
Estimation of State and Measurement

Noise Characteristics

J. Dunı́k, O. Straka, M. Šimandl, O. Kost, J. Ajgl
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Abstract—The paper deals with the estimation of the noise
characteristics of a linear system described by the state space
model. In particular, the stress is laid on the linear systems
with the measurement noise correlated in time. The method,
providing unbiased estimates of the state and measurement
noise characteristics is analytically derived. The method
extends, in principle, the concept of the correlation methods
by explicit consideration of the noise time-correlation. The
method is also modified into the form suitable for a sensor
calibration procedure typically realized by the Allan variance
method. The theoretical results are thoroughly discussed and
the proposed method is validated using numerical examples.

Keywords: State estimation; Estimation theory; Identi-

fication; Sensor calibration; Kalman filtering.

I. INTRODUCTION

The state estimation, signal processing, and control de-

sign methods require not only the complete knowledge of

the functions in the system description but also of statistics

of the noises affecting the system. The assumption of the

known noise statistics is, however, questionable in many

cases. Incorrect description of the noise statistics may cause

significant worsening of estimation or control quality or

even divergence of the underlying algorithm output.

From the seventies, various methods for estimation of

the state-space model noise covariance matrices have been

proposed. The methods can be divided into several cat-

egories; correlation methods [1]–[5], Bayesian estimation

methods [6], maximum likelihood estimation methods [7],

covariance matching methods [8], methods based on the

minimax approach [9], subspace methods [10], prediction

error methods [11], the Kalman filter working as a pa-

rameter estimator [12], or methods tied with variational

Bayesian approximation [13]. Besides the noise covariance

matrix estimation methods, alternative approaches directly

estimating the gain of a linear estimator have been de-

veloped as well [1], [14], [15]. A characterisation of the

methods with their assumptions, properties, and limitations

can be found in e.g., [3], [9], [16], [17].

All the methods have been prevailingly proposed for the

linear (often time-invariant) systems under the assumption

of the white noises (zero-mean and uncorrelated in time)

in the state and measurement equations. Such assumption

might, however, be limiting in certain scenarios where

sensors with a time-correlated noise description are con-

sidered. Typically, the inertial sensors belong into this

category.

The goal of the paper is to propose a method providing

the estimates of the noise characteristics for the linear

systems if the state noise is assumed to be white and the

measurement noise to be correlated in time (coloured). The

proposed method, extending the family of the correlation

methods, is shown to provide the unbiased estimates.

The rest of the paper is organised as follows. In Sec-

tion 2, the system description is defined and the problem

formulation is stated. In Section 3, the method estimating

the characteristics of the state and measurement noise is

proposed and thoroughly discussed. Within this section,

a simplified version of the method suitable for a sensor

calibration procedure is given as well. The numerical illus-

trations are described and evaluated in Section 4. Section 5

then concludes the paper.

II. SYSTEM DEFINITION AND PROBLEM STATEMENT

A discrete-time linear stochastic dynamic system

xk+1 = Fxk +wk, k = 0, 1, 2, . . . , T, (1)

zk = Hxk + vk, k = 0, 1, 2, . . . , T, (2)

is considered where the vectors xk ∈ R
nx and zk ∈ R

nz

represent the immeasurable state of the system and the

measurement at time instant k, respectively. The system

and measurement matrices F ∈ R
nx×nx and H ∈ R

nz×nx

are supposed to be known as well as the characteristics of

the initial state of the system x0 described by the mean x̄0

and the covariance matrix P0.

The variables wk ∈ R
nx and vk ∈ R

nz are the state and

measurement noises. The state noise is assumed to be white

with the covariance matrix Q ∈ R
nx×nx . The measurement

noise is modelled as

vk = νk + β + uk, (3)

where uk is a white noise with the covariance matrix Ru ∈
R

nz×nz , β ∈ R
nz×1 is a constant vector, and νk is a
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process correlated in time described by the (zero-mean)

Gauss-Markov (GM) process of the first order

νk = ανk−1 + ξk−1 (4)

with ξk−1 being a (white) driving noise with the covariance

matrix Rξ ∈ R
nz×nz and α ∈ R

nz×nz being a stable

constant matrix. The steady-state covariance matrix (in the

vector form) of the GM process is

(Rν)vec = (In2
z
−α⊗α)−1(Rξ)vec, (5)

where In2
z

is the identity matrix of the indicated dimension,

the symbol ⊗ denotes the Kronecker product, and the nota-

tion (A)vec means the columnwise stacking of a matrix A

into a vector [18]. The overall variance of the measurement

noise is then

R = cov[vk] = Rν +Ru. (6)

The system and measurement noise sequences {wk} and

{vk} are assumed to be mutually independent processes

and independent of the initial state.

The characteristics of the state and measurement noises,

i.e., the matrices and vectors Q, Rξ, Ru, α, and β are

assumed to be unknown1 and thus, to be estimated.

III. ESTIMATION OF NOISE CHARACTERISTICS

The proposed method for estimation of the noise char-

acteristics of linear systems with time-correlated noise

in the measurement equation extends the concept of the

autocovariance least-squares (ALS) correlation method.

The ALS method has been designed for estimation of the

noise covariance matrices of the linear systems with white

state and measurement noises [3]–[5], [19]. The method is

based on the analysis of the innovation sequence of a “non-

optimal” linear estimator. The method is briefly introduced

in Appendix A.

A. Autocovariance least-squares method for time-

correlated measurement noise

In this section, the ALS method respecting the time-

correlated measurement noise is designed and analysed.

The method is based on analysis of the multistep predictor

estimate error.
1) State predictor: The multistep predictor of the state

and measurement [5] is defined as

x̂k+1 = Fx̂k, ∀k, (7)

ẑk = Hx̂k, ∀k, (8)

with the initial condition x̂0 = x̄0. The state prediction

error εk and the measurement prediction error (innovation)

ek are then equal to

εk+1 = xk+1 − x̂k+1 = Fεk +wk, (9)

ek = zk − ẑk = Hεk + vk. (10)

Note that the state prediction error is independent of the

measurement noise in this case.

1All the characteristics except of β are the covariance matrices. Only
the vector β is related to the mean of the process (3).

2) State prediction error properties: Assuming the sta-

ble matrix F, the state prediction error is a (white) random

process with zero mean and steady-state covariance matrix

given by the solution to the Lyapunov equation

Pε = FPεF
T +Q. (11)

Using the Kronecker calculus, the solution (in vector form)

can be written as

(Pε)vec = (In2
x
− F⊗ F)−1Qvec. (12)

Note that the steady-state matrix Pε is a linear function of

the unknown matrix Q.

3) Measurement prediction error properties: With re-

spect to properties of the state prediction (9) and the

measurement noise (3), the steady-state mean of the mea-

surement prediction error (10) is

E[ek] = β. (13)

The steady-state covariance matrix of the measurement

prediction error is, respecting the independence of εk (9)

and wk (1), equal to

C0 = cov[ek] = E[(ek − β)(·)T ] = HPεH
T +R

= HPεH
T +Rν +Ru, (14)

where the notation E[(a)(·)T ] means E[(a)(a)T ]. The

steady-state cross-covariance matrix with a lag of length

j can be computed as

Cj = cov[ek, ek−j ] = E[(ek − β)(ek−j − β)T ]

= E[(Hεk + νk + uk)(Hεk−j + νk−j + uk−j)
T ]

= HFjPεH
T +αjRν (15)

with j = 1, . . . , N − 1 and Rν given by (5).

4) Derivation of ALS method: The proposed ALS

method for estimation of the characteristics of the state

and measurement noises is based, in fact, on an algorithm

with the following two subsequent steps:

i. estimation of the (cross-)covariance matrices of the

measurement prediction error sequence, i.e., of C0 (14)

and Cj (15), on the basis of available measurements,

ii. estimation of the unknown noise characteristics on the

basis of the previous step outputs and relations (11)–

(15).

In the first step it is thus necessary to compute the

measurement prediction error sequence according to (10),

i.e., as

ek = zk − ẑk, ∀k. (16)

Then, having the sequence, the (cross-)covariance matrices

(14), (15) can be estimated by

Ĉ0 =
1

T−1

T
∑

k=1

(ek − β̂)(·)T , (17)

Ĉj =
1

T−j−1

T
∑

k=1

(ek − β̂)(ek−j − β̂)T , ∀j, (18)
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where

β̂ = 1
T

T
∑

k=1

ek (19)

is directly an estimate of the unknown mean (13) of the

measurement prediction error. It is worth noting that the

sample based statistics (17)-(19) represent the unbiased

estimates of the respective quantities, i.e.,

E[β̂] = β, E[Ĉ0] = C0, E[Ĉj ] = Cj , (20)

which converge to the true values inversely with number of

data T . This conclusion can be approached by taking ex-

pectation of (17)-(19) respecting the properties of sample-

based mean and covariance matrix computation [3].

In the second step, the estimate of the remaining noise

characteristics, namely the covariance matrices Q, Rξ, and

Ru, and the noise dynamic matrix α, is given by

θ̂ = argmin
θ
||b̂− G(θ)||2, (21)

where

• θ is a vector of all unknown matrices element defined

as

θ = [QT
vec, (Rξ)

T
vec, (Ru)

T
vec,α

T
vec]

T , (22)

• G(θ) is a known, generally nonlinear2, function w.r.t.

the vector of unknown parameters θ stemming from

(14), (15) and it is defined as

G(θ)=
(

[g0(θ)
T ,g1(θ)

T , . . . ,gN−1(θ)
T ]T

)

vec
, (23)

• b̂ is a known vector of dependent variables defined as

b̂ =
(

Ĉe(N)
)

vec
(24)

with

Ĉe(N) = [ĈT0 , Ĉ
T
1 , . . . , Ĉ

T
N−1]

T , (25)

and || · ||2 denotes the L2-norm.

Equation (21) cannot be minimised analytically and an

iterative minimisation method for the solution to the non-

linear least-squares (NLS) needs to be employed. Among

these methods, the Gauss-Newton method and other gradi-

ent based methods are often used [20], [21].

It should be also mentioned that with respect to the form

of (5) appearing in (15) it might be favourable to estimate

by the NLS the matrices Q, Rν , Ru, α instead of the

matrices Q, Rξ, Ru, α which were considered heretofore.

Direct estimation of Rν instead of Rξ (seemingly) reduces

the “nonlinearity” of the considered minimisation problem

solved by the NLS as the only nonlinearity is given by the

product αjRν in (15) and no rational function stemming

from (5) is involved. Such an approach basically follows

the idea of the transformably linear models discussed e.g.,

in [20], [21].

2It should be mentioned that the matrices Q, Ru appears in (17), (18)
in a linear fashion.

5) Algorithm of ALS method (a scalar case): The re-

lations provided in the previous section are rather general.

The particular forms to be minimised depend among others

on the assumed properties of sought covariance matrices

(for example, matrix diagonality, equality of certain ele-

ments).

In this section, the proposed ALS method is detailed for a

scalar system, i.e., for (1), (2) with nx = nz = 1 assuming

the usage of the Gauss-Newton minimisation technique.

The algorithm of the ALS method for linear system noise

characteristics estimation can be written in the following

steps:

i. Compute measurement prediction error sequence

{ek}
T
k=0 according to (16).

ii. Compute sample-based estimate of the mean β of the

sequence according to (19).

iii. Compute sample-based estimates of the variance C0
and covariances Cj according to (17) and (18), re-

spectively, for j = 1, . . . , N − 1 with N ≥ 4.

iv. Compute estimates of the unknown variances and the

parameter gathered in the vector

θ = [θ1, θ2, θ3, θ4] = [Q,Rν , Ru, α]
T , (26)

by recursive computation of the following steps of the

NLS

b̂ = [Ĉ0, Ĉ1, . . . , , ĈN−1]
T , (27)

G(θ̂i) =







g0(θ̂i)

g1(θ̂i)

...
gN−1(θ̂i)






=











H2

1−F2 θ̂i,1+θ̂i,2+θ̂i,3

H2F

1−F2 θ̂i,1+θ̂i,4θ̂i,2

...
H2FN−1

1−F2 θ̂i,1+θ̂
(N−1)
i,4 θ̂i,2











(28)

δb̂i = b̂− G(θ̂i), (29)

G(θ̂i) =
∂G(θ)

∂θ
|
θ̂i
= Gi

=











H2

1−F2 1 1 0

H2F

1−F2 θ̂i,4 0 θ̂i,2

...
...

...
...

H2F (N−1)

1−F2 θ̂
(N−1)
i,4 0 (N−1)θ̂i,2θ̂

(N−2)
i,4











(30)

δθ̂i = (GT
i Gi)

−1GT
i δb̂i (31)

θ̂i+1 = θ̂i + δθ̂i, (32)

where G(θ̂i) is the Jacobian matrix of the function

G(·) evaluated at θ̂i, θ̂0 is the user-defined initial

condition, and i = 0, 1, . . . , TNLS . The recursion ends

once the error-variable δθ̂i is negligible [20], [21].

B. Allan variance and autocovariance least-squares

method

In the previous section, estimation of the noise char-

acteristics of the linear dynamic systems with the time-

correlated measurement noise was discussed. In this sec-

tion, a conceptually simpler formulation is treated, namely

estimation of the measurement noise characteristics under
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Figure 1. Root Allan variance plot of diffferent processes.

the assumption of the precise knowledge of the state. Such

a formulation is typical in the area of a sensor calibration

such as calibration of accelerometers or gyroscopes [22]–

[25].

The measurement can be, thus, modelled as

zk = xk + vk, k = 0, 1, 2, . . . , T, (33)

where xk is assumed to be a deterministic and known quan-

tity and vk is the measurement noise defined analogously

as in (3).

1) Allan variance: Allan variance (AVAR) method is

a standard tool for estimation of the parameters of the

measurement noise error model (33) which is composed by

usually two independent error contributors; one contributor

is correlated in time whereas other is white.

Computation of the AVAR from the sampled scalar

signal (33) with xk = 0, ∀k, follows these steps [26], [27]:

i. The measurement sequence (33) of length T is divided

into K bins of length M where K = N
M

and τM = M
fs

is a time length of a bin with fs being a sampling

frequency.

ii. For each bin, the sample mean is computed as

z̄k (M) =
1

M

M
∑

i=1

z(k−1)M+i. (34)

iii. The root Allan variance is computed as a mean of the

difference of the means in the subsequent bins, i.e., as

σ2
A (τM ) =

1

2 (K − 1)

K−1
∑

k−1

(z̄k+1 (M)− z̄k (M))
2
.

(35)

iv. Steps i.–iii. of this algorithm are repeated for different

bin lengths τM .

The output of the AVAR method is the Allan variance

plot (in logarithmic scales) showing dependence of the

variances σ2
A (τM ) (35) on the bin length τM .

The AVAR method is typically used for determination

of the white and time-correlated noise properties. As

illustrated in Fig. 1, each noise type alone produce a

characteristic shape of the Allan variance plot:

• A white noise alone produces a line with negative

slope of -1/2 when using logarithmic scales on both

axes; red line with square markers in Fig. 1. The

quantitative characteristic of the white noise (its vari-

ance) can be computed using any point coordinates

corresponding to the white noise slope according to

Ru = σ2
WN = σ2

A(τM )τMfs (36)

where Ru is the white noise variance, σA(τM ) is

root Allan variance at a selected point, τM is a bin

size length for the selected point, and fs is sampling

frequency.

• A time correlated noise (first order GM process in this

case) produces a hump in the Allan variance plot; blue

line with triangle markers in Fig. 1. The coordinates of

the maximum point of the hump are used to compute

the characteristics (correlation time and steady-state

variance) of the GM process as

τc =
τmax

1.89
, (37)

Rν = σ2
steady =

(σAmax

0.62

)2

, (38)

where τc is the correlation time, Rν is the GM process

steady-state variance, τmax is the bin size length in

seconds for the maximum point of the hump, and

σAmax is the root Allan variance for the maximum

point of the hump.

If only one type of the noise is present, then the

Allan variance plot has the specific curve shape and the

measurement noise characteristics can be easily computed.

When two or more noises are present simultaneously, the

shape is a combination (but not the sum) of the individual

shapes.

2) Derivation of calibration ALS method: The ALS

method derived in this paper can be easily adapted for the

noise characteristic estimation for the process defined by

(33). The method can be thus viewed as an alternative3 to

the Allan variance used for the sensor calibration.

Following derivation of the ALS method and assuming

the precise knowledge of the state xk, the measurement

prediction error is

ek = zk − ẑk = vk, (39)

where ẑk = xk is the measurement prediction4 (stemming

from (33)). It means that the measurement prediction error

is directly given by the measurement noise which has the

following statistics

β = E[ek], (40)

C0 = cov[ek] = Rν +Ru, (41)

Cj = cov[ek, ek−j ] = αjRν . (42)

3The name calibration ALS (cALS) method was, therefore, chosen.
4Note that if xk = 0, then ẑk = 0 and thus, ek = zk , where 0 is a

zero vector of the appropriate dimension.
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The statistics can be estimated on the basis of the avail-

able sequence {ek}
T
k=0 according to (17)–(19), where β̂

represents again the unbiased estimate of (40).

Analogously to the ALS method, the estimate of the

unknown matrices Rξ, Ru, and α is given by (21) with

θ = [(Rξ)
T
vec, (Ru)

T
vec,α

T
vec]

T , (43)

G(θ) =
(

[γ0(θ)
T ,γ1(θ)

T , . . . ,γN−1(θ)
T ]T

)

vec
, (44)

b̂ =
(

Ĉe(N)
)

vec
. (45)

3) Algorithm of calibration ALS method (a scalar case):

The algorithm of the cALS method for measurement noise

characteristics estimation for the scalar system is given by

the following steps:

i. Compute measurement prediction error sequence

{ek}
T
k=0 according to (39).

ii. Compute sample-based estimate of the mean β of the

sequence according to (19).

iii. Compute sample-based estimates of the variance C0
and covariances Cj according to (17) and (18), re-

spectively, for j = 1, . . . , N − 1 with N ≥ 4.

iv. Compute estimates of the unknown variances and the

parameter gathered in the vector

θ = [θ1, θ2, θ3] = [Rν , Ru, α]
T , (46)

by recursive computation of the following steps of the

NLS

b̂ = [Ĉ0, Ĉ1, . . . , , ĈN−1]
T , (47)

G(θ̂i) =







γ0(θ̂i)

γ1(θ̂i)

...
γN−1(θ̂i)






=









θ̂i,1+θ̂i,2

θ̂i,3θ̂i,1

...
θ̂
(N−1)
i,3 θ̂i,1









(48)

δb̂i = b̂− G(θ̂i), (49)

Gi =
∂G(θ)

∂θ
|
θ̂i
=







1 1 0
θ̂i,3 0 θ̂i,1

...
...

...
θ̂
(N−1)
i,4 0 (N−1)θ̂i,1θ̂

(N−2)
i,3







(50)

δθ̂i = (GT
i Gi)

−1GT
i δb̂i (51)

θ̂i+1 = θ̂i + δθ̂i. (52)

The recursion ends once the error-variable δθ̂i is

negligible [20], [21].

C. Notes

Note 1: Number of considered equations N is a user-

defined parameter and it affects the number of ALS es-

timable parameters. However, even if a sufficient number

of equations is considered, not all unknown parameters are

generally estimable (especially those tied with the matrix

Q in (1)). It generally depends on the dimension of the

state and measurement vectors, i.e., on nx and nz . A

related discussion for linear systems with white state and

measurement noises can be found in [19].

Note 2: Heretofore, the time-correlated measurement

noise error contributor νk (4) was considered in the form

of the first order GM process. Generally, a higher order

GM process can be considered as well.

Note 3: In the problem formulation, the knowledge of

the initial condition was assumed. However, because of

the stable system assumption, the state prediction error (9)

remains stable as well independently of the chosen initial

condition of the predictor.

Note 4: The proposed ALS and cALS methods are, in

fact, based on the analysis of the properties of the error

of the multistep predictor estimates. On the contrary, the

original ALS method [3] for linear systems with white

noises was based on an analysis of the one-step prediction

error which is not restricted by the assumption on the stable

system (1), (2). In principle, the proposed methods can

be also based on the one-step predictor, however, as it is

illustrated in Appendix B, the resulting relations are much

more complex which makes the application of the NLS

method more difficult in terms of its convergence.

Note 5: If certain properties of the unknown matrices are

known (for example positive-definiteness of the covariance

matrices, admitted range for the matrix α), then such

information might be used in an NLS method design phase

[3], [20], [21].

Note 6: Convergence of the minimisation technique used

in the NLS solution cannot be guaranteed even if the

(sample-based) unbiased estimate of covariance matrices

(14), (15) or (41), (42) is available. Convergence is affected

either by the particular selected minimisation technique,

by a setting of the initial values, or a structure of the

considered task [20], [21].

Note 7: If two or more different noises are affecting

the measurement equation, then the resulting AVAR shape

might be hard to analyze visually and thus to identify the

significant points needed for computation of the noise char-

acteristics. This situation usually occurs when covariance of

one noise is dominant over the others or when time constant

of different correlated noises are close to each other. Such

a issue cannot occur if the cALS is used instead of the

AVAR.

Note 8: The cALS method allows in principle estimation

of the constant bias β (3) similarly as the ALS method

does. Due to the definition of the AVAR method, it is not

possible to identify the constant bias by the method.

Note 9: Allan variance method processes a scalar signal.

Multidimensional signal can be investigated using this

method but its scalar components has to be uncorrelated

and processed individually as a scalar signals.

IV. NUMERICAL ILLUSTRATION

The proposed ALS method (and its derivative the cALS)

is illustrated in this section using two numerical simula-

tions.
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A. Dynamic system

In the first example, the linear dynamic system (1), (2)

is assumed with the following parameters

nx = 1, nz = 1, (53)

F = −0.8, H = 1, (54)

Q = 1.5, Ru = 0.8, (55)

Rξ = 0.5, α = 0.9, β = 2 (56)

using M = 104 Monte-Carlo (MC) simulations with T =
{104, 105} samples per one MC simulation and with N = 4
equations used in the NLS. The estimates are plotted in

Fig. 2 in the form of a histogram. It can be seen that the

estimates are unbiased and its variance is going to zero

with increasing number of samples T .

B. Sensor calibration

The second example illustrates application of the cALS

method estimating the properties of the measurement noise

of the structure (33). In this example, the following param-

eters are considered

nx = 1, nz = 1, (57)

Ru = 1, Rξ = 0.005 (58)

α = 0.999, β = 0. (59)

Note that the GM process (4) with the considered pa-

rameters Rξ and α can be understood as a discrete-time

alternative to a continuous-time process [22] with time

constant τ = 10 [sec], steady-state variance Rν = 2.5, and

sample frequency of fs = 100 [Hz]. The white noise power

spectral density (PSD) is, in this case, Nu = Ru/fs =
0.01 [(−)2/Hz].

The histograms of the estimates of Ru, Rν , and α
computed by M = 104 MC simulations with T = 106

samples per one MC simulation and with N = 4 equations

used in the NLS are shown in Fig. 3.

For the sake of completeness, application of the AVAR

method (as a standard tool in this area) is illustrated below.

Based on the available (sampled simulated) data, the

AVAR plot is constructed using (35). The plot is shown

in Fig. 1. The significant points are located as

• white noise point coordinates (slope -1/2): σA(τM ) =
0.5051, τM = 0.03981 [sec],

• time-correlated noise hump maximum point coordi-

nates: σAmax(τmax) = 0.9756, τmax = 19.95 [sec].

White noise variance can be computed using the re-

spective point coordinates and equation (36) assuming

Ru = 1.0157. Time-correlated noise characteristics can

be computed using the maximum point coordinates and

equations (38), (37) assuming τc = 9.9950 [sec] and

Rν = 2.4761. The discrete parameter α is related to the

time constant τc by equation

α = e
−1

τcfs , (60)

Table I
EXAMPLE B: AVAR AND AVERAGED CALS ESTIMATES OF

MEASUREMENT NOISE CHARACTERISTICS.

true AVAR estimates cALS estimates (aver.)

Ru 1 1.0157 1.0000

α 0.999 0.9991 0.9990

Rξ 0.005 0.0047 0.0050

which results in α = 0.9991. The driving noise variance

Rξ is related to steady-state variance Rν and α as

Rξ = Rν

(

1− α2
)

(61)

which leads to Rξ = 0.0047.

The results of the AVAR for one particular measurement

sequence realisation and the averaged results of the pro-

posed cALS method over all MC simulations (depicted in

Fig. (3)) are summarized in Table I.

V. CONCLUDING REMARKS

The paper was devoted to the estimation of the noise

characteristics of a linear system described by the state

space model. The autocovariance least-squares correlation

method, originally designed for linear systems with white

noises, was extended for linear systems with measurement

noise correlated in time. Then, the proposed method was

modified into the form suitable for sensor calibration which

is typically solved by the Allan variance method. Compared

to the Allan variance method, the proposed correlation

method was analytically derived and was shown to provide

unbiased estimates which converge to the true values with

increasing number of data. The proposed method was

thoroughly discussed, analysed, and illustrated by two ex-

amples; first, considering estimation of the noise character-

istics of the whole state space model, second, considering

estimation of the measurement noise characteristics only.
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VI. APPENDIX A: AUTOCOVARIANCE LEAST-SQUARES

METHOD FOR WHITE STATE AND MEASUREMENT

NOISES - BRIEF REVIEW

The correlation methods have received quite consider-

able attention in the past as they provide unbiased estimates

with acceptable computational requirements even for high-

dimensional systems. The methods are based on an analysis

of the innovation sequence of “non-optimal” linear estima-

tors. The methods have been pioneered in [1], [2] and then

further developed in [3]–[5], [19].

The ALS method for the system description (1), (2) with

white state and measurement noises (i.e., with α = 0, β =
0) is based on the analysis of the output of a “non-optimal”

linear predictor (either one-step or multistep)

x̂k+1 = F(x̂k +Kek), (62)

ẑk = Hx̂k, (63)
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Figure 2. Example A: ALS estimates of state and measurement noise characteristics in form of histograms (true values denoted by red star).
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Figure 3. Example B: cALS estimates of measurement noise characteristics in form of histograms (true values denoted by red star).

with the state and measurement prediction errors given by

εk+1 = F̄εk +Gw̄k, (64)

ek = Hεk + vk. (65)

where K is a (user-defined) predictor gain5, F̄ = (F −
FKH), G = [G1,G2] = [Inx

,−FK], w̄k = [wT
k ,v

T
k ]

T ,

and 0 is a zero matrix or vector of appropriate dimension.

The (cross-)covariance matrices of the measurement pre-

diction error are

Ce,0 = E[eke
T
k ] = HPǫH

T +R, (66)

Ce,j = E[eke
T
k−j ] = HF̄jPǫH

T −HF̄j−1FKR, (67)

where Pε is a solution to the Lyapunov equation

Pε = F̄PεF̄
T +G

[

Q 0
0 R

]

GT , (68)

can be written in a form for the least-squares method as

Aθθθ = b with θθθ = [QT
vec,R

T
vec]

T , b = (Ce(N))vec, and

A = [D,D(FK⊗ FK) + (Inz
⊗ΓΓΓ)], (69)

D = (H⊗O)(In2
x
− F̄⊗ F̄)−1, (70)

O = [HT , (HF̄)T , . . . , (HF̄N−1)T ]T , (71)

ΓΓΓ = [Inz
,−(HFK)T , . . . , ,−(HF̄N−2FK)T ]T . (72)

5If the gain is zero, the predictor provides multistep prediction. Other-
wise, the one-step prediction is outputted.

The estimate of the vector of parameters θ (composed by

the elements of the unknown noise covariance matrices Q

and R) in the least-squares sense is given by [3], [19]

θ̂θθ = (ATA)−1AT b̂ = A†b̂, (73)

where the sample-based estimate of the vector b̂ is com-

puted according to (24).

VII. APPENDIX B: ALS AND CALS METHODS BASED

ON ONE-STEP PREDICTOR

Heretofore, the proposed ALS method for linear systems

with time-correlated measurement noise was based on the

multistep predictor (7), (8). The method can be, however,

extended for a more general one-step predictor (62), (63).

Considering the system description (1), (2) with time-

correlated measurement noise, the one-step predictor (62),

(63), and the associated prediction error model of the form

given by (64), (65), the (cross-)covariance matrices of the

measurement prediction error can be derived6 as

Ce,0 = E[eke
T
k ] = E[(Hεk + νk + uk)(·)

T ]

= HPεH
T +HPεv +PvεH

T +Rν +Ru, (74)

6The constant vector β affecting the mean of a prediction error is
not considered here for the sake of brevity. It is estimation is, however,
analogous to the multistep predictor case.

1823



Ce,j = E[eke
T
k−j ]

= E[(Hεk + νk + uk)(Hεk−j + νk−j + uk−j)
T ]

= E[
(

HF̄jεk−1 +

j
∑

i=1

HF̄(i−1)wk−i

+

j
∑

i=1

HF̄(i−1)G2(νk−i + uk−i) + νk + uk

)

×
(

Hεk−j + νk−j + uk−j

)T

]

= HF̄jPεH
T +HF̄jPεv +CF̄(j−1)G2Ru

+

j
∑

i=1

HF̄(i−1)G2α
(j−i)PvεH

T +αjPvεH
T

+

j
∑

i=1

HF̄(i−1)G2α
(j−i)Rν +αjRν , (75)

where Pε is a solution to the Lyapunov equation

Pε = F̄PεF̄
T + F̄TPεvG

T
2 +G2PvεF̄

T +G2RG2 +Q

(76)

with the cross-covariance matrices Pεv and Pvε computed

from

Pεv = F̄Pεvα
T +G2RαT , (77)

Pvε = αPvεF̄
T +αRGT

2 . (78)

Equations (74), (75) are then used in construction of the

equations for the NLS (21)–(25) analogously to the usage

of (14), (15).

It can be seen that the (cross-)covariance matrices of

the measurement prediction error sequence are much more

complex with respect to those based just on the multistep

predictor. The reason can be found in the dependence of

the state prediction error εk+1 and the measurement noise

vk, i.e., in the non-zero matrices Pεv , Pvε, and G2.

The more complex relations usually require more careful

set-up of the minimisation technique used for the NLS

(21). On the other hand, considering the one step predictor,

the assumption on the stable matrix F might be omitted.

Rather, the stability of the state prediction error transition

matrix F̄, as a function of the (user-defined) predictor gain

K, needs to be assumed instead. Then, the solution to the

Lyapunov equation (76) for Pǫ exists [28].
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