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Abstract—A common approach to attack the simultaneous
localization and mapping problem (SLAM) is to consider factor-
graph formulations of the underlying filtering and estimation
setup. While Kalman filter-based methods provide an estimate
for the current pose of a robot and all landmark positions, graph-
based approaches take not only the current pose into account
but also the entire trajectory of the robot and have to solve
a nonlinear least-squares optimization problem. Using graph-
based representations has proven to be highly scalable and very
accurate as compared with traditional filter-based approaches.
However, biased measurements as well as unmodeled correlations
can lead to a sharp deterioration in the estimation quality and
hence require careful consideration. In this paper, a method to
incorporate biased or dependent measurement information is
proposed that can easily be integrated into existing optimization
algorithms for graph-based SLAM. For biased sensor data,
techniques from ellipsoidal calculus are employed to compute
the corresponding information matrices. Dependencies among
noise terms are treated by a generalization of the covariance
intersection concept. The treatment of both biased and correlated
sensor data rest upon the inflation of the involved error matrices.
Simulations are used to discuss and evaluate the proposed
method.

Index Terms—SLAM, bias, correlations, covariance intersec-
tion, combined stochastic and set-membership models.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) has

evolved into a central component of mobile robotics [1], [2]

as it enables a robot to autonomously perform navigation and

path-planning tasks in unknown environments. Many early

and popular methods have employed filtering techniques to

approach the SLAM problem. A filtering method, which is

often based on the extended Kalman filter (EKF), provides

an estimate that comprises the current pose of the robot

and all landmark positions. Due to the sheer size of the

corresponding matrix, updating and bookkeeping of this matrix

often renders filtering methods intractable in large-scale envi-

ronments. Much effort has been devoted to reduce the compu-

tational complexity. For instance, compressed versions of the

EKF [3], combinations with covariance intersection (CI) [4],

and also submap splitting and joining algorithms [5] can be

(a) Effect of bias. (b) Naive solution. (c) Proposed method.

Fig. 1: Victoria park data set with (simulated) biased range

measurements. In each case, the g2o framework [6] has been

used.

named as approaches to cope with large environments. A

viable alternative to filtering methods is the use of graph-

based formulations of the SLAM problem, where not only

the current pose but also the entire history is stored in the

state vector. Although considering the entire trajectory seems

at first to be cumbersome and contradictory, graph-based

methods benefit from the conditional independence of the

measurements, which can be exploited to obtain an extremely

sparse representation of the joint error matrix. As a second

major advantage, graph-based formulations are typically more

robust to nonlinear process and sensor models. While filtering

methods cannot revise previous linearization choices, graph-

based methods essentially represent smoothing algorithms and,

as such, provide smoothed estimates over the entire trajectory

and all measurements. These smoothing approaches have

proven to be highly efficient for large-scale environments.

Graph-based solutions to the SLAM problem consider a

factored representation of the full joint probability distribution.

For the FastSLAM algorithm [7], the problem structure of

SLAM is reformulated as a Bayesian network, to which Rao-

Blackwellized particle filters are applied. Factor graphs allow

for the use of routines for nonlinear least squares optimiza-

tion [8], such as Gauss-Newton iterations or the Levenberg-

Marquardt algorithm, i.e., the computation of an optimal
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estimate can be posed as a nonlinear optimization problem.

Such graph-based formulations have become a very popular

way of modeling the SLAM problem. Nodes in the graph

represent robot poses and landmarks while an edge between

two nodes encodes odometry data or landmark observations,

respectively. Important instances of graph-based methods are√
SAM [8], its incremental variant iSAM [9], and the g2o

framework [6].

SLAM approaches are primarily concerned with the ques-

tion of how to compute an optimal estimate from noisy

odometry and landmark measurements. However, there are a

number of different challenges to take care of, which give rise

to as many further developments. An important problem is to

determine a good initial guess in order to solve the nonlinear

least-squares problem. In [10], a decomposition into subprob-

lems that can be solved robustly and more efficiently is used

to find an initial guess and finally the global minimum. The

incorporation of prior information about landmark positions is

discussed in [11]. A related problem is the identification and

treatment of data association outliers. Methods that feature

an increased robustness to these outliers are based on a

scaling of the covariance matrices [12], [13] or use switchable

constraints [14], [15] that reduce the influence of association

errors. Another typical assumption that is likely to be violated

refers to the use of Gaussian factors, and [16] demonstrate how

to also treat non-Gaussian noise terms in graph-based SLAM.

In particular, nonlinearities introduced by the process model

are investigated in [17].

In general, the efficiency of graph-based optimization al-

gorithms heavily relies on the fundamental assumption of

conditional independence, which is violated if sensor noise is

correlated or systematic effects are present. Fig. 1(a) illustrates

how biased landmark observations can impact the optimization

result. For EKF-SLAM, [18] employ state augmentations

to cope with measurements affected by a bias. Covariance

inflation techniques have been proposed in [19] for the purpose

of treating correlated factors as independent ones. In this paper,

a concept for a systematic and robust treatment of biased

and dependent sensor data is proposed, which continues the

work in [19] and also integrates techniques from ellipsoidal

calculus [20]. Against the background of filtering problems, a

consistent generalization of the Kalman filter algorithm [21],

[22] can be employed to cope with such perturbations of sensor

data. Consequently, the aim of this paper is to apply this

concept from filtering theory within the context of graph-based

SLAM. As it can be seen in Fig. 1(b), a naive characterization

of the bias by an increased error covariance matrix is not

sufficient. The proposed concept, which is subject of the

subsequent sections, leads to the improved result depicted in

Fig. 1(c).

II. NONLINEAR LEAST SQUARES OPTIMIZATION

FOR GRAPH-BASED SLAM

In graph-based SLAM, an estimate for the entire trajectory

and the positions of all landmarks is to be computed. In order

to pose SLAM as an optimization problem, the factorized joint

probability distribution

P (X|U,Z) =
∏

i

P (xi+1|xi, ui)

︸ ︷︷ ︸

odometry measurements

∏

ij

P (xj |xi, zij)

︸ ︷︷ ︸

loop closure/landmark meas.

(1)

is considered, where the set X encompasses the entire tra-

jectory x0, . . . , xN of the robot and the positions xj of all

landmarks. The set U contains the odometry data ui in the

process model

xi+1 = fi(xi, ui) +wi , (2)

and Z is the the set of observations. Each observation zij is

related to the pose xi and landmark position xj by the sensor

model

zij = hij(xi, xj) + vij . (3)

The noise terms wi and vij are assumed to be Gaussian

with covariance matrices C
w
i and C

v
ij , respectively. If xj is

considered to be another robot’s pose at an earlier time step

instead of a landmark, zij is a loop-closure constraint, i.e.,

zij is a pose-to-pose measurement. A factor graph that only

contains odometry and loop-closure constraints reduces to a

pose graph. In fact, each factor graph can be transformed into

a pose graph as a landmark being observed from different

poses can be translated into a loop-closure constraint. In the

following, we use the term loop closure for both landmark and

pose-to-pose measurements.

In order to solve the SLAM problem, we strive for the

set X∗ that maximizes the joint probability (1). With the

normally distributed noise terms wi and vij , the factors in (1)

are all Gaussian probability densities, and the optimization

problem can be rewritten as

X∗ = argmax
X

P (X|U,Z)

= argmin
X

logP (X|U,Z)

= argmin
X

∑

i

‖xi+1 − fi(xi, ui)‖2Cw
i

+
∑

ij

‖zij − hij(xi, xj)‖2Cv
ij

,

(4)

where the notation ‖x‖2
C

= xT
C

−1x has been used. Due to

the typically nonlinear system and sensor models fi and hij ,

optimization methods like Gauss-Newton iterations or the

Levenberg-Marquardt algorithm have to be employed to solve

this least squares problem.

In general, solutions to (4) are derived and studied at a more

abstract level [6]. Each type of constraints, be it an odometry

or landmark observation, is characterized by an error

eij ≡ eij(xi, xj) ≡ eij(xi, xj , zij) ,

which has the error covariance matrix E[eije
T
ij ] = Cij and

where zij represents a virtual measurement between state
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(a) Effect of bias. (b) Naive method. (c) Proposed method.

Fig. 2: Different solutions for the Manhattan3500 data set. Loop-closure measurements are affected by a (simulated) bias. The

initial estimate is shown in gray.

components xi and xj . For the observation model (3), the

error has the form

eij(xi, xj , zij) = zij − hij(xi, xj) = vij (5)

and, for the process model (2), the error becomes

ei(i+1)(xi, xi+1, zi(i+1)) = xi+1 − fi(xi, ui) = wi ,

where the odometry data zi(i+1) = ui serve as virtual

measurement. The objective function consequently reads

F (X) =
∑

<i,j>∈G

eij(xi, xj)
T
Ωij eij(xi, xj)

︸ ︷︷ ︸

=:Fij(X)

, (6)

where the set G contains the pairs of indices for which a

constraint exist and Ωij = C
−1
ij is the information matrix

of the error, i.e., the each error term has the covariance matrix

E[eije
T
ij ] = Cij = Ω

−1
ij .

In the optimization routines, first-order Taylor series expansion

are typically used to linearize the error functions eij(xi, xj).
Due to the smoothing effect, graph-based methods have shown

to be highly efficient for a number of nonlinear models like

for instance bearing-only sensors. As it is discussed in the

following section, conditional independence of sensor data is

a major prerequisite for these approaches.

III. GRAPH-BASED SLAM WITH BIASED AND

DEPENDENT MEASUREMENT DATA

The factorization of the joint probability distribution (1)

plays a key role in graph-based SLAM. Biased and dependent

data violate this substantial assumption at the early begin-

ning. More precisely, the loop closure constraints in (1), i.e.,

multiple observations of poses or landmarks, represented by

P (xj |xi, zij) have the product representation

P (XJi
|xi, ZiJi

) =
∏

j∈Ji

P (xj |xi, zij) (7)

as sensor noise is supposed to be conditionally independent

given the state xi. In the above equation, Ji = {j1, . . . jn}
contains all indices with 〈i, j1〉, . . . , 〈i, jn〉 ∈ G, i.e, the set

XJi
subsumes all landmarks or poses xj that are observed

from pose xi and the set ZiJi
represents the corresponding

measurements. The assumption (7) of independence is not

tenable if a systematic error is affecting measurements or

correlated noise is present. Without the factored decompo-

sition (7), the joint probability distribution (1) then has the

undesirable form

P (X|U,Z) ∝
∏

i

P (xi+1|xi, ui)
∏

i

P (XJi
|xi, ZiJi

) , (8)

which prohibits a sparse representation of the optimization

problem.

The product probability representation (7) is directly linked

to the assumption

E[eike
T
il ] = 0

for k 6= l, k, l ∈ Ji. With respect to the objective function (6),

this sparseness assumption is inevitable for efficient implemen-

tations of factor graphs. In the case of (8) that a factorization

is not possible, non-zero cross-covariance terms are present,

i.e., E[eike
T
il ] 6= 0. Hence, we have to consider the joint error

vector

eiJi
=






eij1
...

eijn




 =






vij1
...

vijn




 , (9)

whose joint covariance matrix

E[eiJi
e
T
iJi

] = CiJi
= Ω

−1
iJi

(10)

lacks of a block-diagonal structure. In consequence, the miss-

ing conditional independence in (8) leads to

FiJi
(X) = e

T
iJi

ΩiJi
eiJi

6=
∑

j∈Ji

e
T
ijΩijeij , (11)

which renders the minimization of (6) significantly more

difficult. In particular, the entire error function (9) has to be
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linearized. In the subsequent subsections, we examine how to

restore the sparse structure in (10) for biased and correlated

loop-closure measurements.

A. Treatment of Bias (Set-membership Perspective)

In the presence of a bias bij that effects the sensor

model (3), the error (5) becomes

eij(xi, xj) = vij + bij .

In general, the bias cannot be identified but can be conser-

vatively represented by its membership to a set, which is

chosen large enough to include the bias. Accordingly, the bias

is assumed to be unknown but bounded by an ellipsoid, i.e.,

bij ∈ E(0,Bij), where the notation

E(ĉ,X) =
{
x | (ĉ− x)TX−1(ĉ− x) ≤ 1

}

is used. We first consider the case of single biased measure-

ment from pose xi. The error covariance matrix can then

conservatively be bounded by

E[eije
T
ij ] = E[vijv

T
ij ] + bijb

T
ij ≤ Cij +Bij , (12)

where A ≤ B means that the difference B − A is positive

semidefinite. The corresponding component of the objective

function (6) becomes

Fij = e
T
ijΩ̄ijeij = e

T
ij(Cij +Bij)

−1
eij , (13)

with information matrix Ω̄ij := (Cij+Bij)
−1. This modified

information matrix corresponds to the common approach to

incorporate additional uncertainties, i.e., the covariance matrix

is simply increased by an additional matrix term. However,

in the situation that multiple measurements from pose xi are

affected by a bias, Fig. 1(b) and Fig. 2(b) reveal that the

modification (13) is not sufficient.

If multiple measurements from pose xi are affected by bias

terms bij1 , . . . ,bijn , the loop-closure components (7) cannot

be factorized anymore, and the joint distribution is of the

form (8). The joint error vector (9) becomes

eiJi
=






eij1
...

eijn




 =






vij1
+ bij1

...

vijn
+ bijn




 ,

and the corresponding error matrix (10) yields

E[eiJi
e
T
iJi

] =






Cij1 · · · 0

...
. . .

...

0 · · · Cijn






+






bij1b
T
ij1

· · · bij1b
T
ijn

...
. . .

...

bijnbij1 · · · bijnbijn




 .

(14)

The bound (12) cannot simply be applied to each component,

i.e.,

E[eiJi
e
T
iJi

] �






Cij1 +Bij1 · · · 0

...
. . .

...

0 · · · Cijn +Bijn




 .

In order to derive a bound for the second matrix in (14),

the Minkowski sum of ellipsoids has to be computed. Each

bias term bijk can be represented in the joint space by the

degenerated ellipsoid











0
...

bijk

...

0











∈ E












0,












0 · · · 0

. . .

... Bijk

...

. . .

0 · · · 0























(15)

As discussed, for instance, in [20] and [23], the sum of the

bias terms (15) then lies in the outer ellipsoid






bij1

...

bijn




 ∈ E






0, psum







1
pij1

Bij1 . . . 0

...
. . .

...

0 . . . 1
pijn

Bijn













(16)

with pijk > 0 and psum = pij1 + . . .+ pijn . A trace-minimal

approximation is given by pij1 := trace(Bij1) while other

criteria such as the determinant require numerical methods.

If it is the same bias affecting each measurement, the factor

that inflates each shape matrix reduces to psum · 1
pij1

= n.

Eventually, the error matrix now has the bound

E[eiJi
e
T
iJi

] ≤






Cij1 · · · 0

...
. . .

...

0 · · · Cijn






+







psum

pij1

Bij1 . . . 0

...
. . .

...

0 . . . psum

pijn
Bijn






=: Ω̄−1

iJ ,

which meets the sparsity assumption for graph-based SLAM.

The term (11) retains the sum representation

FiJi
(X) = e

T
iJi

Ω̄iJi
eiJi

=
∑

j∈Ji

e
T
ij

(
Cij +

psum

pij
Bij

)−1
eij

=
∑

j∈Ji

Fij(X) . (17)

This concept represents a generalization of the combined

stochastic and set-membership Kalman filter in [21] and offers

the advantage that the treatment of biased sensor data can

directly be integrated into existing implementations of graph-

based SLAM. In particular, the problem structure in (6) can

be preserved, and only the information matrices need to be

adapted according to (17). The derivation also shows that

purely set-membership errors can be treated within graph-

based SLAM.

B. Treatment of Dependence (Bayesian Perspective)

Dependencies in the joint probability P (XJi
|xi, ZiJi

) can

arise when observations to different poses or landmarks have

correlated errors, i.e., E[vijk
vijl

] 6= 0 for k 6= l, and hence,

the product form (7) does not hold. However, this problem can

be resolved by employing a weighted geometric mean [24],
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which can be regarded as a generalization of the covariance

intersection algorithm [4]. If the conditional independence (7)

does not hold, the conservative product representation

P̃ (XJi
|xi, ZiJi

) ∝
∏

j∈Ji

Pωij (xj |xi, zij) (18)

with
∑

j∈Ji
ωj = 1 and ωj > 0 can be used. The general idea

has also been studied and discussed in [19] for pose graphs.

The joint probability density now becomes

P (X|U,Z) =
∏

i

P (xi+1|xi, ui)
∏

ij

Pωij (xj |xi, zij)

and preserves the desired product structure. After taking the

logarithm in (4), the weighted geometric mean (18) leads to

FiJi
(X) =

∑

j∈Ji

ωje
T
ijΩijeij =

∑

j∈Ji

e
T
ij

(
1
ωj
Cij

)−1
eij .

for the corresponding partial sums in the objective function (6).

The parameter ωij can be chosen to minimize the trace of

the joint covariance matrix, as in the case of a bias. By

setting ωij = psum

pij
, it can immediately be seen that the same

inflation technique has been used in (16) for the ellipsoidal

shape matrices. More precisely, the treatment of both biased

and dependent data relies on the same inflation technique of

the corresponding error matrices. This result is expected and

desired because a bias term also leads to correlations, as it

can be seen in (14). In particular, biased and dependent sensor

observations can be treated simultaneously.

The proposed concept bears resemblance with dynamic co-

variance scaling [12] for data association outliers. In our work,

we focus on biased and dependent landmark and loop-closure

constraints and employ inflation techniques as a systematic

approach to reestablish a factorized joint probability density

such that graph-based optimization algorithms can exploit

sparseness.

IV. EXAMPLE

In order to discuss the proposed concept, three examples

have been evaluated. Fig. 1 and Fig. 2 illustrate different

optimization results with the Victoria park and the Manhat-

tan3500 data set, respectively. The former data set has been

altered by introducing a bias of 15m to 25 percent of the

range measurements. As shown in Fig. 1(a), the bias leads to a

poor estimate of the trajectory and the landmark positions. For

Fig. 1(b), a bound on the bias is used to modify the information

matrices as in (13). This modification does not take care

of the off-diagonal blocks in (14), which are introduced by

the bias, and still provides a poor estimate. Fig. 1(c) shows

the improved result obtained by the proposed method, where

the systematic inflation of the error matrix in (17) has been

employed. Similar conclusions can be drawn from Fig. 2,

where each loop-closure constraint has been altered by a bias

of 2 in x1-direction. Again, a naive consideration of a bound

for the bias is not sufficient, as it can be seen in Fig. 2(b).

With the proposed method, the enhanced estimate in Fig. 2(c)

−10 −5 0 5 10 15 20 25 30

0

10

20

30

x1

x
2

(a) Result without bias.

−10 −5 0 5 10 15 20 25 30

0

10

20

30

x1

x
2

(b) Result with biased range measurements.

−10 −5 0 5 10 15 20 25 30

0

10

20

30

x1

x
2

(c) Result with biased range measurements that are treated by the
proposed method.

Fig. 3: SLAM results for landmark-based tracking.
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can be achieved. For both data sets, the g2o framework [6] has

been employed.

A small-scale example is illustrated in Fig. 3, where the

GTSAM library [25] has been utilized. Here, an object is

tracked over 50 time steps. The actual trajectory and the

landmark positions are depicted in green ( ). The red ( )

trajectory is reported by odometry measurements. At each

time step, bearing-range measurements are performed while

each landmark within the range of 10 is observed. In each

figure, the estimation result is drawn in black ( ). Due to

the large number of observations at each time step, biased

measurements have a strong effect on the estimation result. In

Fig. 3(b) and Fig. 3(c), each range measurement is affected by

a bias of 2. With the proposed method, the result in Fig. 3(c)

is close to the optimal result shown in Fig. 3(a).

The examples demonstrate that biased measurements lead to

correlations and have a strong effect on the SLAM result. A

naive bound on the bias turns out to be not sufficient. However,

a systematic treatment of biased and dependent information

can easily be implemented by means of an inflation of the

involved matrices, and the proposed concept does not require

any specific modifications or customization of the optimization

algorithms; only the information matrices have to be adapted

to the required bound of the joint error matrix.

V. CONCLUSION

Biased and dependent sensor data require careful attention

in filtering and smoothing applications. As such, efficient im-

plementations of graph-based SLAM strongly rely on a sparse

representation of the dependency structure, which cannot be

preserved if measurement errors are biased or correlated. In

this paper, the block-diagonal structure of the joint error matrix

is retained by employing an inflated matrix bound. In case

of biased observations, this bound is obtained by means of

a Minkowski sum of ellipsoids. For correlated sensor noise,

a generalization of the covariance intersection algorithm has

been utilized. Both cases rely on the same parameterization of

the inflated matrix bound and can be treated simultaneously.

While in this work a trace-minimal parameterization has been

chosen, future work will also consider other choices of the

parameters. In particular, the choice of a minimal parameter

can be included in the optimization routines.
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