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Abstract—How to fuse/combine state estimates that are ob-
tained based on different models (e.g., a CV model, a CA model,
and a CT model)? This paper provides a theoretical solution
to such problems and beyond. Conventional multiple-model
estimation methods use models defined in a common state space.
In this paper, we discuss the advantage of using heterogeneous
state space for different models in the multiple-model methods
and deal with the consequent difficulties. Our algorithm is
built mainly based on interacting multiple-model (IMM) due
to its simplicity and popularity. Extensions to some other MM
estimation methods, e.g., GPBn, are straightforward. For IMM
with heterogeneous state, the model-conditioned estimates are
converted to a common space for mixing and fusion. The
reinitialization part is formulated as an optimization problem,
which has an analytical solution. Our IMM with heterogeneous
state is applied to a target tracking problem in a 2-dimensional
scenario. Numerical results are provided to validate our method
and demonstrate its performance compared with conventional
IMM filters.

Index Terms—Multiple-model estimation, IMM, target track-
ing, heterogeneous state space.

I. INTRODUCTION

Multiple-model (MM) estimation is a powerful approach

to adaptive estimation and is particularly good for problems

involving structural as well as parametric changes [1]. It is

a natural approach to estimate the state of a hybrid system,

which has both continuous and discrete uncertainties in the

base state and the mode, respectively [2]. MM estimation

provides an integrated way to jointly handle both uncertainties

and has the potential to achieve optimal performance. It

has been studied intensively for decades, especially in target

tacking [3], [4], [5], such as surveillance for air traffic control

[6], [7] and maneuvering target tracking [8], [9].

The conventional MM method assumes a set of possible

models and one of them is in effect at each time. It runs a bank

of model-conditioned (or elemental) filters and generates the

overall estimates based on the results of these filters [9]. Note

that a model is a mathematical representation or description

of a phenomenon or a system at a certain accurate level [9].

Thus, choosing states in different state spaces leads to different

mathematical forms. These representations may or may not be

equivalent. If we include models (e.g., constant velocity (CV),

constant acceleration (CA) and constant turn (CT)) represented

in different state spaces in the model set to implement an MM

estimator, problems will arise in the state estimate combination

(fusion) or mixing, which are the topic of this work. This

differs significantly from the traditional MM estimation where

all models are built in a common state space, that is, have

a homogenous state representation. Here, we try to address

the MM estimation with a heterogeneous state space. The

advantage of using a heterogeneous state representation in MM

for system identification has been discussed in [10], [11]. In

this work, we exploit this more thoroughly for estimation.

It is well known that MM estimation algorithms have been

classified into three generations [12], [9]. The first generation

is autonomous MM (AMM) algorithms whose elemental filters

operate individually and independently; the second generation

is cooperating MM algorithms, represented by the Interacting

MM (IMM), in which elemental filters cooperate effectively

and work as a team; the third generation has a variable

structure (VS), allows a variable set of models and is known

as VSMM algorithms [9]. As pointed out in [1], using too

many models is performance-wise as bad as using too few.

So, the model set used in MM estimation should better be

complete and compact. In other words, we need to include

all possible models as well as the most accurate model in

effect at a time in the model set and simultaneously make

the size of the model-set as small as possible. In our opinion,

using heterogeneous models can help achieve this better. Take

target tracking as an example. Different target motion patterns

may be better modeled in different state spaces, rather than

in a common state space. For example, a turning motion may

have a simpler form when modeled with state in the polar

coordinate system (CS), while an acceleration motion may be

more conveniently modeled in the Cartesian CS.

In this paper, we focus on the MM estimation based on

systems with heterogeneous states. Model or model-set design

to fully exploit the advantage of our algorithm is considered

for our future work. We start from the assumption that a

heterogeneous system is given and address the problem of

state estimation in a specified space S. When the state x ∈ S
has linear relationships with the state in other spaces Sl, we
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show that the overall estimate of x can be optimal under

the minimum mean-square error (MMSE) criterion in the

AMM framework. When there is model switching, we need

to handle the internal cooperation in the MM methods (e.g.,

reinitialization in the IMM algorithm), which is the major

concern of this paper. For the nonlinear case, we adopt the

natural idea of linearization.

As an application of our proposed method, a maneuvering

target tracking problem with models described in different

CS is considered. Although typical target motions are usually

modeled in the Cartesian CS, such as the CV, CA and Singer

models [13], there are still some models described in other CS

(e.g., the decoupled first-order Markov models in the polar CS

[14] and the decoupled model in the polar CS [15]). Since the

true target motion is unknown, it is difficult to judge which

one is more accurate. A practical way is to consider them

all. Furthermore, using dynamic models in a sensor CS will

lead to a simple (model-conditioned) filtering problem with

linear uncoupled measurements in the Gaussian case, since

measurements are available physically in a sensor CS [16]. In

this paper, for simplicity we consider only the 2D case and use

models in the Cartesian and the polar CS. We give necessary

details in the Appendix for the reader to address 3D problems.

The paper is organized as follows. Section II gives a

motivation example. Section III formulates the problem of MM

estimation with heterogeneous state representation. Section IV

presents the estimation method in the linear case and a simple

extension to the nonlinear case. Our algorithm is applied to

target tracking with models in different coordinate systems

in Section V. Numerical results are provided in Section VI.

Section VII concludes the paper. Some complemental mathe-

matical details are given in the Appendix.

II. MOTIVATION EXAMPLE

We give an example here to motivate the consideration of

heterogeneous models in MM estimation. Suppose a target has

two possible motion patterns: CA and CT. So, in a 2D scenario,

the following dynamic model is used for state estimation

xk+1 = F
(l)
k xk +G

(l)
k wk, l = 1, 2

where

F
(1)
k = diag(





1 T T 2/2
0 1 T
0 0 1



 ,





1 T T 2/2
0 1 T
0 0 1



)

F
(2)
k =









1 sinωT
ω

0 − 1−cosωT
ω

0 cosωT 0 − sinωT
0 1−cosωT

ω
1 sinωT

ω

0 sinωT 0 cosωT









G
(1)
k = diag(

[

T 2/2 T 1
]′
,
[

T 2/2 T 1
]′
)

G
(2)
k = diag(

[

T 2/2 T
]′
,
[

T 2/2 T
]′
)

T is the sampling interval and ω is the turn rate.

Note that the system states in the above models are different.

The question is how to estimate the state of such a system by

MM methods. This practically important problem, commonly

encountered in maneuvering target tracking and unsolved yet,

is considered in this paper. Instead of starting from this

particular example, we formulate the system in a more general

case and then give our solution.

III. PROBLEM FORMULATION

Consider the following hybrid system

x
(l)
k+1 = F

(l)
k x

(l)
k +G

(l)
k w

(l)
k (1)

zk = H
(l)
k x

(l)
k + v

(l)
k , l = 1, . . . ,M (2)

where zk ∈ R
nz and superscript (l) denotes quantities perti-

nent to model m(l). Different from the conventional Markovian

jump linear system (MJLS), here the system states are related

to system models. That is, different system models may be

represented in different state spaces. Suppose we know the

functions which relate all states x
(l)
k , l = 1, . . . ,M , to a

common specified state xk:

xk = ϕl(x
(l)
k ) (3)

The problem is how to estimate xk given the measurements

z1:k = [z′1, . . . , z
′
k]

′.

Note that xk could be one of the x(l). Basically, xk is in a

state space of interest to the user. For example, x
(1)
k and x

(2)
k

may be the state in the Cartesian and the polar CS, respectively.

If we are interested in estimation in the Cartesian CS, we

may choose xk = x
(1)
k . Common practice in this case would

build all the models in the Cartesian states (e.g., Cartesian

position and velocity). However, this may not necessarily lead

to good performance. As seen in [13], turning models may

have simpler forms with the polar state, and acceleration

models are usually better represented in the Cartesian state.

Although models can be converted based on state conversion,

this may lead to a complicated model or degraded accuracy,

and hence may make the estimator suffer.

We further have the following assumption of the above sys-

tem. The event that model m(l) is in effect over the sampling

interval (tk−1, tk] will be denoted by m
(l)
k . The model se-

quence is assumed to be a homogeneous finite-state Markovian

chain with transition probabilities πij = P (m
(j)
k |m(i)

k−1). The

transition probability matrix [πij ] is an M×M matrix with all

elements satisfying 0 ≤ πij ≤ 1 and
∑

j πij = 1, where M is

the number of system models. The process noise w(l) and the

measurement noise v(l) are mutually independent zero-mean

white Gaussian processes with covariance matrices

cov(w
(l)
k ) = Q

(l)
k , cov(v

(l)
k ) = R

(l)
k

The initial state x0 is assumed to be independent of w(l) and

v(l).
Note that when x

(l)
k = xk for all l, the system (1)-(2)

reduces to a traditional MJLS and there are abundant MM

methods under different criteria (e.g., MMSE and maximum

a posteriori) to estimate the state of such a system. Many

suboptimal methods under the MMSE criterion are available,

such as GPBn and IMM. Among these, IMM is most popular
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since it usually achieves a good accuracy with relatively small

computational complexity.

As to our problem, we still use the IMM strategy and

address the problems encountered in its implementation. We

give a brief cycle of IMM estimator here for the convenience

of discussion later and the reader is referred to [9] for more

details. A standard IMM estimator for system (1)-(2) with

x
(l)
k = xk consists of the following four steps:

1) Model-conditioned reinitialization.

Compute the predicted model probability

µ
(l)
k|k−1 , P{m(l)

k , zk−1}

mixing weight

µ
j|l
k−1 , P{m(j)

k−1|m
(l)
k , zk−1}

mixed estimate

x̄
(l)
k−1|k−1 , E[xk−1|m(l)

k , zk−1]

and its corresponding MSE matrix.

2) Model-conditioned filtering.

For each model m
(l)
k , do model-conditioned estimation:

x̂
(l)
k|k = E[xk|m(l)

k , zk]

3) Model probability update.

Compute the probability µ
(l)
k of the event m

(l)
k .

4) Output the overall estimate.

Compute the overall estimate

x̂k|k =
∑

l

µ
(l)
k x̂

(l)
k|k

This standard IMM estimator is based on homogenous

models, that is, all models are represented in space S. For

our formulation, we use the following NOMENCLATURE:

x̂
(l)
k|k Model m

(l)
k conditioned estimate of xk in S

x̌
(l)
k|k Model m

(l)
k conditioned estimate of x

(l)
k in Sl

x̄
(l)
k|k Mixed estimate of xk in S

x́
(l)
k|k Mixed estimate of x

(l)
k in Sl

These definitions will be repeated when necessary to reduce

possible confusion.

IV. IMM ESTIMATION FOR HETEROGENEOUS STATES

A. Linear Case

Here, we consider linear functions between model-

conditioned state x
(l)
k , l = 1, . . . ,M , and the common state

xk (in the state space of interest to us)

xk = Φlx
(l)
k (4)

Since expectation is a linear operator, we have the model-

conditioned estimation as

x̂
(l)
k = E[xk|m(l)

k , zk] (5)

= ΦlE[x
(l)
k |m(l)

k , zk] = Φlx̌
(l)
k

So, from (5), the (model-conditioned) estimate x̂
(l)
k of xk

can be obtained by just transforming the (model-conditioned)

estimate x̌
(l)
k of x

(l)
k through Φl.

If there is no model switching (i.e., under the AMM

assumption), the optimality of x̂k|k in the MMSE sense can

be guaranteed. If there is model switching, as we assumed

in Section III, the standard IMM procedure can be followed

except for the difficulty of reinitializing the model-based filter.

We use x̌
(l)
k|k to denote the model m

(l)
k conditioned estimate

of x
(l)
k in space Sl. Suppose we know

µ
j|i
k , P{m(j)

k |m(i)
k+1, z

k}

and the mixed estimate of xk can be obtained as

x̄
(i)
k|k = E[xk|m(i)

k+1, z
k]

=
∑

j

µ
j|i
k E[xk|m(i)

k+1,m
(j)
k , zk] =

∑

j

µ
j|i
k x̂

(j)
k|k

=
∑

j

µ
j|i
k ΦjE[x

(j)
k |m(i)

k+1,m
(j)
k , zk] =

∑

j

µ
j|i
k Φjx̌

(j)
k|k

where x̂
(j)
k|k denotes the model m

(j)
k conditioned estimate of

xk ∈ S. Given this mixed estimate x̄
(i)
k|k , we want to find its

“equivalent” (denoted as x́
(i)
k|k) in space Si to reinitialize the

elemental filters. To do this, the only available relationship is

(4) (i.e., x̄
(i)
k|k = Φix́

(i)
k|k). Here, we do not want to impose any

limitations upon Φl and thus the solution of x́
(l)
k|k through (4)

may not be existent or unique. We propose the following way

to get an unique x́
(l)
k|k when a solution exists:

min
x́
(l)

k|k

∥

∥

∥
x́
(l)
k|k − x̌

(l)
k|k

∥

∥

∥
(6)

s.t. Φlx́
(l)
k|k = x̄

(l)
k|k (7)

where ‖·‖ denotes the Euclidean norm. When the constraint

(7) cannot be satisfied, see Remark 2 below for details.

An analytic solution to the above problem is (see the

Appendix A for a derivation)

x́
(l)
k|k = Φ+

l x̄
(l)
k|k + (I − Φ+

l Φl)x̌
(l)
k|k (8)

where the superscript “+” stands for the Moore-Penrose

pseudo-inverse (MP inverse for short) and I is an identity

matrix with a compatible dimension. Once this mixed estimate

x́
(l)
k|k in Sl is obtained, the model-conditioned prediction can

be carried out as

x̌
(l)
k+1|k = F

(l)
k x́

(l)
k|k

So far, for the problem considered, we propose to implement

the mixing and fusion parts in space S and reinitialize the

model-conditioned filter by (8). In the following, we address

the MSE matrices of the above estimates. Given the following

MSE matrices

P̌
(l)
k|k = MSE(x̌

(l)
k|k), l = 1, . . . ,M

1842



we have

P̄
(i)
k|k , MSE(x̄

(i)
k|k)

=
∑

j

µ
j|i
k [ΦjP̌

(j)
k|kΦ

′
j + x̃

(i)
k|k(x̃

(i)
k|k)

′] (9)

where

x̃
(i)
k|k = x̄

(i)
k|k − Φj x̌

(j)
k|k

Since

x́
(l)
k|k − x

(l)
k

= Φ+
l x̄

(l)
k|k + (I − Φ+

l Φl)x̌
(l)
k|k − x

(l)
k

= Φ+
l (x̄

(l)
k|k − xk) + (I − Φ+

l Φl)x̌
(l)
k|k − x

(l)
k +Φ+

l xk

= Φ+
l (x̄

(l)
k|k − xk) + (I − Φ+

l Φl)(x̌
(l)
k|k − x

(l)
k )

we ignore the cross-covariance between x̄
(l)
k|k −xk and x̌

(l)
k|k −

x
(l)
k , and thus the MSE matrix Ṕ

(l)
k|k of x́

(l)
k|k is

Ṕ
(l)
k|k ≈ Φ+

l P̄
(l)
k|k(Φ

+
l )

′ + (I − Φ+
l Φl)P̌

(l)
k|k(I − Φ+

l Φl)
′ (10)

Remark 1: When all Φl, l = 1, . . . ,M, are invertible, the

problem is easy to handle. We can transform all dynamic

models to space S and then use the standard IMM algorithm.

Our solution reduces to this special case, since (8) becomes

x́
(l)
k|k = Φ−1

l x̄
(l)
k|k + (I − Φ−1

l Φl)x̌
(l)
k|k

= Φ−1
l x̄

(l)
k|k (11)

Remark 2: When Φlx́
(l)
k|k = x̄

(l)
k|k is an inconsistent system

of equations, that is, x̄
(l)
k|k is not in the range of Φl, there exists

no solution x́
(l)
k|k of (6)-(7). However, there is an approximate

solution which minimizes the squared error of the difference

between the two sides of equation (7). That is, the optimization

problem (6)-(7) is replaced by

min
x́
(l)

k|k

∥

∥

∥
x́
(l)
k|k − x̌

(l)
k|k

∥

∥

∥
(12)

s.t.

∥

∥

∥
Φlx́

(l)
k|k − x̄

(l)
k|k

∥

∥

∥
= inf

x

∥

∥

∥
Φlx− x̄

(l)
k|k

∥

∥

∥

The solution is still given by (8) by the minimum norm

least squares (see Appendix B for details). This reveals an

advantage of using Moore-Penrose inverse — the solutions in

both consistent and inconsistent cases are unified.

Remark 3: Suppose Sl is a subspace of S and
[

(x(l))′ y′
]′ ∈ S, where y ∈ S̄l, S̄l ⊗ Sl = S and ⊗

denotes the direct product. For this case, we may set

Φl =
[

I 0
]′

(13)

It can be shown that our algorithm based on Φl is equivalent

to applying IMM to the following dynamic model (details are

omitted here for lack of space):

xk+1 = F̄
(l)
k xk + Ḡ

(l)
k w

(l)
k (14)

zk = H̄
(l)
k xk + v

(l)
k (15)

where

F̄
(l)
k =

[

F
(l)
k 0

0 0

]

, Ḡ
(l)
k =

[

G
(l)
k

0

]

H̄
(l)
k =

[

H
(l)
k 0

]

This happens, for example, when we use CV and CA models

in an MM estimation.

Note, however, that it is not always right to set Φl as (13)

in the case where Sl is a subspace of S. For the motivation

example in Section II, we use

x(1) = [x, ẋ, ẍ, y, ẏ, ÿ]′ ∈ S1

x(2) = [x, ẋ, y, ẏ]′ ∈ S2

to denote the state of CA model and the state of CT model,

respectively. Choose S = S1 and then we have the following

relationship between x(1) and x(2):

x = x, ẋ = ẋ

y = y, ẏ = ẏ

ẍ = ω
√

ẋ2 + ẏ2 cos(arctan(
ẏ

ẋ
) +

π

2
sgn(ω))

ÿ = ω
√

ẋ2 + ẏ2 sin(arctan(
ẏ

ẋ
) +

π

2
sgn(ω))

Although S2 is a subspace of S1, their states have the above

nonlinear relationship, which is addressed next.

B. Nonlinear Case

For the nonlinear case of (3), a practical way is to linearize.

The mixed estimate of xk and its corresponding MSE can be

calculated as

x̄
(i)
k|k = E[xk|m(i)

k+1, z
k] ≈

∑

j

µ
j|i
k ϕj(x̌

(j)
k|k) (16)

P̄
(i)
k|k , MSE(x̄

(i)
k|k)

≈
∑

j

µ
j|i
k [ΨjP̌

(j)
k|kΨ

′
j + x̃

(i)
k|k(x̃

(i)
k|k)

′] (17)

where

x̃
(i)
k|k = x̄

(i)
k|k − ϕj(x̌

(j)
k|k)

and Ψj = ∂ϕj(x)/∂x|x=x̌
(j)

k|k

.

For the mixed estimate x́
(l)
k|k in Si, the solution depends on

the existence of the inverse function x
(l)
k = ϕ−1

l (xk).
1) ϕ−1

l (·) is available: We have

x́
(l)
k|k ≈ ϕ−

l (x̄
(l)
k|k) (18)

Ṕ
(l)
k|k ≈ Ψ−

l P̄
(l)
k|k(Ψ

−
l )

′ (19)

where Ψ−
l = ∂ϕ−1

l (x)/∂x|
x=x̄

(l)

k|k

.

Note that for Eqs. (16)–(19), unscented transform (UT) [17]

is a better method to approximate the means and MSE matrices

at the cost of higher computation complexity. However, UT is

not applicable when ϕ−1
l (·) is not available.
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2) ϕ−1
l (·) is not available: We first linearize (3) at x̌

(l)
k|k

and then use our result for the linear case to get the following

solution:

x́
(l)
k|k ≈ Ψ+

l [x̄
(l)
k|k − ϕl(x̌

(l)
k|k)] + x̌

(l)
k|k

Ṕ
(l)
k|k ≈ Ψ+

l P̄
(l)
k|k(Ψ

+
l )

′ + (I −Ψ+
l Ψl)P̌

(l)
k|k(I −Ψ+

l Ψl)
′

V. TARGET TRACKING WITH MODELS IN DIFFERENT

COORDINATE SYSTEMS

In this section, we apply our method to maneuvering target

tracking with models in different CS. For simplicity of dis-

cussion, we only consider a 2D scenario. Solutions for the 3D

case can be directly obtained by following the same procedure.

The necessary details are provided in Appendices C and D.

We assume the two models used in an IMM filter for

tracking are established in the Cartesian CS and the polar CS,

respectively. That is,

x
(i)
k =









xk
ẋk
yk
ẏk









, x
(j)
k =









rk
ṙk
bk
ḃk









where (xk, yk) is the Cartesian position, (ẋk, ẏk) the Cartesian

velocity, (rk, bk) the polar position (range, bearing), and (ṙk,
ḃk) the polar velocity (range rate, bearing rate). Both CS have

the common original point and b is the angle between range

direction and the x axis. The reader is referred to Fig.1 in [16]

for an illustration in the 3D case. Suppose the reference state

is xk = x
(j)
k and then xk can be obtained by the following

nonlinear one-to-one transformation:

xk = ϕi(x
(i)
k ) =











√

x2k + y2k
ẋk cos bk + ẏk sin bk

arctan( yk
xk
)

ẏkxk−yk ẋk
x2
k
+y2

k











xk = ϕj(x
(j)
k ) = Ix

(j)
k

So, given the model-conditioned estimates x̌
(l)
k|k , l = i, j, at

time k − 1 and their corresponding MSE matrices P̌
(l)
k|k , by

(16) we have the mixed estimate in the polar CS as

x̄
(l)
k|k ≈ µ

j|l
k x̌

(j)
k|k + µ

i|l
k ϕi(x̌

(i)
k|k)

and by (17)

P̄
(l)
k|k ≈ µ

j|l
k [P̌

(j)
k|k + x̃

(j)
k|k(x̃

(j)
k|k)

′]

+ µ
i|l
k [ΨiP̌

(i)
k|kΨ

′
i + x̃

(i)
k|k(x̃

(i)
k|k)

′]

where

x̃
(i)
k|k = x̄

(l)
k|k − ϕi(x̌

(i)
k|k)

x̃
(j)
k|k = x̄

(l)
k|k − x̌

(j)
k|k

and the calculation of matrix Ψi is given next.

Suppose x̌
(i)
k|k = [x, ẋ, y, ẏ]

′
. Then

Ψi =
∂ϕi(x)

∂x
|
x=x̌

(i)

k|k

=











x√
x2+y2

0 y√
x2+y2

0

U cos b V sin b
−y

x2+y2
0 x

x2+y2 0

W −y

x2+y2
T x

x2+y2











where

b = arctan(
y

x
)

U =
yẋ sin b

x2 + y2
− yẏ cos b

x2 + y2

V =
−xẋ sin b

x2 + y2
+

xẏ cos b

x2 + y2

W =
ẏ

x2 + y2
− 2x(ẏx− yẋ)

(x2 + y2)2

T =
−ẋ

x2 + y2
− 2y(ẏx− yẋ)

(x2 + y2)2

Now, we need to calculate the mixed estimates

(x́
(l)
k|k, Ṕ

(l)
k|k), l = i, j, in Sl for the reinitialization of the

model-conditioned filters. Note that ϕ−1
l (·), l = i, j, are

known as

x
(i)
k = ϕ−1

i (xk) =









rk cos bk
ṙk cos bk − ḃkrk sin bk

rk sin bk
ṙk sin bk + ḃkrk cos bk









x
(j)
k = ϕ−1

j (xk) = Ixk

Thus, by (18)-(19) we have

x́
(i)
k|k ≈ ϕ−1

i (x̄
(i)
k|k)

Ṕ
(i)
k|k ≈ Ψ−

i P̄
(i)
k|k(Ψ

−
i )

′

x́
(j)
k|k = x̄

(j)
k|k

Ṕ
(j)
k|k = P̄

(j)
k|k

where the matrix Ψ−
i is given next. Suppose x̄

(i)
k|k =

[

r, ṙ, b, ḃ
]′

. Then, we have

Ψ−
i =

∂ϕ−1
i (x)

∂x
|
x=x̄

(i)

k|k

=









cos b 0 −r sin b 0

−ḃ sin b cos b −ṙ sin b− ḃr cos b −r sin b
sin b 0 r cos b 0

ḃ cos b sin b ṙ cos b+ ḃr sin b r cos b









So far we have addressed the problem of target tracking using

models in the 2D Cartesian and polar CS. For 3D and RUV

measurements, the functions ϕl(·) and ϕ−1
l (·) are given in

Appendices C and D.
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VI. NUMERICAL EXAMPLES

An illustrative example of maneuvering target tracking is

provided to validate our proposed multiple-model algorithm.

Since average Euclidean error (AEE) is more advantageous

than root mean square error (RMSE), as discussed in [18], we

use AEE to evaluate performance. The results were obtained

based on 500 runs of Monte Carlo simulation.

A. True Trajectory

Two models were used to generate the true trajectory over

a total of 70s. In the first 20s, the target started from x0 with

a CV motion (in the Cartesian CS) as follows:

x0 ∼ N ([90m, 90m/s, 50m, 50m/s]′, diag(100, 1, 100, 1))

xk+1 = F
(1)
k xk +G

(1)
k w

(1)
k (20)

zk =

[ √

(xk)2 + (yk)2

arctan(xk/yk)

]

+ vk

where

F
(1)
k = diag(

[

1 T
0 1

]

,

[

1 T
0 1

]

)

G
(1)
k = diag(

[

T 2

2
T

]

,

[

T 2

2
T

]

)

and T is the sampling interval.

From 21s to 45s, the target performed a motion (see, e.g.,

[15]) in the polar CS:

xk+1 = F
(2)
k xk +G

(2)
k [w

(2)
k + uk] (21)

zk =

[

1 0 0 0
0 0 1 0

]

xk + vk

where

F
(2)
k = diag{

[

1 ρ1
0 ρ́1

]

,

[

1 ρ1
0 ρ́1

]

}

G
(1)
k = diag{

[

ρ2
ρ́2

]

,

[

ρ2/x
1
k

ρ́2/x
1
k

]

}

and

ρ1 =
(1− e−αT )

α
, ρ́1 = eαT

ρ2 =
(e−αT − 1 + αT )

2α
, ρ́2 =

(1 − e−αT )

2

In the remaining 25s, the target motion switched to model

(20).

In the simulation, we set T = 1s, α = 0.03, uk =
[100, 160]

′
and

w
(1)
k ∼ N ([0, 0]′, diag(0.12(m/s)

2
, 0.12(m/s)

2
))

w
(2)
k ∼ N ([0, 0]′, diag(0.12(m/s)2, 0.0012(rad/s)2))

vk ∼ N ([0, 0]′, diag(62m2, 0.0062(rad/s)2))

In the three time intervals, the true states were all converted

to the polar CS for performance evaluation.
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Fig. 2. Range Rate AEEs.

B. Filter Design

Three IMM filters with different model sets were used

to estimate the target state. The first IMM filter (denoted

by IMM1) uses the two true models (20) and (21) with

heterogeneous representation. The second IMM filter (denoted

by IMM2) uses five homogeneous Cartesian models: four CV

models with different levels of Q, and CT with an unknown

turn rate. The third IMM filter (denoted by IMM3) uses four

heterogeneous models: model (20), CV with QCV4, CT with

a known turn rate, and model (21).

In the simulation, the extended Kalman filter (EKF) was

used to handle all nonlinear model-conditioned filtering.

The covariances of the zero-mean process noise in the CV

model were set as

QCV1 = diag(0.12, 0.12) (22)

QCV2 = diag(42, 42) (23)

QCV3 = diag(82, 82) (24)

QCV4 = diag(122, 122) (25)

and for the CT model with known turn rate, the turn rate and
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the covariance of the zero-mean process noise were set as

ω = 0.03rad/s

QCT = diag(22, 22)

For the elemental filtering based on the CT model with an

unknown turn rate, an adaptive method was adopted (see, e.g.,

[19], [13] for details). To be fair for all three MM filters,

we have tuned their covariances and ω to achieve the best

performance. The transition probability matrices of the three

filters were set as

ΠIMM1 =

[

0.9 0.1
0.1 0.9

]

ΠIMM2 = [πij ]5×5 =

{

0.8, i = j
0.05, i 6= j

ΠIMM3 = [πij ]4×4 =

{

0.85, i = j
0.05, i 6= j

C. Simulation Result

The range, range rate, bearing, and bearing rate AEEs of

the three IMM filters are shown in Fig. 1, Fig. 2, Fig. 3 and

Fig. 4, respectively.

From these figures, we can see that IMM2 is generally

worse than IMM1, except that it slightly outperforms IMM1

on range rate estimation in steady state during CV motion.

This indicates the superiority of using heterogeneous models

in MM methods. For IMM1 and IMM3, they both contain the

true heterogeneous models. However, since IMM3 used two

mismatched models, IMM1 outperforms IMM3 as shown in

these figures. This should be the case in theory [1], as stated

in the Introduction.

VII. CONCLUSIONS

In this paper, MM estimation with models in heterogeneous

state spaces has been studied. We extended the IMM algorithm

to deal with the problem caused by heterogeneous state. If

linear mappings exist between the reference state and the

model-conditioned states, our solutions for mixing and fusion

in IMM algorithm are analytical. For nonlinear mappings,

linearization based on Taylor series expansion or unscented

transformation can be applied.

A model is a highly condensed form of much useful

prior information. If it is accurate, we should try to use it

as what it is. In our proposed method, we do not convert

models but estimates. So, we actually take good advantage of

model information by using heterogeneous models rather than

converting all models into a common state space.

APPENDIX

A. Solution to (6)

We drop the unnecessary subscripts and superscripts for

clarity and write the problem (6) as

min
x

||x− b|| (26)

s.t. Φx = a

Let y , x− b. The original optimization problem becomes

min
y

||y|| (27)

s.t. Φy = a− Φb

which amounts to finding the minimum norm solution of the

consistent equation Φy = a− Φb.
For this problem, G(a−Φb) is the solution of y if and only

if [20]

ΦGΦ = Φ, (GΦ)′ = GΦ

Note that G is not unique but the solution is. Clearly, G = Φ+

satisfies the above requirements and thus we have the solution

x = Φ+a+ (I − Φ+Φ)b

B. Solution to (12)

We drop the unnecessary subscripts and superscripts for

clarity and write the problem (6) as

min
x

||x− b|| (28)

s.t. ‖Φx− a‖ = inf
v
‖Φv − a‖
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Let y , x− b. The original optimization problem becomes

min
y

||y|| (29)

s.t. ‖Φy − (a− Φb)‖ = inf
u

‖Φu− (a− Φb)‖

This is a standard minimum norm least squares problem. The

solution of y is

y = Φ+(a− Φb)

and thus x = Φ+a+ (I − Φ+Φ)b.

C. Relationship of RUV and Cartesian CS

Suppose in the 3D case, x , [r, ṙ, u, u̇, v, v̇]′ and x(l) ,

[x, ẋ, y, ẏ, z, ż], where u and v are direction cosines (see Fig.1

of [16] for an illustration). Then x and x(l) have the following

relationships (see also [21]):

x = ϕl(x
(l)) =

















√

x2 + y2 + z2

(xẋ+ yẏ + zż)/r
x/r

(ẋ− uṙ)/r
y/r

(ẏ − vṙ)/r

















(30)

and

x(l) = ϕ−
l (x) =

















ru
ru̇ + ṙu

rv
rv̇ + ṙv
rw

rẇ + ṙw

















(31)

where

w =
√

1− u2 − v2

D. Relationship of Polar and Cartesian CS

Suppose in the 3D case, x , [r, ṙ, b, ḃ, e, ė]′ and x(l) ,

[x, ẋ, y, ẏ, z, ż]. Then

x = ϕl(x
(l)) =

















√

x2 + y2 + z2

(ẋ cos b+ ẏ sin b) cos e+ ż sin e
arccos(x/(r cos e))

(ẏ − ṙ cos e sin b+ ėz sin b)/x
arcsin(z/r)

(ż− ṙ sin e)/(r cos e)

















(32)

and

x(l) = ϕ−
l (x) =

















r cos e cos b

ṙ cos e cos b− ėz cos b− ḃy
r cos e sin b

ṙ cos e sin b− ėz sin b+ ḃx
r sin e

ṙ sin e+ ėr cos e

















(33)
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