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Abstract—Due to physical laws or mathematical properties the
parameters and/or the states of some dynamic systems satisfy
certain constraints, and exploitation of such constraints generally
is expected to produce more accurate system models. This
paper is concerned with modeling of the dynamic systems with
equality constraints. An effective framework of the constrained
dynamics modeling is proposed by which the equality constraints
and the auxiliary (unconstrained) dynamics are optimally fused.
In particular, modeling of linear equality constrained dynamic
systems and quadratic equality constrained dynamic systems is
systematically investigated. Meanwhile, the effects of the auxiliary
dynamics on the constructed dynamic model are analyzed.
Finally, the proposed modeling is assessed on a benchmark
scenario of road-based vehicle tracking.

Index Terms—Dynamics modeling, equality constraint, con-
strained optimization.

I. INTRODUCTION

Constrained dynamic systems occur frequently in which the

state components (are required to) satisfy certain constraints

arising from physical laws or mathematical properties [1].

For instance, in electric circuits, voltages and currents obey

the Kirchhoff’s laws [2]; in spacecraft attitude determina-

tion, quaternion of rotation is subject to unit-norm constraint

[3], [4]; in traffic control, land-based vehicles are road-

constrained [5], [6], and civil aircrafts are required to fly

within the preset flight envelop [7]. Such constraints are of

various forms including equality/inequality constraint [8], set

constraint [9], probability constraint [7], performance con-

straint [10], hard/soft constraint, etc. Such constraints contain

valuable information about the system state and they should

be taken into account in system analysis and many other

problems.

Research supported in part by National 973 project of China through
grant 2013CB329405, NASA/LEQSF(2013-15)-Phase3-06 through grant
NNX13AD29A, NSFC through grants 61403309 and 61174138, NSBRPS
through grant 2015JQ6215, AST through grant 2014-HTXGD, and FRFCU
through grant 3102014KYJD030.

While there are many research topics concerning the con-

strained problems, we focus in this paper on the dynamic

systems with equality constraints and address the problem of

the constrained dynamics modeling. The importance of the

constrained dynamics modeling for system analysis cannot be

overstated because the constructed model has such potentially

useful applications as control, filtering, dynamics analysis,

and system identification. Notice that constraints are often

known a priori and thus they should be incorporated into

the dynamic model, which requires that the state according

to the model always satisfies the constraints automatically.

In practice, however, directly constructing such a constrained

dynamic model is often very difficult, especially for complex

systems, and the literature on this topic is scarce. [11] and

[12] focused on time-invariant and homogeneous linear equal-

ity constraints and developed a constrained dynamic model

called projection system. [13] presented necessary conditions

on both the dynamics and the process noise for the linear

equality constrained state. [14] developed a reduced state

space model for a linear equality constrained system using

the null space decomposition. By using the direct elimination

technique, [15] and [16] discussed how to design a dependent

constrained subsystem from an independent unconstrained

subsystem when a desired model class is given. Then the

design is specifically applied for constrained target motion

modeling on a straight line [17] and a circular track [18].

Recently, taking into account the randomness of the state

and using the Gram-Schmidt decomposition technique, [19]

derived a linear equality constrained dynamic model which is

optimal in a certain sense. Additionally, almost all of these

studies deal with the case of linear equality constraints, but

to our knowledge, modeling for dynamic systems with more

general constraints (e.g., nonlinear equality constraint) is rare

in the literature.

In contrast, the problem of constrained estimation has

received much attention in these years and several equality
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constrained estimation methods have been proposed (see [20],

[21] for surveys). Essentially, the constrained state estimation

is not different from the conventional estimation except that it

is based on the constrained dynamic model. It has been proved

in [19], [22] that using the linear equality constrained dy-

namic model (LECDM), the estimation result produced by the

conventional filter (e.g., the Kalman filter) will automatically

satisfy the constraints so that no post treatment of enforcing the

constraints is needed. However, most of the current constrained

estimation methods bypass the constrained dynamics modeling

problem. Instead, they calculate the posterior estimate or dis-

tribution based on an unconstrained dynamic model first and

then impose the constraints on the posterior estimate or distri-

bution to yield a constrained estimate. Their representatives are

model reduction, pseudo measurement and estimate projection

methods. The model reduction method reparameterizes the

constrained system so that the linear equality constraint is

naturally satisfied [14]. Although this method has merits in

numerical stability and computational complexity, physical

meanings of the state components after reparameterization

are often lost. More importantly, it is difficult to extend this

method to the systems with nonlinear equality constraints. This

method is beyond the scope of this paper, while the other two

constrained estimation methods will be discussed briefly for

comparison purposes.

The pseudo measurement (PM) method augments the origi-

nal measurement by a fictitious measurement without noise

to account for the effect of the equality constraints, and

then a conventional filter is applied [23], [24]. This method

has a wide range of applications in target tracking [25],

economics [24], [26], [27], etc. However, it may suffer from

numerical instability because of the singularity of the error

covariance matrix of the augmented measurement [20], [28],

[29]. More remarkably, the equality constraint differs from

the noise-free measurement significantly, so simply treating

an equality constraint as a measurement and applying the

traditional filtering without modification is not rigorous, as

clearly and convincingly justified in [19]. In addition, for

nonlinear equality constraints, the state estimates produced by

this method do not necessarily obey the constraints.

The estimate projection (EP) method projects the uncon-

strained estimate onto the constraint surface by applying

classical constrained optimization techniques, which is one

of the most popular constrained estimation methods in ap-

plications. [30] proposed this method first, based on which

the state estimation problem for linear equality constrained

systems was tackled. Then, [28] and [13] showed that some

constrained estimation methods (e.g., pseudo measurement)

are mathematically equivalent to this method under certain

conditions. Later, [1] and [31] devoted attention to the method

and extended it to the nonlinear equality constraint case, and

especially [1] argued to perform the projection procedure twice

for pursuiting higher estimation accuracy. Nevertheless, this

method has at least two debatable issues. First, they cannot

guarantee a true optimality [14], that is, the projected point

being close to the unconstrained estimate does not imply that

it is close to the true constrained state. Second, they produce

the constrained estimate by applying the constraint only to

the updated estimate or conditional distribution, rather than to

the whole system, and so the effects of the constraints on the

prior (or predicted) distribution of the state are not sufficiently

considered [19].

In this paper, the main contribution is to propose an effective

modeling framework for the equality-constrained systems.

While it is often difficult to formulate the exact constrained

dynamic model directly, an unconstrained dynamic model that

approximates the state evolution of the constrained systems

sometimes is readily available in which the state does not nec-

essarily obey the constraints. By this approach, the constructed

dynamic model optimally fuses the constraint information and

the unconstrained dynamics. The modeling problem of the

dynamic systems with two typical constraints—linear equality

constraints (LEC) and quadratic equality constraints (QEC)—

is solved. For the LEC case, the constrained dynamic model

is formulated analytically and its form reduces to the LECDM

presented in [11], [12], [19]. Compared with those using state

space decomposition techniques, our method here is more

intuitive and easy to implement. Through effectively solving

the quadratic equality constrained optimization problem, an

expression describing the evolution of the state with QEC

is also investigated. Via numerical simulations on tracking

road-based vehicles, we evaluate the effectiveness of our

constrained dynamics modeling method.

This paper is organized as follows. The modeling problem

for constrained systems is posed in Section II. In the next sec-

tion, a criterion for optimally fusing the constraint information

and the unconstrained dynamics is proposed, under which a

unified modeling framework for the constrained dynamics is

presented. The effectiveness of the approach is demonstrated

in Section IV by an example of road-based vehicle tracking.

The last section draws some conclusions.

II. PROBLEM FORMULATION

Consider a dynamic system whose state vector xk ∈ R
n

obeys the following constraint

xk ∈ Dk, k = 0, 1, · · · (1)

where Dk stands for a known constraint subset at time k. In

particular, for a general equality constraint, Dk is defined as

Dk = {xk : ck(xk) = 0} (2)

where ck(·) is a given vector-valued function. The constrained

state xk is observed by

zk = hk(xk) + vk (3)

where hk(·) is the measurement function, zk is the measure-

ment, and the measurement noise vk is white Gaussian with

zero mean and covariance Rk.

The exact dynamic model of the constrained system must

be consistent with the constraint. This means that the state

evolving as the exact model always automatically satisfies the

constraints. However, the exact model is often unknown or too
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difficult to build directly, especially for complicated constraint

cases. In contrast, an unconstrained dynamic model which

approximates the actual system is often easily available. Such

an unconstrained dynamic model is helpful for the constrained

dynamics modeling and thus it is called auxiliary dynamics.

Suppose that the auxiliary dynamics of the constrained system

is known and given by

xa
k+1 = fk(x

a
k, uk, w

a
k), k = 0, 1, 2, ... (4)

where xa
k stands for the state of the auxiliary system, and fk(·)

is a given vector-valued function. The process noise wa
k is

assumed to be zero-mean and white Gaussian with cov(wa
k) =

Qa
k. The initial state xa

0 has the Gaussian distribution with

mean x̄a
0 and covariance Σa

0 . The sequences {wa
k} and {vk}

are assumed to be mutually independent as well as independent

to fxa
0 . Note that the auxiliary system (4) is of a general form

and its state xa
k does not necessarily satisfy the constraint (2).

Our goal is to propose a unified modeling approach for

the equality constrained dynamics. The constraints (2) and the

auxiliary system (4) are two complementary forms of our prior

knowledge of the evolution behavior of the system state, and

thus the constrained dynamic model is constructed by fusing

these two pieces of prior information optimally in a certain

sense.

III. MODELING FOR DYNAMIC SYSTEMS WITH EQUALITY

CONSTRAINTS

A. Modeling Criterion for Constrained State Evolution

Rather than to design the structure and parameters of the

constrained dynamics directly, we turn to derive the con-

strained dynamic model from the given auxiliary system (4)

and the known constraint (2). As stated before, the auxiliary

system describes roughly the evolution of the actual con-

strained system—its state xa approximates the true state x.

Then, an intuitive criterion for modeling the constrained state

is the nearest neighbor criterion

min
x∈D

d(x, xa) (5)

where d(x, xa) refers to the distance between x and xa in a

general sense. That is, the state vector x to be chosen is the

point in the constraint subset which is closest to xa. Once

the optimization result x of (5) for each xa is available, the

distribution of the constrained state x is obtained. Herein,

choosing a reasonable distance metric d and solving the

optimization problem (5) are two fundamental problems to

construct the constrained state x. This is discussed next.

There exists numerous well-defined distance metrics, such

as the commonly used ℓp-norm (p ≥ 1). By different distance

metrics, the values for describing the closeness of two points in

a multi-dimensional space differ quantitatively in general [32].

On the other hand, solving the optimization problem (5) using

different distance metrics may also result in different optimal

x. Thus, a basic prerequisite for modeling the constrained state

is the choice of an appropriate distance metric. By comparison,

the Euclidean distance (i.e., ℓ2-norm) is widely used for its

simplicity and clear physical meaning, which is also chosen

in this work. Through combining the auxiliary system (4), the

proposed modeling criterion for the constrained evolution is

described as follows

xk = arg min
x∈Dk

‖x− xa
k‖2W (6)

=







argminx∈D0
‖x− xa

0‖2W , k = 0

argminx∈Dk

∥

∥x− fk−1(xk−1, uk−1, w
a
k−1)

∥

∥

2

W
,

k = 1, 2, ...
(7)

where ‖x‖W =
√
x⊤Wx is often called the W -norm and

W is a user-defined symmetric and positive definite matrix.

A complete description of the constrained state comprises the

initial state and the state transition equation. The modeling

framework for the initial constrained state and the constrained

state transition is shown by the two equations in (7). Note that

the state xa
k−1 is replaced with xk−1 in the second equation

of (7) since the state is also constrained at time k − 1.

Remark 1: If the given auxiliary dynamics is already

consistent with the constraint; that is, if the state variable

xa
k automatically obeys the constraint (i.e., in Dk), clearly, the

constrained dynamic model to be constructed by the proposed

modeling approach is the same as the auxiliary one. Besides,

the special case with Dk= R
n is trivial since the constructed

model actually equals the auxiliary (unconstrained) dynamics.

Without considering the auxiliary dynamics, the modeling

criterion (7) degenerates into the typical constrained least

squares problem, as shown by (6). The literature has emerged

on solving such a problem is vast and many methods have

been proposed. Among these methods, the Lagrange multiplier

method is among the most popular ones [33].

The Lagrangian of (6) with the equality constraint (2) is

L(x, λ) = ‖x− xa
k‖2W + λ⊤ck(x), (8)

and the constrained state is obtained by minimizing (8).

Suppose that the derivative ∇xck(x) of ck(x) with respect

to x exists and is continuous on an open neighborhood of

any point x. Then, the first order necessary conditions for the

minimum are

∂L(xk, λ)

∂xk

= 0 ⇒ 2W (xk − xa
k) +∇xck(x)λ = 0 (9)

∂L(xk, λ)

∂λ
= 0 ⇒ ck(x) = 0 (10)

Remark 2: The constrained optimization problem (6) may

have multiple solutions. In general, however, only one solution

is desired for a given xa
k in the system modeling. To this end,

some strategies can be used to select a “best” one from these

solutions. For example, among the solutions of (6), select the

one which is nearest to xa
k under another norm (e.g., ℓ1-norm).

Once a one-to-one correspondence of xk and xa
k is obtained,

the constrained dynamic model is then constructed by replac-

ing xa
k with the given auxiliary dynamics. Within the proposed

modeling framework, we discuss next the modeling procedures

for dynamic systems with linear equality constraints (LEC)

and nonlinear equality constraints (NEC), respectively.
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Fig. 1. Model construction of the constrained dynamic systems

B. Linear Equality Constraints

Among the various constraints, the LEC case is obviously

the simplest one and relevant issues can be handled by

using linear algebra. In addition, some actual systems with

constraints can be approximated by a linear equality con-

strained model very well. For instance, in airport surveillance,

the planes slide in the runway, and without considering its

width, the runway can be represented by piecewise linear

approximation [34].

The linear form of (2) is

ck(x) = Ckx− dk = 0 (11)

where Ck ∈ R
m×n has full row-rank with m < n (the re-

dundant constraints can be eliminated if Ck is not of full row-

rank). To model the systems with the constraint (11), the state-

space-decomposition based approach is commonly used [11],

[14], [19]: An equivalent form of the given auxiliary dynamics

is obtained first by using the Gram-Schmidt decomposition,

and then let some specified random components in the form

be fixed so as to be in consistent with the constraint (11).

In this paper, we deal with the construction of the con-

strained dynamic model within the unified modeling frame-

work (7). Based on the LEC (11) and by calculating the first

order conditions (9)–(10), the solution of (6) can be expressed

as

xk = PW
k xa

k + (I − PW
k )xd

k (12)

where PW
k = I − W−1C⊤

k (CkW
−1C⊤

k )−1Ck is the pro-

jector onto the null space of C with weight W , and xd
k =

C⊤
k (CkC

⊤
k )−1dk. In addition, the second-order condition is

∂2
L(xk,λ)
∂x2

k

= W > 0, which indicates that the solution (12)

is the global minimum of the constrained optimization prob-

lem (6). Therefore, the linear equality constrained dynamic

model (LECDM) is constructed as

xk = PW
k [fk−1(xk−1, uk−1, w

a
k−1)] + (I − PW

k )xd
k (13)

The above dynamic model gives the evolution of the con-

strained state in time. As illustrated in Fig. 1, the constrained

state can be realized by projecting the unconstrained state onto

the constraint surface Cx = d. Note that in (13), W is user-

defined and different W ’s lead to different system models,

and so the constrained system modeling is affected by W .

A common choice of W is the identity matrix I , and then

the constrained state x is the orthogonal projection of xa on

the constraint surface. For some typical systems, however,

selecting a suitable W can improve the modeling to some

extent. This is discussed next.

Assume that the given auxiliary dynamics is with additive

noise:

xa
k+1 = fk(x

a
k, uk) + wa

k , wa
k ∼ N (0, Qa

k) (14)

For modeling such dynamics, weight W is suggested to be

set to (Qa
k)

−1, and thus the constrained dynamic model is

constructed as

xk+1 = Pk[fk(xk, uk) + wa
k ] + (I − Pk)x

d
k+1 (15)

where Pk = I−Qa
kC

⊤
k+1(Ck+1Q

a
kC

⊤
k+1)

−1Ck+1 is an oblique

(rather than orthogonal) projector onto the constraint surface.

Pkw
a
k is the process noise (or modeling error) of the newly

constructed dynamic model and its associated covariance

equals PkQ
a
kP

⊤
k . The suggested projector Pk makes model

(15) have the smallest modeling error among the family of the

constrained dynamic models (13) with additive noise, since

for any positive definite W , the following matrix inequality

always holds [19]

PkQ
a
kP

⊤
k ≤ PW

k Qa
k(P

W
k )⊤ (16)

where PW
k Qa

k(P
W
k )⊤ corresponds to the covariance of the

process noise in (13) with additive noise.

C. Nonlinear Equality Constraints

This section considers the nonlinear equality constrained

problem, which is more commonly encountered in reality.

Under our unified modeling framework, the constraint opti-

mization (6) should be solved first to obtain the mapping

from xa
k to xk. If the solution is expressed analytically by

xk = g(xa
k,W ), then the constrained dynamic model can be

represented by

xk+1 = g (fk(xk, uk, wk),W ) (17)

In this model, the NEC information is embedded and any

state xk evolving according to (17) automatically satisfies the

constraints.

However, in many situations, the constrained optimization

result (6) has no analytical but numerical solution, and the

optimization procedure depends heavily on the specified value

of xa
k. In theory, the distribution of the constrained state x

is derived by solving the constrained optimization problem

(6) for all xa
k belonging to a continuous domain. Let p(·)

denote the probability density function (pdf). Here, we use

a set of support points {xa,i
k } with associated weights {αi},

i = 1, ..., N , to approximate p(xa
k),

p(xa
k) ≈

N
∑

i=1

αiδ(xa
k − xa,i

k )

where δ(·) stands for the Dirac delta function. Note that the

point xa,i
k evolves from {xi

k−1, w
a,i
k−1}Ni=1 by the auxiliary

dynamics, and wa,i
k−1 is the sample of the process noise wa

k−1.

1871



TABLE I
CALCULATING THE PDF OF xk

for k = 1, 2, ...
for i = 1 : N

draw {xi
k−1, w

a,i
k−1, α

i} ∼ p(xk−1)p(w
a
k−1)

calculate x
a,i
k

= fk−1(x
i
k−1, uk−1) + w

a,i
k−1

⊲ obtain xi
k

by solving Eq. (6)
end for

pdf of xk is p(xk) ≈
∑N

i=1 α
iδ(xk − xi

k
)

end for

The weights {αi} are normalized such that
∑N

i=1 α
i = 1.

It follows that a set of constrained points {xi
k} with as-

sociated weights {αi} is obtained, which approximates the

pdf of the constrained state xk . Table I describes the steps

to calculate the density of the constrained state assuming

xk−1 and wa
k−1 are independent. For sampling of the point

set {xi
k−1, w

a,i
k−1, α

i}Ni=1, there are various methods in the

literature, including random sampling [35] and deterministic

sampling [36], [37].

In what follows, we focus on a dynamic system with

a specific type of nonlinear constraint—quadratic equality

constraint (QEC) in the form

‖Lkxk‖2 = 1 (18)

where the coefficient matrix Lk ∈ R
l×n has full column-rank

with l ≥ n. The QEC widely exists in spacecraft attitude

estimation [4] [13], target tracking [31] [1], communication

[38], etc. In order to construct a dynamic model for the system

with constraint (18), as stated earlier, the following constrained

optimization problem need be solved first:

xk = argmin
xk

‖xk − xa
k‖2W

s.t. ‖Lkxk‖2 = 1
(19)

Fig. 2 gives a geometrical interpretation of the optimization

in the case that Lk equals identity matrix I . The constraint

(18) is thus a unit-circle, and the solution is the point on the

unit-circle which is closest to the auxiliary state xa
k in the

W -norm sense.

Concerning the typical optimization problem (19), we pro-

vide an easy-to-implement solution by using generalized sin-

gular value decomposition (GSVD). First, using the Cholesky

factorization to decompose the positive-definite matrix W as

W = G⊤G , where G is an upper triangular matrix of full

rank, we can write the Lagrange function as (for notational

simplicity, we omit the time index):

L(x, λ) = ‖G(x − xa)‖2 + λ(‖Lx‖2 − 1) (20)

Further decompose matrices G ∈ R
n×n and L ∈ R

l×n via

GSVD technique [39],

G = UΣGX
⊤, L = V ΣLX

⊤

where U ∈ R
n×n and V ∈ R

l×l are both

orthonormal matrices, X ∈ R
n×n is nonsigular,

ΣG = diag(σG,1, σG,2, ..., σG,n), ΣL = [D 0]⊤,

O

xa(1)
x

1

x′ xa(2)

Fig. 2. Geometrical interpretation of optimization with a quadratic constraint
in R

2. Points x and x′ are both the projections of auxiliary state xa onto
the unit-circle, but x is the closest one to xa in terms of the W -norm. This
figure shows two cases of such xa.

D = diag(σL,1, σL,2, ..., σL,n), σG,j > 0, and σL,j > 0,

j = 1, ..., n. Then the first order necessary condition (9) for

solving (19) can be written as

G⊤G(x− xa) + λL⊤Lx = 0 (21)

Assuming W +λL⊤L is nonsingular, the solution of (21) can

be expressed by

x = (G⊤G+ λL⊤L)−1G⊤Gxa (22)

= (XΣ2
GX

⊤ + λXΣ2
LX

⊤)−1XΣ2
GX

⊤xa

= X−⊤(I + λΣ)−1ξ (23)

where Σ = Σ−2
G Σ2

L and ξ = X⊤xa. Substituting (23) into

(18) yields

0 = ‖Lx‖2 − 1

=
∥

∥V ΣL(I + λΣ)−1ξ
∥

∥

2 − 1

=
∥

∥ΣL(I + λΣ)−1ξ
∥

∥

2 − 1 (V is orthonormal) (24)

= ξ⊤(I + λΣ)−⊤Σ⊤
LΣL(I + λΣ)−1ξ − 1 (25)

Notice that ΣL and ΣG are both diagonal, so is I + λΣ.

Therefore, Eq. (25) can be rewritten as

ξ⊤Σ2
Lρ(λ)ξ = 1 (26)

where ρ(λ) = (I + λΣ)−2 is diagonal.

The above nonlinear equation (26) for the unknown λ can

be solved numerically using Newton’s method. First, ρ(λ) can

be approximated by the first two terms of its Taylor series

expansion at λ = λi:

ρ(λ) ≈ ρ(λi) + ρ̇(λi) · (λ− λi) (27)

where ρ̇(λi) is the derivative of ρ(λ) with respect to λ:

ρ̇(λ) = −2Σ(I + λΣ)−3 = −2Σρ(λ)(I + λΣ)−1

1872



TABLE II
CALCULATING CONSTRAINED x BASED ON xa

1. Decompose Matrices:

W = G⊤G

G = UΣGX⊤, L = V ΣLX
⊤

2. Define: ξ = X⊤xa and Σ = Σ−2
G

Σ2
L

3. Calculate Multiplier λ:
a) set the initial λ0 = 0
b) while |λi+1 − λi| > τ , do iteration:

ρ(λi) = (I + λiΣ)−2

ρ̇(λi) = −2Σρ(λi)(I + λiΣ)−1

λi+1 = λi −
ξ⊤Σ2

L
ρ(λi)ξ−1

2ξ⊤Σ2
L
ρ̇(λi)ξ

4. Obtain Constrained Optimum x:

x = X−⊤(I + λi+1Σ)−1X⊤xa

because Σ and I + λΣ are diagonal. By substituting (27) into

(26), the solution λ can be approximated by

λi+1 = λi −
ξ⊤Σ2

Lρ(λi)ξ − 1

2ξ⊤Σ2
Lρ̇(λi)ξ

(28)

Next, expand ρ(λ) at λ = λi+1 by the Taylor series expansion,

and then repeat the above steps. The solution λ is obtained

through the iteration until |λi+1 − λi| < τ , where τ is a

threshold and λi is the λ value at iteration i.

In addition, it is well known that the initial condition of the

iteration is critical for the convergence and the convergent rate

of Newton’s method. Before discussing the initial value of λ
in (28), we first introduce the following proposition.

Proposition 1: In solving the constrained optimization

problem (19), suppose that vectors xa
(1) and xa

(2) have the same

optimization result x. If xa
(1) is closer to x than xa

(2) in the

W -norm (i.e., ||x− xa
(1)||W < ||x− xa

(2)||W ), then multiplier

|λ1| < |λ2|, where λj is associated with xa
(j). Particularly, if

xa coincides with the constrained state x, then λ = 0.

Proof: See Appendix A.

Proposition 1 shows that the multiplier λ continuously

approaches zero as xa converges to x for the QEC optimization

problem. Since the given auxiliary state approximates the truth,

it is suitable to set the initial λ0 = 0. Finally, the constrained

state xk is obtained by substituting the above value of λ into

Eq. (23), which corresponds to the optimization step labeled

by “⊲” in Table I. For clarity, we summarize the solution

procedure in Table II.

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSIONS

In this section, using a road-based vehicle tracking example,

we demonstrate the effectiveness of our proposed modeling

approach and verify the theoretical results presented above.

In the simulation, a vehicle moves with a constant speed

s = 15m/s, and the speed constraint is

ẋ2 + ẏ2 = s2 (29)

where s is a known constant and (ẋ, ẏ) is the velocity. In

addition, the velocity in the y-axis direction and the position

are measured by

zk =





1 0 0 0
0 1 0 0
0 0 0 1



xk + vk (30)

where the measurement noise vk ∼ N (0, R) is white and

R = diag(400, 400, 20).
We model the constant speed motion by using the modeling

framework (19). Assume that our auxiliary model is the typical

constant velocity (CV) model

xa
k+1 =









1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1









xa
k + wk (31)

where the process noise wk ∼ N (0, Qa) is white and Qa =
diag(16, 64, 1, 6). wk and vk are assumed to be mutually

independent.

Rewrite the constraint (29) in the form of the normalized

quadratic form (18) with L = 1
s
diag(02, I2), set W = I , and

then the solution to (21) is

x = diag(I2, (1 +
λ

s2
)−1I2)x

a (32)

Putting (32) back into (29) yields λ = s(sa − s), where sa =
√

(ẋa)2 + (ẏa)2. Therefore, the solution (32) is

x = diag(I2,
s

sa
I2)x

a (33)

Finally, replacing the auxiliary xa in (33) with the one in

(31), we construct a dynamic model of the constant speed

motion as follows

xk+1 = f(xk, wk) =









xk+T ẋk+w1
k

yk+T ẏk+w2
k

(ẋk+w3
k)s/s

a
k

(ẏk+w4
k)s/s

a
k









(34)

where sak =
√

(ẋk+w3
k)

2 + (ẏk+w4
k)

2, and w
(i)
k denotes the

i-th component of the process noise vector wk. The state

in (34) satisfies the constraint (29). Set initial state x0 =
[0, 0, 11.8301, 6.8301]⊤.

Based on the constructed dynamic model along with the

measurement model (30), we obtain the MMSE suboptimal

estimate of the vehicle’s state by using the unscented filter

first, and then project the MMSE estimate onto the constraint

surface. The performance of the proposed estimator labeled by

“CMMSE” is shown by the red solid line with circles in Fig. 3.

For this example, the Lagrangian multiplier λ can be solved

analytically and the relationship between x and xa is exactly

determined by (33). Nevertheless, the iteration of λ presented

in Section III-C is also performed. The performance of the

CMMSE estimator based on the numerical solution is shown

by the red stars and labeled by “CMMSEiter” in the figure.

Clearly, these two algorithms have basically the same results,

which demonstrates the validity of our numerical solution of

the quadratically constrained optimization.
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Besides, four other conventional constrained estimators are

also implemented, including the (unconstrained) Kalman filter,

the estimate projection (EP) method, the pseudo measure-

ment (PM) method, and two-step constrained unscented filter

(2CUF) [1] [20]. They are all based on the same (uncon-

strained) system model (31)–(30) with the same initial state. In

particular, differing from the EP that just projects the posterior

estimate, the 2CUF projects the posterior sigma points onto

the constraint surface, and then projects the weighted mean of

the constrained sigma points to obtain the final constrained

estimate. The average Euclidean error (AEE) of the state

estimate is used to evaluate the estimation performance of

different estimators [40]. Fig. 3 displays the comparison results

of these estimation algorithms over 1000 Monte Carlo runs.

From the figure, the following observations can be made:

1) Compared with the (unconstrained) KF, the five con-

strained estimators have lower estimation error levels, meaning

that incorporation of the constraint information leads to better

estimation performance.

2) The CMMSE and CMMSEiter have the lowest estimation

error level in the steady state. In addition, the PM method

performs closely to the CMMSE, but its estimate may violate

the constraint.

V. CONCLUSIONS

Dynamic systems with equality constraints have been mod-

eled in this paper. A minimum Euclidean distance criterion for

sufficiently fusing the equality constraints and the auxiliary

dynamics has been proposed, which is the core of the con-

strained dynamics modeling. Under this modeling framework,

the constructed model of the dynamic systems with linear

equality constraints has the same form as those using the

state space decomposition technique, but our modeling is

more intuitive and easier to implement. As a typical nonlinear

equality constraint, we have focused on the quadratic equality

constraint and presented the modeling for such a constrained

dynamic system systematically. Additionally, it is found that

the auxiliary dynamics affects the performance of the final

constructed dynamic model to some extent. Although the

preliminary analysis of the auxiliary dynamics has been pre-

sented, general principles for designing the auxiliary dynamics

merit further study. In the scenario of tracking a road-based

vehicle, our modeling method for the constrained motion has

been employed, and by comparison with the conventional

constrained estimation algorithms, the superiority of our con-

strained estimation algorithm based on the constructed model

has been demonstrated in terms of accuracy.

APPENDIX

A. Proof of Proposition 1

As analyzed earlier, a first order necessary condition for

minimizing (19) is given by (21). Since L is of full column

rank, L⊤L must be symmetric and positive definite. For any

x, if xa coincides with x then λ = 0.
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Fig. 3. Performance assessment of the state estimation algorithms

Premultiplying (x− xa)⊤ on both sides of Eq. (21) yields

‖G(x − xa)‖2 + λ(x − xa)⊤L⊤Lx

= ‖G(x − xa)‖2 + λ(1− (xa)⊤L⊤Lx) = 0 (35)

If xa
(1) and xa

(2) satisfy ||x− xa
(1)||2W < ||x− xa

(2)||2W , that is,

||G(x − xa
(1))||2 < ||G(x − xa

(2))||2, from Eq. (35), it can be

inferred that

λ1(1− (xa
1)

⊤L⊤Lx) > λ2(1− (xa
2)

⊤L⊤Lx) (36)

Likewise, from Eq. (21), we have xa = x+λ(G⊤G)−1L⊤Lx.

Then

(xa)⊤L⊤Lx = [x+ λ(G⊤G)−1L⊤Lx]⊤L⊤Lx

= 1 + λx⊤L⊤L(G⊤G)−1L⊤Lx

Substituting the above equation into inequality (36), we have

−λ2
1x

⊤L⊤L(G⊤G)−1L⊤Lx > −λ2
2x

⊤L⊤L(G⊤G)−1L⊤Lx

Since L⊤L and G⊤G are both positive definite, we can derive

λ2
1 < λ2

2

This completes the proof.
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