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Abstract—This paper proposes a solution for the problem of
determination, separation, and tracking of an unknown time-
varying number of maneuvering sources based on a mixture
of signals received by some omnidirectional sensors located at
different places. To our knowledge, this problem has not been
addressed in its full range: what has been addressed is limited
to some simplified versions (e.g., with a fixed known number of
sources) or with sensor arrays, which is different from our case
(with omnidirectional sensors). This problem has one decision and
two estimation subproblems: determine the number of sources
(decision), estimate signals of different sources (separation), and
estimate state vector of the sources (tracking), while the number
of sources can change with time and their dynamic models
are uncertain. These three subproblems are highly interrelated
that solving one requires solutions of the other two. Therefore,
they have to be considered jointly. Optimal Bayes joint decision
and estimation (JDE) based on a generalized Bayes risk can
handle such problems. However, here we have several additional
difficulties, including two interrelated estimation subproblems,
dynamic model uncertainty, correlated states of different sources,
dependent dynamic models of different sources, nonlinearity of
observation model, and two involved Markov process types (one
for the number of sources and the other for the dynamic model).
An approximate linear minimum mean square error estimator
is derived to deal with the interrelated estimation subproblems.
Having considered all the aforementioned issues, Bayes JDE
required terms are derived based on a recursive calculation of
some key terms. The proposed method is theoretically solid and
simple for implementation. It is examined by simulations.

Keywords: Joint decision and estimation, target tracking,
LMMSE estimation, Markov process, source separation.1

I. INTRODUCTION

The problem of jointly deciding on the number of concurrent
sources, separating their signals, and tracking their state is
a complicated task, which is of great interest in different
applications including surveillance, teleconferencing, cocktail
party, etc. One may categorize the existing literature on source
separation and tracking roughly into three classes from the
viewpoint of the assumptions on modeling of the problem.
The first class assumes separation of signals of some static
sources [1], [2], [3]. Generally, it is assumed that mixtures
of signals from different sources are received by different
sensors located at different places. Then the goal is to find an
inverse of the mixing operator in order to recover the signals
propagated by different sources. It is assumed that sources

1Research supported by NASA/LEQSF Phase03-06 through grant
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do not move. In the second class it is assumed that sources
can move, but the number of sources is fixed and known.
The third class addresses a more general problem in which
the number of sources is unknown and may be time-varying
[4], [5], [6], [7]; however, it is often assumed that there is
no dynamic model uncertainty for the motion of the sources.
Also, from the viewpoint of observation model and sensors, the
existing publications are mostly based on sensor arrays located
at different places, which can capture much more information
about sources than omnidirectional sensors; however, they are
more complicated and expensive.

The problem in this paper belongs to the third class. The
problem is simultaneously deciding on the number of concur-
rent sources while the number may change over time, estimat-
ing their signals (separation), and tracking their state in the
presence of dynamic model uncertainty based on observations
received by omnidirectional sensors located at different places.
We are not aware of any existing publication considering
the whole problem, although there are papers on simplified
versions of this problem (e.g., with a known fixed number of
sources) or based on sensor arrays rather than omnidirectional
sensors. Most publications on this topic are based on sensor
arrays. Source separation and tracking tasks in this problem
are different from those with sensor arrays. For example,
in the latter after obtaining directions of arrival, tracking
and separation become two separate tasks, meaning that first
tracking can be done based on directions of arrival (similar to
multitarget tracking) and then signals can be estimated using
the results of tracking. Also, one may use beamforming and
spatial filtering based on array processing for separation of
signals. For omnidirectional sensors, however, an observation
received by a sensor is a mixture of signals from all the sources
plus noise. So, an observation corresponding to a specific
source can not be distinguished from another. Therefore, one is
supposed to estimate states and signals of sources jointly. Thus,
this problem has three major subproblems: decision about the
number of sources, estimation of source signals, and estimation
of the sources states. In other words, this problem includes
one decision subproblem and two estimation subproblems.
These three subproblems are highly interrelated. Therefore,
they have to be considered jointly. Furthermore, there are
additional difficulties in this problem: There is uncertainty
about the dynamic model of each source (unlike most pub-
lications in the third class) and given observations, dynamic
models of different sources are not generally independent;
given observations, states of different sources are not generally

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 1848



independent; observation models are nonlinear. According to
the dimensions of the working space and the speed of signal
propagation, it is assumed for simplicity that propagation of
signals is instantaneous, and reverberations are negligible in
the working space. This problem is naturally complex and has
multiple uncertainties. Thus, computational complexity is an
issue in this problem. So, computationally demanding methods
are not desirable for either the whole structure of the problem
(e.g., joint density estimation for determining the number of
sources and estimating their signals and states) or a part of the
problem (e.g., particle filter for nonlinear filtering). Therefore,
for different parts of the problem we need approaches which
are good in both performance and computation.

Bayes Joint decision and estimation based on a general-
ized Bayes risk [8] can optimally handle problems in which
decision and estimation affect each other [9], [10]. Unlike
some other methods for solving such problems (e.g., density
estimation based methods), Bayes JDE directly addresses the
desired goal — joint decision and point estimation. This is
suitable for our problem. In other words, based on Bayes
JDE we directly obtain a point estimate and do not first
estimate the whole posterior density (which is a hard task)
and then obtain a point estimate. However, Bayes JDE has not
been applied to solving this problem. In other words, it is a
new framework in the area of source separation and tracking.
Although Bayes JDE can conceptually handle our problem,
there are several difficulties in the derivation of its required
terms for this problem, two of which are interrelated estimation
subproblems and measurement nonlinearity. In order to deal
with these two issues a linear minimum mean square error
(LMMSE) estimator is derived (using an approximation) for
state estimation in the presence of unknown signals and with a
nonlinear observation model. The derived LMMSE estimator
is new for this problem. The LMMSE estimator, which is the
best linear estimator and has a low computational complexity,
is derived in two steps: first, we obtain a prior state estimate
of the sources in the presence of unknown signals based on
a linear approximation, and then the final estimates of the
states and signals are derived from their posterior joint density.
Another point in derivation of the LMMSE estimator is: given
observations, states of different sources are generally correlated
and can not be considered separately. So, this correlation must
be considered in the derivation.

In order to deal with changes in the number of sources, we
model the sequence of the number of sources as a Markov
process. Also, we model the evolution of the dynamic model
of the sources (as a group) by Markov processes to cope with
the dynamic model uncertainty. Multiple model approach can
not be easily applied to this problem the way it is applied
in a typical target tracking problem. One reason is that two
types of Markov processes are involved in this problem, and
another reason is that given observations, dynamic models of
different sources are not generally independent. Thus, another
issue in the derivation of the Bayes JDE required terms
(including posterior state estimate given a hypothesis, and
posterior hypothesis probability) is that two types of Markov
processes are involved in this problem. Derivations of the
essential terms based on these two types of Markov processes
are new results in this problem. Finally, having considered all
the issues, the required terms in the JDE framework are derived
based on a recursion of some key terms.

The paper is organized as follows. Section II is for prob-
lem description and modeling. Section III considers a simple
version of the whole problem in which the number of sources
is fixed and known and the dynamic models are also known.
An LMMSE estimator is derived for state estimation in the
presence of unknown signals. Also, the signal estimator is
presented. Section IV considers the whole problem. In this
section a recursive JDE is presented for simultaneous decision
about the number of concurrent sources and estimation of their
states and signals. Due to space limitation, we omit details of
the derivation of equations presented in section III and IV.
Simulations are presented in section V.

II. PROBLEM DESCRIPTION AND MODELING

Consider a working space with N omnidirectional sensors
located at different places and Mk moving sources at time
k. Each source’s motion follows its own dynamic model and
the number of sources is unknown and may change with
time. A source may appear or disappear in time. Propagation
of a signal from each source is omnidirectional and signals
from different sources are independent. Also, observation
noises of different sensors are Gaussian and uncorrelated.
Each sensor receives a mixture (a linear combination) of
signals from multiple sources. The coefficient correspond-
ing to the signal from source m ∈ {1, ...,Mk} received
at sensor n ∈ {1, ..., N} is a nonlinear function of the
source location psom,k = (xso

m,k, y
so
m,k, z

so
m,k) and sensor location

psen = (xse
n , ysen , zsen ). Note that we do not consider time index

for the sensors. However, sensors can move as far as we know
their locations. Let sm,k be the signal of source m at time
k, and vn,k the observation noise of sensor n at time k. The
observation model is

on,k =

Mk
∑

m=1

h(psen , psom,k)sm,k + vn,k , n = 1, ..., N (1)

where on,k is the observation received by sensor n at time k
and h(psen , psom,k) is the mixing coefficient for the signal from
source m at sensor n at time k. We assume there are enough
sensors to avoid the unobservability problem. Equation (1) can
be written in matrix form as

Ok = HkSk + Vk (2)

where Ok = [o1,k, o2,k, ..., oN,k]
′ is the observation vector,

Hk = [h1,k h2,k . . . hMk,k] is the matrix of coefficients
where hm,k = [h(pse1 , psom,k), h(p

se
2 , psom,k), . . . , h(p

se
N , psom,k)]

′,

Sk = [s1,k, s2,k, ..., sMk,k]
′ is the vector of source signals, and

Vk = [v1,k, v2,k, ..., vN,k]
′ is the observation noise vector. In

addition, we have

Ok =

Mk
∑

m=1

hm,ksm,k + Vk (3)

Let Xm,k be the state vector of source m at time k. The linear
dynamic motion of source m in the Cartesian coordinates can
be modeled as

Xm,k = Fm,kXm,k−1 +Gm,kwm,k−1 (4)

where wm,k−1 is zero mean Gaussian noise with variance
Qm,k−1. We assume the dynamic noises of all the sources have
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the same variance (Qm,k = Qk). In a 3D space we consider
dynamic models along different axes being decoupled. So,

Fm,k = diag(F x
m,k, F

y
m,k, F

z
m,k)

Gm,k = [Gx
m,k

′, Gy
m,k

′, Gz
m,k

′]′

For example, for a nearly constant velocity model along x axis
for source m at time k we have

F x
m,k =

[

1 T
0 1

]

, Gx
m,k = [

T 2

2
, T ]′ (5)

We call all the concurrent sources together a meta source 2,
and when we want to emphasize the number of sources in a
meta source we denote it as MSj , which means a meta source
consisting of j sources. So, the evolution of the state vector
of the meta source can be written as

Xk = FkXk−1 +Υk (6)

where Fk = diag(F1,k, F2,k,..., FMk,k), Υk = [Υ′
1,k,Υ

′
2,k,...

,Υ′
Mk,k

]′, and Υm,k = Gm,kwm,k−1. Also, Xk =
[X ′

1,k, X
′
2,k, ..., X

′
Mk,k

]′ is the meta source state vector. The
signal from source m is assumed to be Gaussian with mean
µm and variance σ2

m: sm,k ∼ N(µm, σ2
m). Since signals from

different sources are independent, for the signal vector we have

Sk ∼ N(µ, PS) (7)

where PS = diag(σ2
1 , σ

2
2 , ..., σ

2
Mk

) and µ = [µ1, µ2, ..., µMk
]′.

We assume that the signals parameters µ and PS are known.
The observation noise for all sensors is V ∼ N(0, R),
where R is the covariance matrix. As mentioned, each mixing
coefficient is usually assumed to be a function of the positions
of the corresponding source and sensor. Let

rm,n,k =
[

(xse
n − xso

m,k)
2 + (ysen − ysom,k))

2 + (zsen − zsom,k)
2
]

1

2

Then, according to the propagation model of the signals, the
following model is considered for the mixing coefficients:

h(psen , psom,k) = g(rm,n,k) =
1

√

r2m,n,k + d2
(8)

where d is a constant in order to prevent the denominator from
going to zero when a source is very close to a sensor. When a
source is very close to a sensor the corresponding coefficient
between the source and sensor is almost 1. Thus, we simply
assume d = 1.

III. DETERMINATION, SEPARATION, AND TRACKING OF

AN UNKNOWN TIME-VARYING NUMBER OF

MANEUVERING SOURCES

We present the proposed method for the whole problem in
two steps in this section. In the first step (subsection A), a
solution for the problem of separation and tracking of a known
fixed number of non-maneuvering sources is presented. Then
in subsection B, the whole problem is addressed.

2As we will see, since the observation vector is a mixture of data from
multiple sources, tracking of the sources (specifically the update step) should
be done considering all of them together. So, this name is useful.

A. Separation and Tracking of a Known Fixed Number of Non-
maneuvering Sources

In this subsection, it is assumed that the number of sources
is known and fixed, and dynamic models of sources are
known. In other words, in equation (3) source signals and
their mixing coefficients are unknown. hm,k is a vector-valued
nonlinear function of the position of source m at time k.
Thus, equation (3) is nonlinear in the meta source state vector
Xk, and the signals sm,k are also unknown. The goal is to
estimate the state vector Xk and the signal vector Sk. To
do so, an idea is: considering Sk as a nuisance parameter,
estimate Xk, and then estimate Sk based on the estimate of Xk.
However, it is not easy to handle the integrals involved in this
approach. In addition, the integrals do not have a closed form
and an approximation is needed. Most integral approximation
methods are computationally demanding for such a problem.
Furthermore, there are different kinds of uncertainties involved
in our problem (regarding the source states, source signals,
number of sources, and dynamic model for each source) which
make it complicated already. Therefore, a less computationally
complex approach is desired. We derive an LMMSE estimator
[11], [12] of Xk in the presence of unknown signals, based
on an approximation. Then, based on the estimate of Xk as
prior information, we estimate Xk and Sk based on their joint
posterior density.

The LMMSE meta source state estimator is based on the
following equations

X̂p
k = E∗[Xk|X̂k−1, Ok]

= X̂k|k−1 + C[X,O]k|k−1
C−1

Ok|k−1

(Ok − Ôk|k−1) (9)

P p
k = E[(Xk − X̂p

k)(Xk − X̂p
k)

′]

= Pk|k−1 − C[X,O]k|k−1
C−1

Ok|k−1

C ′
[X,O]k|k−1

(10)

where “E” denotes expectation operator, E∗[Xk|O
k] denotes

the LMMSE estimator of Xk given observations Ok (observa-

tions up to time k) [11], X̂k−1 is available from time k − 1
(21), and the superscript “p” indicates that this is a preliminary
step for estimation. Here,

X̃k = Xk − X̂k|k−1

Õk = Ok − Ôk|k−1

X̂k|k−1 = E∗[Xk|X̂k−1]

Ôk|k−1 = E∗[Ok|X̂k−1]

Pk|k−1 = cov(X̃k)

COk|k−1
= cov(Õk)

C[X,O]k|k−1
= cov(X̃k, Õk)

In the following, we calculate the required terms in the
LMMSE estimator. For state prediction we have

X̂k|k−1 = FkX̂k−1

Pk|k−1 = FkPk−1F
′
k +GkQk−1G

′
k

where Gk = [G′
1,k, G

′
2,k, ..., G

′
M,k]

′. For observation predic-
tion

Ôk|k−1 ≈
M
∑

m=1

ĥm,k|k−1µm (11)
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where a Taylor series expansion has been used to calculate

the mean of hm,k, µ was defined in (7), and ĥm,k|k−1 =
hm,k|Xk=X̂k|k−1

. Also, it should be noticed that since the num-

ber of sources is assumed known and fixed in this subsection,
we drop time index k for Mk. It can be shown that

C[X,O]k|k−1
≈

M
∑

m=1

Pk|k−1H̆
′
m,kµm (12)

COk|k−1
≈

M
∑

m=1

[

σ2
mĥm,k|k−1ĥ

′
m,k|k−1

+ σ2
mH̆m,kPk|k−1H̆

′
m,k

]

+
M
∑

m=1

M
∑

l=1

[

H̆m,kPk|k−1H̆
′
l,kµmµl

]

+R (13)

where H̆m,k =
∂hm,k

∂X′
k

|Xk=X̂k|k−1

. Thus, the LMMSE meta

source state estimator, based on the approximation above, is
obtained by substituting the terms into (9) and (10).

Now, meta source signal and state can be estimated based
on their joint posterior density given observations and the
available prior information about the state as follows:

p(Xk, Sk|O
k,Pk) ∝ p(Xk|Sk, O

k,Pk)p(Sk|O
k,Pk) (14)

where Pk = {X̂p
k , P

p
k } denotes the prior information available

based on the output of the LMMSE estimator (9) and (10).
Then, we have

p(Sk|O
k,Pk) =

p(Ok|Sk, O
k−1,Pk)

p(Ok|Ok−1,Pk)
p(Sk|O

k−1,Pk)

∝ N(Ok; Ĥ
p
kSk, R)N(Sk;µ, PS) ∝ N(Sk; Ŝk, P̂S,k) (15)

where Ĥp
k = Hk|X̂p

k
is an estimate of the mixing coefficient

matrix in (2), and

Ŝk = µ+ P̂S,kĤ
p
k
′R−1(Ok − Ĥp

kµ) (16)

P̂S,k = PS − PSĤ
p
k
′(Ĥp

kPSĤ
p
k
′ +R)−1Ĥp

kPS (17)

The final point estimate of the meta source state can be
obtained based on the posterior density (14) conditioned on

the estimated signal vector Ŝk as

p(Xk|Ŝk, O
k,Pk) ∝

p(Ok|Xk, O
k−1, Ŝk,Pk)p(Xk|O

k−1, Ŝk,Pk) (18)

Therefore, similar to (9) and (10) we can calculate the LMMSE
estimator of Xk, but this time based on the new prior which

is the output of the previous LMMSE estimator {X̂p
k , P

p
k }:

X̂k = E∗[Xk|X̂k−1, Ok, Ŝk,Pk]

= X̂p
k + C̆[X,O]k|k−1

C̆−1
Ok|k−1

Ŏk (19)

Pk = E
[

(Xk − X̂k)(Xk − X̂k)
′|Ŝk,Pk

]

= P p
k − C̆[X,O]k|k−1

C̆−1
Ok|k−1

C̆ ′
[X,O]k|k−1

(20)

where

X̆k = Xk − X̂p
k

Ŏk = Ok − E∗[Ok|X̂k−1, Ŝk,Pk]

C̆[X,O]k|k−1
= cov(X̆k, Ŏk|Ŝk,Pk)

C̆Ok|k−1
= cov(Ŏk|Ŝk,Pk)

Then, the final estimate of Xk is

X̂k = X̂p
k +AkBk

(

Ok −
M
∑

m=1

ĥm,kŝm,k

)

(21)

Pk = P p
k −AkBkA

′
k (22)

with

Ak =
M
∑

l=1

P p
k H̆

p
l,k

′ŝl,k

Bk =
(

M
∑

m=1

M
∑

l=1

[

H̆p
m,kP

p
k H̆

p
l,k

′ŝl,kŝm,k

]

+R
)−1

where ŝm,k is the mth element of Ŝk in (16), H̆p
m,k =

∂hm,k

∂X′
k

|Xk=X̂
p

k
, and ĥm,k = hm,k|Xk=X̂

p

k
.

Therefore, with estimation of Xk, the solution for the
problem of separation and tracking of a known fixed number of
non-maneuvering sources is complete. In the next subsection,
we consider the whole problem.

B. Determination, Separation, and Tracking of Unknown Time
Varying Number of Maneuvering Sources

In this subsection, the problem presented in subsection
A is extended to the case in which the number of sources
is unknown and time-varying and the meta source dynamic
model is uncertain. As explained, this is a joint decision and
estimation (JDE) problem. We solve it based on optimal Bayes
JDE method [8].

Optimal Bayes JDE: We briefly explain the optimal
Bayes JDE framework [8] for a generic problem. Con-
sider N hypotheses {H1,H2, ...,HN } and M decisions
{D1,D2, ...,DM}. The Bayes JDE risk is

R̄ =

M
∑

i

N
∑

j

(

αijcij + βijE[Ce
ij(u, û)|D

i,Hj ]
)

P (Di,Hj)

(23)
where u is the estimand and û is its estimate. cij is the cost
of the ith decision while the jth hypothesis is true. αij and
βij are weights of decision and estimation costs, respectively.
Ce

ij(u, û) is estimation cost fucntion.

Optimal JDE Solution: To minimize R̄ in (23), the optimal
decision D is

D = Di if Ci(o) ≤ Cl(o), ∀l (24)

where o is the observation and the cost is given by

Ci(o) =
N
∑

j=1

(

αijcij + βijE[Ce
ij(u, û)|D

i,Hj ]
)

P (Hj |o)

(25)
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Given any set of regions {Γ1, ...,ΓM} of the data space, the
optimal estimate is available. For simplicity, we consider the
set of decision regions forming a partition of the data space.
Then the optimal estimator based on (23) with Ce

i,j(u, û) =
(u− û)′(u− û) is given by

û =
M
∑

i=1

1(o; Γi)ǔi (26)

ǔi =

N
∑

j=1

E(X|o,Hj)
βijP (Hj |o)

∑N
l=1 βilP (Hl|o)

, o ∈ Γi

1(o; Γi) =

{

1 o ∈ Γi

0 else

and ǔi is undefined if o /∈ Γi. The optimal Bayes joint
decision-estimate (D, û) is the joint of the above optimal
decision and estimate.

Determination, separation, and tracking of an unknown
time-varying number of maneuvering sources based on a
recursive Bayes JDE: Provided that the number of sources
is known, the meta source state and signal vectors can be
estimated based on the approach presented in subsection A
((21) and (22)). Since this is a problem with a dynamic system,
it is better to use a recursive version of the Bayes JDE [10] for
implementation. We assume that at most M concurrent sources
are possible in the working space and model the sequence of
the number of sources by a Markov process having known
initial probabilities and known transition probabilities:

P (Hi
k|H

j
k−1) = [ΠH]ji i, j ∈ {1, ...,M}

where Hi
k denotes the event that the number of concurrent

sources at time k is i, and ΠH is the Markov transition
probability matrix. For simplicity, we assume that at each time
at most one change occurs in the number of sources, although
an extension of our formulation to any number of changes is
straightforward. Also, in order to deal with the uncertainty in
a meta source dynamic model we define a Markov process
to model the evolution of the dynamic model [13], where
the initial probabilities are assumed known. Also, transition
probabilities are known and for an MSj are

P (mu
k |m

v
k−1) = [Πj

m]vu u, v ∈ {1, ..., (Nd)
j}

where mu
k denotes the event that the dynamic model of

the MSj at time k is the uth one. Nd is the number of
possible dynamic models for each source. One can consider
each possible dynamic model of an MSj as a combination
of dynamic models of j different sources. In the Bayes JDE
framework for this problem, we assume that the set of possible
decisions is the same as that of hypotheses. Based on (23), the
estimation cost function should be determined for the cases in
which the decisions are correct, and also the cases in which
they are incorrect. We consider the estimation cost function as

Ce
ij(Xk, X̂k) =

1

j
(Xk − X̂k)

′(Xk − X̂k), i = j

and Ce
ij = γ for i 6= j, where γ is a design parameter. Also,

normalization by the number of sources j is used because we
do not want to have a higher cost for tracking more sources
[14].

It should be noticed that the Bayes JDE required terms
should be appropriately derived (considering two types of
Markov processes) so that the terms can be recursively calcu-
lated. Due to space limitation we skip the details of the deriva-
tions and just present the final results. Through the following
steps we explain our recursive Bayes JDE for the problem of
determination, separation, and tracking of an unknown time-
varying number of maneuvering sources.

1) Initialization:

X̂Hj ,mu

0 ≡ X̂j,u
0 , ∀j, ∀u: State estimate of MSj

with the uth dynamic model at time 0, where j ∈
{1, 2, ...,M} and u ∈ {1, 2, ..., (Nd)

j}.

P j,u
0 , ∀j, ∀u: Corresponding error covariance.

P (Hj
0), ∀j: Probability that the number of concurrent

sources is j at time 0.

ξij0 = E(Ce
ij(X0, X̂0)|D

i
0,H

j
0): Expected estima-

tion cost if the truth is j and the decision is i
about the number of concurrent sources, where i ∈
{1, 2, ...,M}.

P (mu
0 |H

j
0): Probability of the dynamic model u

being the true one for MSj at time 0.
2) Assume the following terms are available from the

previous time k − 1:

X̂j,u
k−1, P

j,u
k−1, P (Hj

k−1|O
k−1), P (mu

k−1|O
k−1,Hj

k−1)

along with the posterior cost for decision at time k−1:

Ci(O
k−1) =

M
∑

j=1

cijk−1P (Hj
k−1|O

k−1) (27)

cijk−1 = αijcij + βijξ
ij
k−1

The decision regions based on decision costs (27)
are denoted as {Γ1

k−1, ...,Γ
M
k−1}, which is a partition,

where Γi
k−1 denotes the region for decision i at time

k − 1.
3) After receiving Ok, the terms in step 2 should be

updated to obtain

X̂j,u
k , P j,u

k , P (Hj
k|O

k), P (mu
k |O

k,Hj
k) (28)

4) To modify the decision regions, hypothesis probabil-
ities in (27) are updated in (28). So, we have

C∗
i (O

k) =
M
∑

j=1

cijk−1P (Hj
k|O

k) (29)

where C∗ denotes the intermediate cost in which
the hypothesis probabilities have been updated to

P (Hj
k|O

k)), but the costs cijk−1 have not been updated

to cijk yet. Decision regions are also modified based

on the intermediate cost as {Γ∗1
k , ...,Γ∗M

k }, where

Γ∗i
k = {Ok : C∗

i (O
k) ≤ C∗

l (O
k), ∀l}

5) According to our estimation cost function, it can be
shown that the expected estimation cost conditioned
on a hypothesis and decision is calculated as

ξijk =
1

j
E
[

(Xk − X̂k)
′(Xk − X̂k)

∣

∣

∣
Di

k,H
j
k

]

, i = j
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and it is equal to γ for i 6= j, where E
[

(Xk −

X̂k)
′(Xk − X̂k)

∣

∣

∣
Di

k,H
j
k

]

for i = j is available via

the tracking filter.
6) Decision regions are updated using the updated deci-

sion costs

Ci(O
k) =

M
∑

j=1

cijk P (Hj
k|O

k)

cijk = αijcij + βijξ
ij
k

Γi
k = {Ok : Ci(O

k) ≤ Cl(O
k), ∀l}

7) The final decision-estimate is (Dd
k, (X̂k, Pk)), where

Cd(O
k) ≤ Ci(O

k) ∀i 6= d

X̂k = argmin
X

M
∑

j=1

(

βdjE[Ce
dj(Xk, X)|Dd

k,H
j
k]

·P (Dd
k,H

j
k)
)

Based on our estimation cost function it can be shown
that X̂k = X̂d

k , Pk = P d
k , which can be calculated

based on the terms in (28). The superscript d means
“decision d has been made about the number of
concurrent sources”.

8) For the next time k+1, go to step 2, with Xj,u
k , P j,u

k ,

P (Hj
k|O

k), and P (mu
k |O

k,Hj
k).

IV. PERFORMANCE EVALUATION MEASURES

Some measures are considered for performance evaluation
of the proposed method. The first one is joint performance
measure (JPM) [10] for simultaneous evaluation of decision
and estimation. We also consider the average over the outputs
of the decision part over different Monte Carlo runs to evaluate
decision performance. Furthermore, we use average Euclidean-
error (AEE) measure [15] for evaluating the estimation part
(source tracking and signal estimation). However, it should
be noticed that JPM is the best one because in this problem
joint performance is the goal. The JPM is the expectation
of a distance between observation vector and the predicted
observation vector by the JDE algorithm as follows:

ρ(Ok, Ôk|k−1) = E[d(Ok, Ôk|k−1)] (30)

where d is the Euclidean distance between two vectors. Joint
performance measure (30) can be computed using sample av-
erage over NJDE number of predicted observations generated
by JDE and NMC Monte Carlo runs of the algorithm as

ρ(Ok, Ôk|k−1) ≈
1

NMC

1

NJDE

NMC
∑

j=1

NJDE
∑

i=1

d(Oj
k, Ô

i,j

k|k−1)

(31)

Also, AEE for position or signal estimate evaluation is

dAEE(Yk, Ŷk) =
1

NMC

NMC
∑

j=1

d(Y j
k , Ŷ

j
k ) (32)

where Y can be, for example, the position or signal vector of
a meta source, and the superscript j denotes the jth Monte

Carlo run. When the determined number of sources in a
meta source is correct, AEE computation is straightforward.
However, when the determined number of sources is incorrect,
AEE is computed as follows. For example, if the true number
(n) of sources is smaller than the estimated one (m > n), we
choose a subset (including n sources) of the estimated meta
source which leads to less AEE in position. Of course, if the
true number of sources is larger than the estimated one, for
some of the sources there is no AEE computation.

V. SIMULATIONS

In order to demonstrate performance of the proposed method
we consider the following scenario. In our proposed method
we assume that the problem is observable. Therefore, in
the simulations, for observability of the problem first we
considered several sensors located at different places. However,
later based on simulation results it turned out that for our
setting in this scenario, the method can work even based on
8 omnidirectional sensors located at (0, 0), (0, 50), (0, 100),
(50, 0), (50, 100), (100, 0), (100, 50), and (100, 100). But
generally for observability and better performance in different
cases, one may use more sensors. For simplicity, we assume
that there are at most two concurrent sources, and the diagonal
elements of the transition probability matrix of the Markov
process for the number of concurrent sources are 0.99 and off-
diagonals 0.01. Also, to handle the uncertainty in the dynamic
model, for each source we consider three models along each
axis: one nearly constant velocity (M1) and two nearly constant
acceleration models with accelerations -1 (M2) and 1 (m/s2)
(M3), respectively [16]. The transition probability matrix of a
Markov process corresponding to the dynamic model of a meta
source is determined considering the transition probability
matrix for the dynamic model of each source along each axis
as

[

0.9 0.05 0.05
0.05 0.95 0
0.05 0 0.95

]

where the probability of direct transition from M2 to M3 (and
vice versa) is zero. In the simulated scenario, source 1 is
present at the beginning (Fig. 1). Then, at time 10 source
2 appears and is present until time 20 when it disappears
at time 21. From time 1 to 10 source 1 moves at a nearly
constant velocity, at time 11 it changes to have a nearly
constant acceleration until time 27 when it switches back to
a nearly constant velocity motion. Source 2 follows a model
with a constant acceleration all the time during its presence.
The parameter values in this scenario are as follows. Sampling
interval is 0.5 (second), the dynamic noise standard deviation
is 0.003, and observation noise standard deviation for each
sensor is 0.2. We consider signals of different sources being in-
dependent with the same Gaussian distribution N(220, 3500).
These are the parameters of signals at the sources, not at
the sensors, because a sensor receives signal from a source
multiplied by the corresponding coefficient (attenuation) plus
some observation noise. Decision cost coefficients in JDE are
cij = 1 for i 6= j and 0 otherwise. For relative weights of
decision and estimation we consider αij = 1 for every i and
j and βij = 0.8 for i = j and 0.7 otherwise. The number of
predicted observations generated by Bayes JDE at each time
(for JPM computation) is NJDE = 10, the number of Monte

1853



Carlo runs is NMC = 100. The design parameter γ in the
estimation cost function is set to 8. In the derivation of the
Bayes JDE equations, we assume that at each time at most
one change occurs in the number of concurrent sources. Then,
a prior disappearance probability of each source is required.
These probabilities can be automatically calculated according
to the distances of the sources to the exit area of the work-
ing space (one can also incorporate other aspects into these
probabilities). In other words, the farther from the exit area,
the less probable to disappear. In the simulation, we consider
disappearance probability being inversely proportional to the
distance to the exit area. Also, the exit area is around the
corner (100, 0). Moreover, in the derivation of the Bayes JDE
equations a prior density for the initial state (x0, ẋ0, y0, ẏ0) of
a newborn source is required. In the simulation, we assume
that this prior density is a multivariate Gaussian with mean
equal to the true value and covariance matrix diag(10, 1, 10, 1)
(the entrance area is around the origin corner). Also, prior
probabilities of the number of sources (at the beginning) are
set to be equal for both hypotheses.

We are not aware of any other existing method proposed
for solving this problem of determination, separation, and
tracking of an unknown time varying number of maneuvering
sources using omnidirectional sensors. In order to compare
performance of our method with a benchmark, we run an
algorithm in which the number of sources is known at each
time.

Fig. 2 shows the JPM result for our Bayes JDE based
method in comparison with the algorithm that knows the
number of sources (ideal). As it can be seen, at the beginning
the error of JDE is larger than that of the ideal one, because
JDE has no prior information about the number of sources.
Then, the difference between the two algorithms becomes
negligible until time 10 when the number of sources changes.
Due to this change, JDE error increases since its prediction
about the number of sources is not good at time 10, but its
performance gets better soon. Since the ideal algorithm knows
the number of sources all the time, its error does not change
much. The reason for the relative increase in the error of
the ideal algorithm at time 10 is that estimating signals and
states of two concurrent sources is more difficult than that
of one source. Then, at time 21 source 2 disappears and the
performance of JDE degrades. However, JDE recognizes the
change in the number of sources within a couple of time steps
and again its performance gets better. Except for time steps
at which the number of sources changes and a couple of the
transient time steps after a change, the difference between JDE
and the ideal algorithm is small.

Fig. 3 shows the average decision output of JDE (over
Monte Carlo runs) about the number of concurrent sources
at each time. Fig. 4 shows AEE of position estimates and Fig.
5 shows AEE of signal estimates for the proposed method in
comparison with the ideal one. AEE computation for different
cases is based on section IV. Therefore, when there exist two
sources and JDE does not decide correctly, there is no AEE
computation for one of the sources. Therefore, it is clear that
AEE of the estimates, or decision output, can not illustrate the
whole performance of the method well, and JPM is the best
measure for this problem.

Figure 1. Working space with two sources

Figure 2. Joint performance measure, JDE in comparison with ideal algorithm
that knows the number of sources over time. Changes in the number of sources
happen at time 10 and 21.

Figure 3. Average over JDE decision about number of sources over time.
The number of sources: one (time 1-9), two (time 10-20), one (time 21 on)
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Figure 4. AEE of position estimates of sources. Source 2 exists only over
time 10 to 20.

Figure 5. AEE of signal estimates of sources. Source 2 exists only over time
10 to 20.

VI. SUMMARY

A solution has been proposed for the problem of determi-
nation, separation, and tracking of an unknown time-varying
number of maneuvering sources using observations received
by omnidirectional sensors. This problem is complex and thus
computationally demanding approaches are not desirable here.
In other words, a theoretically solid and easily implementable
approach is desirable. Determination of the number of sources
and estimation of their state and signal vectors by minimizing
Bayes joint decision and estimation risk is theoretically solid
and simple. So, Bayes JDE is quite desirable for this problem.
Also, the Bayes JDE method is flexible enough to address the
problem. Moreover, Bayes JDE is a new approach in the area
of source separation and tracking.

An LMMSE estimator has been derived for the estimation
part of the problem, which is a new result for this problem.
This estimator is theoretically solid and the best among linear
estimators. According to the results, the approximation is
adequate for this case, although a higher order approximation
is possible without much difficulty. The derived estimators for
the state and signal vectors are not complex at all, which is

desirable for this problem. The multiple model approach is a
powerful method for handling dynamic model uncertainty of
a maneuvering target. However, it is not easily applicable in
this problem due to the uncertainty in the number of sources.
Therefore, the corresponding equations for handling changes
in the number of sources and dealing with maneuvers of the
sources have been jointly derived in a recursive form which is
also a new result for this problem.

In order to evaluate performance of the proposed method,
a comprehensive joint performance measure (JPM) has been
used, since other measures can not quantify the whole per-
formance and they just consider some aspects separately [15].
The results show that the proposed method is effective and
performs well in comparison with the ideal one. Therefore,
the proposed method has different desirable properties we
have been looking for: theoretically solid and simple for
implementation.
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