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Abstract—This paper presents a novel estimation problem
of Markovian jump linear systems (MJLSs) with generalized
unknown disturbances (GUDs) in measurements. In these sys-
tems, there exist multiple uncertainties such as Markovian
switching parameters, the GUD and system noises. Here, the
multi-mode complexity in original system is transformed into
the randomness of parameters in new system by geometric
augmentation. Then, an upper-bound linear mean square error
filter (UBLF) is proposed and its existence condition is given.
Meanwhile, the minimum upper-bound covariances are derived
so that the minimum UBLF (MUBLF) and the corresponding
optimal parameters are obtained. The numerical example shows
the effectiveness of the proposed filter.

I. INTRODUCTION

Markovian jump linear systems (MJLSs) have wide and

successful applications in the real world, for example, in target

tracking [1], [2], fault detection and isolation [3], [4], process

control [5], and signal processing [6].

As we know, a common estimation for MJLSs is in the

scope of the multiple model (MM) framework. Up to present,

there are three generations of multiple model estimators as

mentioned in [7] and the last two generations are for the

MJLSs [8], [9], [10]. However, all three generations of MM

methods have the same Gaussian assumption on the process

noises and measurement noises, and such Gaussian assumption

does not always hold. For example, the significant altitude

changes due to the maneuver of a target bring out significant

variations of radar reflections and result in the so-called

‘target glint’, i.e., the high-tailed non-Gaussian measurement

noises [11]. The recursive calculation of the first two moments

of the interested vector sometimes is sufficient in practice.

In [12], the LMMSE estimator was derived from geo-

metric augments for the MJLS based on directly estimating

xk1{Θk=i} instead of the state xk, where 1{·} is a Dirac func-

tion and Θk is a discrete-time Markov chain. The proposed es-

timator can be calculated off-line because of the gain matrices

of the resultant LMMSE estimator being not data-dependent.

Moreover, the error covariance matrix of the derived LMMSE

estimator in [12] will converge to the unique positive-semi-

definite solution of an Nn-dimensional algebraic Riccati e-

quation under the conditions of mean square stability of the

MJLS and the ergodicity of the associated Markov chain,

where n is the dimension of the state vector and N is the

number of states of the Markov chain [13]. Furthermore, a

time-invariant (a fixed-gain matrix) LMMSE estimator was

derived for MJLSs [13]. By the fact that roundoff errors in

solving the above Riccati equation can cause the loss of the

symmetry and positive-semi-definition of the covariance of the

state prediction error, an array implementation with the better

numerical robustness was developed [14]. In general, all the

above estimators require that the system matrices should be

deterministic. Recently, considering the stochastic coefficient

matrices in the MJLS, we proposed the LMSCE estimator

(i.e. LMMSE estimator for MJLS with stochastic coefficient

matrices) in a recursive form according to the orthogonality

principle [15]. Meanwhile, the LMMSE estimation of MJLS

with randomly delayed measurements is also derived in [16].

The above methods, no matter for the Gaussian noises

assumption or not, or for the deterministic coefficient ma-

trices or stochastic coefficient matrices conditions, are only

considered the situation that there is no unknown disturbance

(UD) in systems. However, as much knowledge as we know,

there is no research reported about the MJLSs with UDs

in systems. But such case exists widely in practice as that

described in our previous paper [17]. For example, in the

maneuvering target tracking under electronic countermeasures

(ECM), due to the sensor bias and deception jamming existing

in sensor measurements [19], [20], there is additional UD to

the nominal measurement model, while the target maneuver

can be modeled as the first-order Markov jump among a

complete model set. Therefore, it is desirable to design a filter

to solve the MJLSs with UDs.

In this paper, an upper-bound LMMSE estimator (UBLF)

is designed for the MJLSs with generalized UD (GUD) in

the measurement equation, and the optimal parameters are

derived so that the minimum UBLF (MUBLF) is obtained. The

numerical example shows the effectiveness of the proposed

estimator.

The rest of this paper is organized as follows. The problem

formulation is presented in Section II. In Section III, the UBLF

is designed and the optimal parameters are derived so that
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the MUBLF is obtained. A numerical example is presented in

Section IV to testify the proposed method. The conclusion is

supplied follows in Section V. All proofs are presented in the

Appendix.

Throughout this paper, Rn is the space of n-dimensional

real vector. I and O are the identity matrix and zero matrix

with the proper dimension, respectively. (·) denotes the same

content as that in the previous parenthesis. ‘col’ denotes

the column vector. For any two square matrices A and B,

A ≥ B(A > B) means that A − B is positive semi-definite

(positive definite). The symbol ‘:=’ means definition and

notation ‘⊗’ refers to the Kronecher product. An indicator

function 1{Θk=j} will be 1 if Θk = j or 0 otherwise.

II. PROBLEM FORMULATION

Motivated by the above consideration, we present a discrete-

time MJLS with GUDs as following:

xk+1 = FΘk
xk +GΘk

wk, (1)

zk = HΘk
xk +Akδk +DΘk

vk, (2)

where xk ∈ Rnx and zk ∈ Rnz represent the system state and

measurement, respectively. {Θk} is a discrete-time Markov

chain with finite state space {1, · · · ,M} and transition prob-

ability matrix Pt = [pij ]. πj,k := P (Θk = j) represents the

jth mode probability at instant k. δk ∈ Rnδ represents the

GUD with the same statistics as that described in our previous

paper [17], [18] and Ak is the known disturbance coefficient

matrix. FΘk
, GΘk

, HΘk
and DΘk

are known matrices with

proper dimensions, and correspond to the Fi,k, Gi,k, Hi,k and

Di,k in the ith mode, respectively. wk ∈ Rnω and vk ∈ Rnv

are zero-mean, white noise sequences with identity covariance

matrices and independent of the initial state x0. Here, {wk},

{vk} and {Θk} are independent mutually.

Remark 2.1: As shown in system (1)-(2), there coexist

multiple uncertainties including Markovian parameters (Θk),

the GUD (δk) and process/measurement noises (wk and vk).

However, in many researches, there are only two uncertainties

coexisting, such as the Markovian parameters and noises coex-

isting [12], [13], [14] or the GUD and noises coexisting [17].

Here, the Markovian parameters are multiplicative while the

GUD and process/measurement noises are additional. The

deeply coupling of these three types of uncertainties leads to

the demand of designing an adaptive filter with the relaxed

condition of existence and the easy condition of solvability by

the following considerations:

• The joint state estimation and parameter identification

method for dynamics, such as the famous and wide

used expectation-maximization (EM) method [21], al-

ways owns an iterative process for unknown parameter

optimization with a large mount of computation cost.

Meanwhile, it often treats the GUD δk as a constant in

the sliding window, otherwise, it will be hard to converge

due to the high state dimension and the lack of the

valid measurement dimension, which may lead to the

insolubility of the EM and further makes it impossible

to identify δk.

• The LMMSE estimator has a small amount of computa-

tion cost and it recursively compute the first and second

order moments instead of the posterior density, while the

first two moments would not be derived by only using the

LMMSE method due to the existence of δk. However, the

upper bound of the second-order moment of the related

state can be estimated directly instead of estimating the

real second-order moment, and we can still seek for the

recursive calculation for the upper bound of the second-

order moment, while the estimator also owns the linear

structure.

Thus, according to above considerations, the main results

of the proposed UBLF and MUBLF are derived as follows.

III. THE UPPER BOUND LINEAR MEAN SQUARE ERROR

FILTER

Define ξk := col{xk1{Θk=i}, i = 1, · · · ,M}, we have

xk+1 =
M
∑

i=1

ξi,k+1, (3)

Thus, if the optimal estimation ξ̂i,k+1 of ξi,k+1 is obtained,

then the optimal solution x̂k+1 of xk+1 can be computed.

Define Fk as an M ×M block matrix with its (i, j)th sub-

block being Fj,k1{Θk+1=i,Θk=j}
; Gk as an M×1 block matrix

with its jth sub-block being
(

M
∑

i=1

Gi,k1{Θk=i}

)

1{Θk+1=j}; Hk

as a 1 × M block matrix with its jth sub-block being Hj,k;

Dk =
M
∑

i=1

Di,k1{Θk=i}. Then, the system in (1)-(2) can be

rewritten as

ξk+1 = Fkξk +Gkwk, (4)

zk = Hkξk +Akδk +Dkvk. (5)

It is evident that the above geometry augmentation transforms

the original multi-mode complexity (i.e. Θ1, · · · ,ΘM ) in (1)-

(2) into the randomness of parameters (i.e. Fk, Gk, Hk

and Dk) in (4)-(5), thus the conditions of the existence and

solvability of the system are easy to be satisfied.

The aim in this paper is to construct the upper bounds of

the mean square error of estimation errors, which needs mild

condition to guarantee the existence and only few parameters

to be estimated to ensure the solvability of the filter, instead of

calculating the accurate covariance, and then minimize these

bounds in the pursuit of the optimal filtering parameters with

the most relaxed condition.

Make following denotations: ξ̂k|l, ξ̂j,k|l and x̂k|l denote the

LMMSE estimates of ξk, ξj,k(xk1{Θk=j}), j = 1, · · · ,M and

xk given Z1:l (denotes the measurement sequence {z1, ..., zl}),

respectively. F̄k represents an M ×M block matrix with its

(i, j)th sub-block pjiFj,k and Φk|l :=
[

Φij,k|l

]

with Φij,k|l =

E(ξi,k − ξ̂i,k|l)(ξj,k − ξ̂j,k|l)
T .
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Definition 3.1: (Definition of the UBLF). An UBLF for (4)-

(5) is defined as

{ξ̂k+1|k+1,Φ
∗
k+1|k, S

∗
k+1,Φ

∗
k+1|k+1

}
= UBLF{ξ̂k|k, zk+1,Φ

∗
k|k, S

∗
k ,Φ

∗
k|k},

(6)

if there exists a sequence of positive-definite matrices Φ∗
k+1|k,

S∗
k+1 and Φ∗

k+1|k+1
that satisfy

Φ∗
k+1|k ≥ Φk+1|k := E(ξ̃k+1|k ξ̃

T
k+1|k), (7)

S∗
k+1 ≥ Sk+1 := E(γk+1γ

T
k+1), (8)

Φ∗
k+1|k+1 ≥ Φk+1|k+1 := E(ξ̃k+1|k+1ξ̃

T
k+1|k+1), (9)

where

state prediction error ξ̃k+1|k = ξk+1 − ξ̂k+1|k, (10)

filter residual γk+1 = zk+1 − ẑk+1|k, (11)

state estimation error ξ̃k+1|k+1 = ξk+1 − ξ̂k+1|k+1, (12)

and ẑk+1|k is the prediction of measurements.

In this section, we first give the existence of positive-definite

matrices (i.e. upper-bound covariances) in Definition 3.1, and

then derive and provide the optimal parameters.

Theorem 3.1: (Existence of the UBLF). If the following

two conditions are satisfied:

Φ∗
0|0 ≥ Φ0|0, (13)

S∗
k+1 ≥ Sk+1, (14)

then there exist UBLFs with the following recursive upper-

bound structures

Φ∗
k+1|k = Ωk+1 − F̄kΩkF̄T

k + F̄kΦ
∗
k|kF̄T

k , (15)

S∗
k+1 = Hk+1Φ

∗
k+1|kH

T
k+1 +Ak+1 (εk+1Σ)A

T
k+1

+
M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1

= Hk+1Φ
∗
k+1|kH

T
k+1 + εk+1Ak+1ΣA

T
k+1

+
M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1,

(16)

Φ∗
k+1|k+1

= (I −Kk+1Hk+1)Φ
∗
k+1|k(I −Kk+1Hk+1)

T

+Kk+1

(

M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1

)

KT
k+1,

(17)

that satisfy (7)-(9), and the original state estimate and its

covariance for system in (1)-(2) are

x̂k+1|k+1 =

M
∑

i=1

ξ̂i,k+1|k+1, (18)

Pk+1|k+1 =

M
∑

i=1

M
∑

j=1

Φij,k+1|k+1, (19)

where the adjust factor εk+1 ≥ 0 is a parameter to be

estimated, Σ > 0 is the setting matrix and requires positive-

definite, Ωk := E(ξkξ
T
k ) = diag {Ωi,k, i = 1, · · · ,M} and

the filter gain Kk+1 is a function of Φ∗
k+1|k and S∗

k+1.

state 
prediction

upper-bound 
covariance 
prediction

measurement 
prediction

convex 
optimization filter residual 

calculation

original state estimate output

state
 estimate

upper-bound 
covariance 

estimate

1|
ˆ
k k 

1|k k



1k
z 

1|k̂ k
z


1k
 

1k
 

1| 1
ˆ
k k
  1| 1k k


 

1| 1k̂ kx  1| 1k k
P  

|
ˆ
k k


|k k


Fig. 1. The implementation of the MUBLF

Proof: See the Appendix A.

Theorem 3.2: (Optimal Parameters). If the initialization

(13) is satisfied, and for any εk+1 satisfying Sk+1 ≤
S∗
k+1

∣

∣

εk+1
and any filter gain Kk+1, there have

Φk+1|k+1

∣

∣

Kk+1
≤ Φ∗

k+1|k+1

∣

∣

∣

ε
opt

k+1
,K

opt

k+1

≤ Φ∗
k+1|k+1

∣

∣

∣

εk+1,Kk+1

,
(20)

Sk+1 ≤ S∗
k+1

∣

∣

∣ε
opt

k+1

≤ S∗
k+1

∣

∣

εk+1
, (21)

then there exist the minimum UBLF (MUBLF), i.e. the optimal

solution, and the optimal filter parameters are

ε
opt
k+1

= min {εk+1 |εk+1 ∈ Λk+1 } , (22)

K
opt
k+1

= Φ∗
k+1|kH

T
k+1S

∗−1

k+1
, (23)

where the convex optimization (22) can be solved by the

following inequalities:






















εk+1 ≥ 0

Hk+1Φ
∗
k+1|kH

T
k+1 + εk+1Ak+1ΣA

T
k+1

+
M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1 ≥ Sk+1

(24)

where

Λk+1 =:
{

εk+1

∣

∣εk+1 ≥ 0, S∗
k+1

∣

∣

εk+1
≥ Sk+1

}

, (25)

and Sk+1 is unknown and substituted by its unbiased estimate

Ŝk+1 =: γk+1γ
T
k+1.
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Proof: See the Appendix B.

Remark 3.1: After constructing the upper-bound structure

of the UBLF and MUBLF in Theorems 3.1 and 3.2, it is

evident that the condition of the solvability is easier to meet

since they do not need to identify any parameter. What’s more,

minimizing the upper-bound covariances can decrease the peak

error adaptively, which may be significant in target tracking

systems.

According to the above derivation, the procedure of the

MUBLF method is shown in Fig. 1 .

IV. NUMERICAL EXAMPLE

A numerical example for the discrete-time MJLS with GUD

in measurements is presented in this section based on two

Markovian states, compared with the LMMSE in [12]. The

related matrices and parameters are given as follows.

Mode 1:

F 1 =

[

0.95 0.15
−0.25 0.75

]

, G1 =

[

0.5
0.7

]

,

H1 =

[

1 0
0 2

]

, D1 =
√
2I2.

Mode 2:

F 2 =

[

0.75 −0.15
0.25 0.95

]

, G2 =

[

0.7
0.5

]

,

H2 =

[

2 0
0 1

]

, D2 =
√
2I2

where, T = 0.5s is the sample time and ω = 0.1257.

The system evolution is simulated for 50 steps with the

first 15 steps in model 1, the middle 20 steps in model 2, and

the last 15 steps in model 1. The true initial state value is

given to be x0 = [1.75 2]T . The covariances of the process

noise and measurement noise in model 1 and 2 are the same

and equal to Q = 1 and R = I2, respectively. The matrix

A = 1.5 × [ 1.75 1.25 ]T and the GUD is assumed to be

the uniform distribution with the interval [−3, 3].

In the LMMSE estimator in [12] and the proposed

MUBLF, the mode switching probability matrix is Pt =
[

0.95 0.05
0.05 0.95

]

, and the mode probabilities are π1,k = 0.9,

π2,k = 0.1 for the first 15 steps, π1,k = 0.1, π2,k = 0.9 for

the middle 20 steps, and π1,k = 0.9, π2,k = 0.1 for the last

15 steps. The initial state estimate is x̂0|0 = 02×1 and the

corresponding covariance is P0|0 = I2. Meanwhile, Σ in the

proposed MUBLF equals identity matrix.

The system state elements and their estimates are given

in Fig. 2 by a single Monte Carlo simulation, and it shows

that the estimated state by the proposed MUBLF is more

accurate than that by the LMMSE in [12]. The RMSEs of

both two elements in state is show in Fig. 3 via 1000 Monte

Carlo simulations, which show the better estimate accuracy of

the MUBLF method than that of the LMMSE. Therefore, the

proposed MUBLF method is effective when dealing with the

MJLSs with GUDs.

0 10 20 30 40 50
-5

0

5

sample instant k

x 1,
k

 

 

true value LMMSE MUBLF
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Fig. 2. True value v.s. estimated value
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Fig. 3. RMSEs of the proposed MUBLF and LMMSE

V. CONCLUSION

This paper presents the state estimation problem of MJLSs

with multiple uncertainties coupling of Markovian stochastic

switching parameters, the GUD and system noises. Such

system is transformed into a system with only randomness of

parameters by geometric augmentation. In the new system, an

UBLF is proposed and the existence condition is given. Then,

the MUBLF and its optimal parameters are also derived. The

simulation shows the effectiveness of the proposed filter.
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APPENDIX

A. The Proof of Theorem 3.1

Define the second-order moments Πk|l := E(ξ̂k|lξ̂
T
k|l) and

Υk|l := E(ξk − ξ̂k|l)(zk − ẑk|l)
T . In Eqs. (10)-(11), we have

ξ̂k+1|k = E(Fkξk +Gkwk|Z1:k)
= E(Fkξk|Z1:k) + E(Gkwk|Z1:k)

= E(Fk)E(ξk|Z1:k) = F̄‖ξ̂k|k,

(26)

ẑk+1|k = E(zk+1|Z1:k)
= E(Hk+1ξk+1 +Ak+1δk+1 +Dk+1vk+1|Z1:k)

= Hk+1ξ̂k+1|k,

(27)

ξ̂k+1|k+1 = ξ̂k+1|k +Kk+1γk+1. (28)

In above derivation, (26) holds because E(Gkwk|Z1:k) equals

zero matrix. (27) holds because E(Dk+1vk+1|Z1:k) equals

zero matrix and the best approximation of E(Akδk+1|Z1:k)
is zero as δk+1 is the unknown term. Then according to (11),

we can obtain

γk+1 = zk+1 − ẑk+1|k

= zk+1 −Hk+1ξ̂k+1|k

= Hk+1ξ̃k+1|k +Ak+1δk+1 +Dk+1vk+1.

(29)

By the fact that vk+1 is independent of ξk+1 and ξ̂k+1|k,

we obtain the independence between vk+1 and ξ̃k+1|k. Further

using the independence of δk+1 and vk+1, we have

Sk+1 =E(γk+1γ
T
k+1)

=E(Hk+1ξ̃k+1|k +Ak+1δk+1 +Dk+1vk+1)(·)T

=E(Hk+1ξ̃k+1|k +Ak+1δk+1)(·)T

+ E(Dk+1vk+1v
T
k+1D

T
k+1).

(30)

As shown in (30), the presence of δk+1 represents the

uncertainty. Thus, we have

Sk+1 ≥E(Hk+1ξ̃k+1|k)(·)T + E(Dk+1vk+1v
T
k+1D

T
k+1)

=E(Hk+1ξ̃k+1|k ξ̃
T
k+1|kH

T
k+1)

+ E(Dk+1vk+1v
T
k+1D

T
k+1)

=Hk+1Φk+1|kH
T
k+1 +

M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1,

(31)

where

Φk+1|k = E(ξk+1 − ξ̂k+1|k)(ξk+1 − ξ̂k+1|k)
T

= E(ξk+1ξ
T
k+1)− E(ξ̂k+1|k ξ̂

T
k+1|k)

= diag {Ωi,k+1, i = 1, · · · ,M} −Πk+1|k,

(32)

with

Ωi,k+1 = E(ξi,k+1ξ
T
i,k+1)

= E(F i
kξk +Gi

kwk)(F
i
kξk +Gi

kwk)
T

= E(F i
kξkξ

T
k (F

i
k)

T ) + E(Gi
kwkw

T
k (G

i
k)

T )

=
M
∑

j=1

pjiFj,kΩj,kF
T
j,k +

M
∑

j=1

pjiπj,kGj,kG
T
j,k,

(33)

Πk+1|k = E(ξ̂k+1|k ξ̂
T
k+1|k) = E(F̄k ξ̂k|k ξ̂

T
k|kF̄T

k )

= F̄kΠk|kF̄T
k ,

(34)

Πk+1|k+1 = E(ξ̂k+1|k+1ξ̂
T
k+1|k+1)

= E(ξ̂k+1|k +Υk+1|kS
−1

k+1
γk+1|k)(·)T

= E(ξ̂k+1|kξ
T
k+1|k) + (Υk+1|kS

−1

k+1
)Sk+1(·)T

= Πk+1|k +Υk+1|kS
−1

k+1
ΥT

k+1|k,

(35)

where F i
k and Gi

k are the ith row entry of Fk, Gk, respectively.

Thus, (8) and (16) hold.
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In (35), Υk+1|k is represented as follows.

Υk+1|k = E(ξ̃k+1|kγk+1|k)

=E(ξ̃k+1|k(Hk+1ξ̃k+1|k +Ak+1δk+1 +Dk+1vk+1)
T )

=Φk+1|kH
T
k+1.

(36)

According to above derivation, we have

Φk+1|k = Ωk+1 − F̄kΩkF̄T
k + F̄kΦk|kF̄T

k , (37)

and

Φk+1|k+1 = Ωk+1 −Πk+1|k+1

=Ωk+1 − (Πk+1|k +Υk+1|kS
−1

k+1
ΥT

k+1|k)

=Φk+1|k −Υk+1|kS
−1

k+1
ΥT

k+1|k

=(I −Kk+1Hk+1)Φk+1|k(I −Kk+1Hk+1)
T

+Kk+1

(

M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1

)

KT
k+1.

(38)

As the first condition (13) of Theorem 3.2, and we assume

Φ∗
k|k ≥ Φk|k. Using mathematical induction and (37), we can

have

Φ∗
k+1|k − Φk+1|k = F̄k

(

Φ∗
k|k − Φk|k

)

F̄T
k . (39)

As F̄k is a full rank square matrix, we have

Φ∗
k+1|k − Φk+1|k ≥ 0. (40)

So, from (37) and (40), we can obtain (7) and (15).

Putting (7) into (17) yields

Φ∗
k+1|k+1 =(I −Kk+1Hk+1) Φ

∗
k+1|k(I −Kk+1Hk+1)

T

+Kk+1

(

M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1

)

KT
k+1

≥ (I −Kk+1Hk+1) Φk+1|k(I −Kk+1Hk+1)
T

+Kk+1

(

M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1

)

KT
k+1

=Φk+1|k+1.

(41)

Thus, from (40) and (41), (9) and (17) can be obtained.

B. The Proof of Theorem 3.2

According to Theorem 3.1, the set
{

εk+1

∣

∣S∗
k+1 ≥ Sk+1

}

will not be empty if an UBLF exists. Because S∗
k+1

∣

∣

εk+1,1
≤

S∗
k+1

∣

∣

εk+1,2
when εk+1,1 ≤ εk+1,2, so if εk+1,1 ∈ Λk+1, then

must have εk+1,2 ∈ Λk+1. Therefore,

Λk+1 =
{

εk+1

∣

∣εk+1 ≥ 0, S∗
k+1

∣

∣

εk+1
≥ Sk+1

}

= {εk+1 |εk+1 ≥ 0} ∩
{

εk+1

∣

∣S∗
k+1

∣

∣

εk+1
≥ Sk+1

}

(42)

is not null. Hence there exists ε
opt
k+1

=
min {εk+1 |εk+1 ∈ Λk+1 }.

Then, it is only necessary to testify that ε
opt
k+1

and K
opt
k+1

guarantee (20)-(21). It is easy to know εk+1 ≥ ε
opt
k+1

to any

εk+1 ∈ Λk+1 for the definition of ε
opt
k+1

. Thus

∆Sk+1 =S∗
k+1

∣

∣

εk+1
− S∗

k+1

∣

∣

∣ε
opt

k+1

=(Hk+1Φ
∗
k+1|kH

T
k+1 + εk+1Ak+1ΣA

T
k+1

+

M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1)

− (Hk+1Φ
∗
k+1|kH

T
k+1 + ε

opt
k+1

Ak+1ΣA
T
k+1

+

M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1)

=(εk+1 − ε
opt
k+1

)Ak+1ΣA
T
k+1 ≥ 0

(43)

∆Φ−1

k+1|k+1
= Φ∗−1

k+1|k+1

∣

∣

∣

εk+1,Kk+1

− Φ∗−1

k+1|k+1

∣

∣

∣

ε
opt

k+1
,Kk+1

=Φ∗−1

k+1|k +HT
k+1(εk+1Ak+1ΣA

T
k+1 +Rk+1)Hk+1

− Φ∗−1

k+1|k +HT
k+1(ε

opt
k+1

Ak+1ΣA
T
k+1 +Rk+1)Hk+1

=(εk+1 − ε
opt
k+1

)HT
k+1Ak+1ΣA

T
k+1Hk+1 ≥ 0.

(44)

When deriving (43), both the expression of S∗
k+1 in (16)

and the equation (45) are used. The equation (45) holds due

to the factor εk+1 not included in (15). To obtain (44), the

other form of the covariance expression in (46) is used.

Φ∗
k+1|k

∣

∣

∣

εk+1

− Φ∗
k+1|k

∣

∣

∣

ε
opt

k+1

=(Ωk+1 − FkΩkF̄
T
k + FkΦ

∗
k|kF̄

T
k )

∣

∣

∣

εk+1

− (Ωk+1 − FkΩkF̄
T
k + FkΦ

∗
k|kF̄

T
k )

∣

∣

∣

ε
opt

k+1

=O,

(45)

Φ∗−1

k+1|k+1
=Φ−1

k+1|k +HT
k+1

(

εk+1Ak+1ΣA
T
k+1

+

M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1

)

Hk+1.
(46)

From (44), we can easy to know

∆Φk+1|k+1

=Φ∗
k+1|k+1

∣

∣

εk+1,Kk+1
− Φ∗

k+1|k+1

∣

∣

∣ε
opt

k+1
,Kk+1

≥ 0.
(47)

Through (16) and
M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1 > 0, S∗

k+1 ≥
M
∑

j=1

πj,k+1Dj,k+1D
T
j,k+1 > 0 exists, so the symmetric and

positive definite matrix S∗
k+1

∣

∣

∣ε
opt

k+1

can be represented by

Gk+1G
T
k+1, where Gk+1 is full rank. Suppose the optimal
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gain K
opt
k+1

exists, and then its existence needs to testify. After

transformation, there is

Φ∗
k+1|k+1

∣

∣

∣

ε
opt

k+1
,Kk+1

=Φ∗
k+1|k

∣

∣

∣

ε
opt

k+1

−Bk+1B
T
k+1

+ (Kk+1Gk+1 −Bk+1)(Kk+1Gk+1 −Bk+1)
T ,

(48)

where Bk+1 = Φ∗
k+1|k

∣

∣

∣ε
opt

k+1

HT
k+1G

−T
k+1

.

By the fact (Kk+1Gk+1−Bk+1)(Kk+1Gk+1 −Bk+1)
T ≥

O, we have Φ∗
k+1|k+1

≥ Φ∗
k+1|k

∣

∣

∣ε
opt

k+1

− Bk+1B
T
k+1 if and

only if K
opt
k+1

= Bk+1G
−1

k+1
= Φ∗

k+1|k

∣

∣

∣ε
opt

k+1

HT
k+1S

∗−1

k+1
. So,

there is

Φ∗
k+1|k+1

∣

∣

∣ε
opt

k+1
,Kk+1

≥Φ∗
k+1|k

∣

∣

∣ε
opt

k+1

−Bk+1B
T
k+1

=Φ∗
k+1|k+1

∣

∣

∣ε
opt

k+1
,K

opt

k+1

.
(49)

Thus, an MUBLF exists and ε
opt
k+1

∈ Λk+1. Thus, (7)-(9) are

obtained and (20)-(21) are further obtained based on (7)-(9)

and (43), (47), (49).
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