) can be viewed as computing

the probability distribution P (ai) by marginalizing the joint

distribution P (a). Similarly, the general distributional query

executed by the set (2) is computing the conditional posterior

probability:

P (ai1 , ai2 , . . . , aik |Q) (6)

This can be computed from the joint distribution P by

marginalization under the evidence Q, i.e., classical proba-

bilistic inference:

P (a1 . . . ak|Q) ≈
∑

a\{a1,...ak},Q

P (a) (7)

(≈ since this needs to be normalized).

Since the datasets are ‘connected’, and under appropriate

assumptions of conditional independence, some coming from

domain knowledge, and others forced upon us by the circum-

stances of what datasets Di are actually available to us, we

can factor the joint distribution in (6) using a single Bayesian

network so

P (a) = ΠiP (ai|Pa(ai)) (8)

where Pa(ai) denotes the parents of variable ai in the Bayesian

network. We can combine (6) and (8) above to efficiently

compute distributional queries, as detailed later in Section V.

C. Querying for values using distributions

Note that once we view the problem of distributional queries

from the perspective of inference on the joint probability

distribution over attributes a, we can also answer value-based

queries for continuous variables. This is required in many

situations, for example instead of the two dimensional join

distribution of NT and TF, we might want to see a distribution

of NT vs TF, i.e., the actual values of NT for different TF

values. This is the kind of query a traditional scatter-plot might

convey, or a traditional ‘business intelligence’ query on the

‘average NT for each bin of TF’.

Well, in the language of probability, such queries are easily

expressed in terms of expected values, which can be computed

using distributional queries: The average NT for each bin bTFi

of TF can be expressed as E[NT |TF = bTFi
], which is

computable from the conditional distribution of NT given TF

as follows:
∑

j

v(bNTj
)P (NT = bNTj

|TF = bTFi
) (9)

where v(bNTj
) is say, the midpoint of bin bNTj

of NT; e.g.

if bNTj
≡ NT1 < NT < NT2, then v(bNTj

) = (NT1 +
NT2)/2. Similarly, in the case of categorical variables, it is

easily possible to compute the most likely location for a person

of high income to visit by maximizing:

arg max
Location

P (Location|Income ∈ [100000, 130000]) (10)

V. OUR APPROACH

A distributional query on a collection of datasets essentially

can be computed via conditional inference on the joint prob-

ability distribution of attributes P (a). Note that, in case of

diverse data sources as discussed in marketing data example

in the previous section, the attribute set a would have been

suitably augmented with additional attributes, to ensure that

the collection of datasets is connected.

We model a Bayesian network (BN) approximating the joint

distribution, with each node representing an attribute. In the

case of diverse datasets, the structure of such a BN may

constrained by the limited conditional distributions computable

using the available datasets Di. If D is available fully, we con-

struct a BN using domain knowledge along with constraints

on its structure that make it easy to evaluate, e.g., ensuring it

is close as possible to a tree, etc.

For probabilistic inferencing on this BN, we translate con-

ditional queries into SQL via an rather obvious technique

that nevertheless is not often used: We use SQL for querying

the CPTs considering them as set of relational tables. This

approach basically presents a novel method for fusion of

1880

Fig. 2. Business data fusion architecture

probabilistic models using SQL engine. Note that this is not

necessarily efficient unless the network structure is simple,

nevertheless, we are presenting what has been used for our

experimental system.

Since the BN represents an approximation to the joint

distribution structure, a suitable mechanism is required for

measuring the network accuracy. For validating the network

structure, we compute the estimation error for selected set of

typical distributional queries. Figure 2 shows the overall view

of the our business data fusion architecture. The details of each

block is presented in the following discussion.

A. Computing parameters of the Bayesian network

We anticipate the subject matter expert to specify the BN

based on domain constraints. This structure and other basic

details are specified in a configuration file as shown in Figure

3. Here, we show a sample BN in Figure 3.A, template for

a configuration file in Figure 3.B, and sample configuration

file in Figure 3.C for the BN shown in Figure 3.A. In the

BN details section of this file, the details of parent sensors

are given before the dependent sensor. Based on such a

configuration file and observed data, we learn the conditional

probability tables(CPTs) using aggregation queries similar to

the one shown in Eq. 1. Here, it should be noted that in some

cases the size of these CPTs can become exponentially large,

we therefore limit the number of parent nodes of a node, to

a maximum of three in the BN. Also, as far as possible, we

model the BN as tree rather than a DAG to keep the size of

the CPTs small. The conditional probability tables for each

edge of the BN are easily calculated using the original data.

We take Dirichlet distribution as the conjugate prior and its

parameters are specified by the user.

Fig. 3. Bayesian network configuration

B. Using SQL for conditional queries on a Bayesian network

The conditional probabilities learned from data are stored in

a SQL database and all further probabilistic queries are then

answered using this database. For example, if we translate the

relational expression described in equation 3 on the vehicle

sensor dataset of Table I into probabilistic inference , it

amounts to computing a set of conditional probability queries:

P (ES = j, |TF ∈ [7, 8], CP = 5]) (11)

which are then multiplied and marginalized according to (8)

and (6) respectively.

The product (8) and sum (6) can be computed using SQL

on the database of CPTs, for the Bayesian network in Figure

5 as follows:

1881

SELECT ES, SUM (P_TF*P_NT*P_ES*P_CP)

FROM T_TF,T_NT,T_ES,T_CP

WHERE TF IN (7,8) AND CP = 5

GROUP BY ES

Here ES is queried variable, and T_TF, T_NT, T_ES, T_CP

are the CPTs for TF, NT, ES, CP based on the Bayesian

network (shown later in the Section VI-A). P_TF, P_NT,

P_ES and P_CP are the respective probability column names,

and the WHERE clause defines the given conditions. Using

similar query, we can also compute the evidence of given

conditions as shown below:

SELECT SUM (P_TF*P_NT*P_ES*P_CP)

FROM T_TF,T_NT,T_ES,T_CP

WHERE TF IN (7,8) AND CP = 5

where the notations are similar to the ones given above.

C. Validation of Bayesian network

As we are using probabilistic inference there is bound to

be some difference between the queries when executed on

the raw data and the queries executed using BN. So we give

some validation queries as input in config file for measuring

the error bounds. We find the output of the queries from

the network and from the raw data and display the results.

Then we compare the two derived distributions using KL

divergence and Bhattacharyya coefficient. Let the distribution

obtained from data be Y and the distribution obtained from

network be Z. Since Y and Z are both discrete distributions

the symmetric KL divergence between them as DKL(Y, Z) =
(DKL(Y ‖ Z) +DKL(Z ‖ Y) /2, where DKL(Y ‖ Z) =
∑

i Y (i) ln Y (i)
Z(i) . Also, the Bhattacharyya coefficient between

Y and Z is given by BC(Y, Z) =
∑

i

√

Y (i) ∗ Z(i).

VI. EXPERIMENTAL ANALYSIS

We evaluate the proposed approach of business data fusion

on two scenarios described as datasets, Tables I and II.

The objective is to show that this approach can provide an

efficient solution for distributional querying on multiple and

diverse datasets. Since the approach primarily depends on

domain knowledge supplied bayesian network, the focus of

experimental evaluation is on the computation of validation

errors in case of set of sample querying describing different

conditions. The related computational analysis presented here

onwards have been obtained on an Intel Core i5 workstation

with 3.2 GHz speed and 4GB RAM.

A. Distributional queries on Vehicle Sensor Data

As the machines, be they vehicles, engines or any other

equipment become more and more complex they are increas-

ingly being fitted with multiple, often hundreds of sensors.

Analyzing the voluminous data produced by populations of

vehicles so outfitted allows manufactures to better understand

the behavior of their products in the field as well as exactly

how their customers use them; information that is invaluable in

determining reasons for abnormal behavior leading to faults,

finding opportunities for improving design, etc.

We used a large collection of sensor data for multiple

instances of an engine. The engines had more than two

hundred sensors and for each sensor readings were taken for

an average of half-hour run of the engine. The data consisted

of such runs for over a year and was stored in csv format. It

had more than twelve million records and was 15GB of size

in total. This data was first converted to binary form in order

to speed up the process of reading of the data. This led to

data being compressed to 10GB. The binary files were then

used as input data for learning the parameters of the Bayesian

network, and querying on raw data.

We demonstrate our business data fusion approach for the

above use-case of real-life sensor data, with four of the sen-

sors, viz., engine speed (ES), torque (NT), total fueling (TF)

and combustion control path owner (CP). As our approach

requires discretized sensor values, we represent these values

as set of 1-D and 2-D histograms computed as the process of

statistical profiling of the data. Figure 4 shows the screenshot

of these histograms in our visual analytics workbench. The

Bayesian network defining connections between these sensors

is shown in the Figure 5.

Figure 4 illustrates our business data fusion system in

operation: An instance of distributional query can be described

by range selection on selected sensors; the system highlights

the initial and post-query distribution on remaining sensors.

The system also shows probability of the evidence, i.e., the

selections, as a vertical bar, indicating the support of the

selected conditions in terms of probability.

For validation, a number of queries containing one to four

sensors were formulated. These queries were then executed

on the raw data and on BN. We observed an average time of

10 ∼ 12 seconds without considering the data reading time in

memory (which is of 4 minutes in the present environment).

The same queries when executed on the BN took less than 1

second as the query is being executed on the tables stored

in SQL database. However, for learning the parameters of

the BN, a linear scan of the entire raw data taking approx.

4 minutes. The errors between distribution computed by raw

values, and using BN for sample queries have been shown in

Table IV.

The distribution errors for queries with high evidence are

close to zero. Nevertheless, the first and last row in Table

IV show contrasting results, where the first query have less

support in the data, but BN based querying is almost accurate

as raw data. Further, for the last row, even with high support

query, distribution errors are high potentially suggesting other

dependencies missing in the encoded BN structure. Neverthe-

less, the direction of change between the distribution prior to

and after executing the Bayesian query remains accurate, and

in most situations this is what matters the most to an engineer.

B. Querying on disparate data sources: Marketing Data

While conducting market intelligence one often has access

to data capturing different attributes of people from several

regions typically compiled by different agencies. The situation

is similar to the scenario introduced by Table II. Since each

1882

Fig. 4. The distribution of descritized ES Vs NT, TF, and CPas histograms

Fig. 5. Bayesian network for vehicle sensor data

TABLE IV
VALIDATION QUERIES FOR MULTI-SENSOR ANALYSIS

Condition Query Evidence
from data

Evidence
from network

KLD BC

ES=[1,2,4:8] &
NT=[2:4,6,7]

TF 0.019 0.021 0.000 0.999

TF=[0,1,5:7] ES & NT 0.735 0.932 0.692 0.856

TF=[0:8] CP 0.994 0.998 0.005 0.999

CP=[0:3,6:8] TF 0.982 0.982 0.276 0.933

agency collects data in a different manner, i.e., each agency

collects data from different regions, each potentially delimited

differently, combining such data sources becomes an obstacle

to deriving any meaningful analysis from such data. One way

can be that we consolidate the data from the different subre-

gions by ignoring subregions, i.e., using each data source only

as a description of the union of all its regions. However, while

this will lead to a larger and reliable dataset, it would be at the

expense ignoring insights based on region specific correlations.

Instead, in order to determine correlations between the regions

we can mark all regions on a common map. We can then find

the conditional probability distribution of each of these regions

given other regions based on the geographical overlap between

each pair of regions.

Data generation: For this experiment we generated a synthetic

dataset with 20 million records having four attributes of a

person income, profession, location and expenditure, with

region being an additional attribute augmenting the attribute

set. We assume a rectangular grid on the overall geography of

interest. A segmentation of this geography into regions can be

defined as shown in the Figure 6. We generated four different

segmentations of the overall region (geography) into two or

three regions, i.e., the Ris in Table II can each have different

cardinality.

Fig. 6. Synthetic data generation: grids and sub-regions

1883

TABLE V
VALIDATION QUERIES FOR MARKETING DATA

Condition Query Evidence
from
data

Evidence
from
network

KLD BC

Income = [1:4]
& Profession =
[0,3:5]

Expenditure 0.428 0.450 0.090 0.978

Expenditure =
[0:2]

Profession
& Income

0.727 0.726 0.444 0.901

Profession =
[6:8]

Location 0.0465 0.0465 0.281 0.946

Location =
[3,4]

Income 0.346 0.346 0.198 0.955

Attribute values for income (I), profession (P), location

(L) and expenditure (E) were generated for each grid cell

using different means and variances, corresponding to people

with different incomes, professions, location they frequent the

most, and what they spend on. Separate files were created for

each dataset by randomly sampling a large number of records

from base generated data, including only one of the four

attributes per dataset, and tagging each record with the region

corresponding to the segmentation specific for that dataset.

The region segmentation for each dataset was represented by

a new variable such as R I for income distribution, which

would take one of three values for a sample as shown in the

Figure 6. Similarly, for location, variable R L takes only two

possible values.

Probabilistic Inference: Following the data generation process

as discussed above, the Bayesian network for this case is

modeled as shown in Figure 8. The segmentation of the

overall geography into grid cells is assumed to be the ‘map’

using which we compute the overlap between two region

segmentation scheme i.e., P (R I|R L), which is used for

computing the CPTs in the Bayesian network. Distributional

queries are computed using SQL as described earlier. Results

of a sample query on this synthetic dataset are shown in the

Figure 7, where, as earlier, values before and after executing

a query are highlighted.

Errors for sample validation queries are shown in Table V.

As seen, the BC distance between conditional distributions

computed by the net and raw data have high overlap (though

KL divergence gives high values in some cases). Once again

though, the direction of the changes in each distribution before

and after executing a query are the same whether one uses

the original data or our probabilistic method for joining its

disparate samples. Note that in practice, since the original

joined data samples are assumed to be unavailable, such

validations would be impossible to compute these errors; we

can do such validation since we are using synthetic data.

As regards execution performance, querying each of the

datasets involves loading the entire dataset into the memory

while scanning each file. This takes on an average hundred

seconds on the synthetic data while the time taken to query

using the BN is less than a second. The time taken for querying

on the BN using SQL is excluding the time taken to learn the

CPTs which also takes approximately hundred seconds, which

is again mostly being spent on input-output.

Summary: We have demonstrated the execution distributional

queries on disparate datasets. Further, by compressing the data

distributions and their correlations into a Bayesian network, we

are also able to significantly improve query execution time, in

much the same manner as materialized views do for standard

database queries.

VII. CONCLUSIONS

We have formally defined the problem of ‘distributional’

queries one or more datasets, potentially arising from diverse

sources, motivated by some real-life as well as potential

application scenarios We have argued that under suitable

assumptions this problem can be viewed as being equivalent

to conditional probabilistic inference on a single dataset, or

on a hypothetical ‘joined’ dataset in the case of multiple

datasets from potentially diverse sources. We have also shown

that many value-based queries, such as are often encountered

in business intelligence, can also be approximately answered

using by taking expectations on distributional queries.

We have presented our ‘business data fusion’ approach

to compute distributional queries by approximating the un-

derlying joint distribution via a Bayesian network, defined

using domain knowledge as well as constraints arising from

what datasets are actually available. We described our system

for business data fusion that evaluates distributional queries

that performs probabilistic inference using SQL queries on a

database of the conditional probability tables of the Bayesian

network. In particular, our system does not need to re-access

the raw data once the network parameters have been learned.

Experimental results were reported on a real-life sensor dataset

as well as a synthetic collection of datasets illustrating a

hypothetical scenario of marketing analysis, including execu-

tion performance as well as accuracy as compared to exact

computation using the raw data.

We submit that our approach is well suited for approxi-

mately integrating data in a ‘data lake’ architecture, wherein

data stored in near-raw form in a distributed file system is

directly processed for insights as opposed to first integrating

it into a data warehouse. In fact, as we have also illustrated,

seemingly disparate datasets that would have been difficult or

impossible to join using traditional database techniques, can

nevertheless be processed to derive meaningful insights via

distributional queries executed via business data fusion.

Our approach is potentially also usable for data mining

in addition to query processing: Since able to answer dis-

tributional queries via conditional inference on a Bayesian

network, we can determine the support and confidence of

any particular combination of values, each of which can

be expressed as distributional queries/conditional inference.

Thereafter association rules, subgroups are computable using

data mining techniques such as [19], [20] to efficiently search

the space of combinations of attribute values.

1884

Fig. 7. The distribution of discretized income, profession, location, and expenditure

Fig. 8. Bayesian network for connecting marketing datasets

REFERENCES

[1] M. Stonebraker, “Why the ’Data Lake’ is Really a ‘Data Swamp’,”
CACM.

[2] D. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proceedings of the IEEE, vol. 85, no. 1, pp. 6–23, Jan 1997.

[3] E. Waltz, J. Llinas et al., Multisensor data fusion. Artech house Boston,
1990, vol. 685.

[4] J. Zhang, “Multi-source remote sensing data fusion: status and trends,”
International Journal of Image and Data Fusion, vol. 1, no. 1, pp. 5–24,
2010.

[5] M. Mutlu, S. C. Popescu, C. Stripling, and T. Spencer, “Mapping surface
fuel models using lidar and multispectral data fusion for fire behavior,”
Remote Sensing of Environment, vol. 112, no. 1, pp. 274 – 285, 2008.

[6] D. P. Roy, J. Ju, P. Lewis, C. Schaaf, F. Gao, M. Hansen, and
E. Lindquist, “Multi-temporal MODISLandsat data fusion for relative
radiometric normalization, gap filling, and prediction of Landsat data,”
Remote Sensing of Environment, vol. 112, no. 6, pp. 3112 – 3130, 2008.

[7] A. N. Steinberg, C. L. Bowman, and F. E. White, “Revisions to the JDL
data fusion model,” in AeroSense’99. International Society for Optics
and Photonics, 1999, pp. 430–441.

[8] D. M. Buede and P. Girardi, “A target identification comparison of
Bayesian and Dempster-Shafer multisensor fusion,” Systems, Man and

Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
vol. 27, no. 5, pp. 569–577, 1997.

[9] P. Pinheiro and P. Lima, “Bayesian sensor fusion for cooperative object
localization and world modeling,” in Proc. 8th Conference on Intelligent

Autonomous Systems. Citeseer, 2004.
[10] J. Ye, K. Chen, T. Wu, J. Li, Z. Zhao, R. Patel, M. Bae, R. Janardan,

H. Liu, G. Alexander, and E. Reiman, “Heterogeneous Data Fusion for
Alzheimer’s Disease Study,” in Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’08. New York, NY, USA: ACM, 2008, pp. 1025–1033.

[11] V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing data
cubes efficiently,” ACM SIGMOD Record, vol. 25, no. 2, pp. 205–216,
1996.

[12] D. Margaritis, C. Faloutsos, and S. Thrun, “NetCube: A Scalable Tool
for Fast Data Mining and Compression,” in Proceedings of the 27th

International Conference on Very Large Data Bases, ser. VLDB ’01.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp.
311–320.

[13] H. B. Mitchell, Multi-Sensor Data Fusion: An Introduction, 1st ed.
Springer Publishing Company, Incorporated, 2007.

[14] J. Bleiholder and F. Naumann, “Data Fusion,” ACM Comput. Surv.,
vol. 41, no. 1, pp. 1:1–1:41, Jan. 2009.

[15] A. S. Solberg, A. K. Jain, and T. Taxt, “Multisource classification
of remotely sensed data: fusion of Landsat TM and SAR images,”
Geoscience and Remote Sensing, IEEE Transactions on, vol. 32, no. 4,
pp. 768–778, 1994.

[16] P. Agarwal, G. Shroff, and P. Malhotra, “Approximate incremental
big-data harmonization,” in Big Data (BigData Congress), 2013 IEEE

International Congress on. IEEE, 2013, pp. 118–125.
[17] Barbara Vantaggi, “Statistical matching of multiple sources: A look

through coherence,” International Journal of Approximate Reasoning,
vol. 49, no. 3, pp. 701 – 711, 2008.

[18] A. Jacobs, “The pathologies of big data,” Communications of the ACM,
vol. 52, no. 8, pp. 36–44, 2009.

[19] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo et al.,
“Fast Discovery of Association Rules.” Advances in knowledge discovery

and data mining, vol. 12, no. 1, pp. 307–328, 1996.
[20] S. Saikia, G. Shroff, P. Agarwal, A. Srinivasan, A. Pandey, and

G. Anand, “Exploratory data analysis using alternating covers of rules
and exceptions,” in Proceedings of the 20th International Conference on

Management of Data. Computer Society of India, 2014, pp. 105–108.

1885

