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Abstract—Many target tracking problems can actually be cast

as joint tracking problems where the underlying target state

may only be observed via the relationship with a latent variable.

In the presence of uncertainties in both observations and latent

variable, which encapsulates the target tracking into a variational

problem, EM method provides an iterative procedure under

Bayesian estimation framework to estimate/tracking the state of

target in the process of minimise the latent variable uncertainty.

In this paper, we describe this EM based Bayesian inference

method in the joint tracking context. Some typical application

examples in target tracking are presented.

Index Terms—Target tracking, joint identification and estima-

tion, expectation maximization, Bayesian inference

I. INTRODUCTION

Target tracking is an information processing outcome which

provides the trajectories of one or more moving objects based

on sensor data and prior information of target motion, which is

essential for many applications in the areas of defense, medical

science, traffic control, navigation, and etc [1]. Particularly, the

advances in multi-target tracking techniques have opened up

numerous research venues as well as application areas [2].

Target tracking involves a wide range of topics including

single sensor and multi-sensor tracking problems, in the later

case, centralized or distributed structures are taken into ac-

count. Within each of these topics, tracking can be further cat-

egorized into single target and multi-target tracking problems,

where uncertainties induced by false alarms and low sensor

detection probability, data association between target and mea-

surement, etc. must be addressed. While fully covered by the

theories of estimation and optimization, the advanced target

tracking techniques which reflect the cutting-edge research

effort are under multi-disciplines. Since the modern target

tracking are often required to deal with various uncertainties,

nonlinear and high dimension issues simultaneously.

Roughly speaking, target tracking concerns two major prob-

lems: what and where the underlying target is. The former is

related to target identity and the latter corresponds to target

trajectory estimation. In target tracking context, parameter

estimation refers in particular to estimating target kinematic

state, while identification refers to resolving other unknown or

random quantities, including the models of systems, data/track

association states and latent variables which are related to

target state under multiple hypothesis. For instance, in the case

of tracking a maneuvering target in the presence of clutter,

the parameter to be estimated is the state of target includ-

ing position and velocity, while the identification signifies

the measurement-to-track association and possible modes of

maneuver. In general, the identification and estimation are

highly related with each other like “chicken and egg”. A

poor identification of data association can deteriorate state

estimation while the error yielded in the parameter estimation

may result in a wrong target identification/labeling. As pointed

out in [3], [4], jointly considering the identification risk and

estimation error is more promising than separate identification

and estimation. In the optimization theoretic parlance, this

joint approach has the potential of arriving at a globally

optimal solution, and its solution can always be obtained by

an iterative algorithm. Consequently, the formulation of the

joint identification and estimation problem which allows this

problem to be solved iteratively is crucial. In our recent work

[5], [6], [7], [8], we formulated target tracking problem as a

joint tracking problem where the underlying target state x may

only be observed via the relationship with a latent variable Θ.

The object of target tracking is to estimate the target state x

by using the observation y under the latent variable Θ, where

the state x and latent variable Θ correspond to estimation and

identification, respectively. We addressed such a problem using

the expectation-maximization (EM) approach.

The EM algorithm proposed by A. Dempster et al [9] is an

iterative inference method for the learning of parameters x in

the presence of latent variables Θ. In general, it is an off-line,
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iterative, maximum likelihood method that is guaranteed to

converge to a local maximum of the observed data likelihood

function. The EM algorithm is based on the observation that

the maximization of the complete data likelihood P (Θ, y|x),

is usually easier than the maximization of the observed data

likelihood function. The latent variables are unknown however.

The most recent information about the latent variables is given

by the posterior distribution P (Θ|x, y). Since the posterior

over the latent variables Θ requires the knowledge of the

parameters x and the maximization of the complete data

likelihood requires the latent variables Θ, this result in a

chicken-and-egg” problem. The EM algorithm uses an iterative

procedure to circumvent this “chicken-and-egg” problem: after

making an initial estimate of the target state x two steps

including E-step and M-step are iterated, whereby the target

state x and latent variable Θ are estimated and identified in

the iterated loop, respectively. The most attractive of the EM

algorithm is its convergence guarantee. Nevertheless, to apply

the EM algorithm we must have knowledge of the posterior

of the hidden variables given the observations, while both

the E-step and M-step can still remain intractable when the

dimensionality of the latent variables are too high [10].

In this paper, we consider the target tracking problems as a

joint estimation and identification problem where the underly-

ing target state may only be observed via the relationship with

a latent variable. We show that the problem can be formulated

and solved under a unified Bayesian estimation framework,

though it is analytically intractable since the problem involves

the uncertainty, multi-mode, nonlinear and high-dimension.

The EM based Bayesian inference method is described in

the joint tracking context to deal with the latent variable

uncertainty. We derive the EM algorithm for joint estimation

and identification problem in a way which leads to a better

understanding and get more insights into the underlying joint

tracking problem.

II. BAYESIAN JOINT TRACKING PROBLEM

Consider the multisensor multitarget tracking system as:

xik = f
i,r
k−1(x

i
k−1, a

i
k−1) + Γi

k−1v
i
k−1 (1)

y
j,µ,τ
k = h

j,τ
k (xik, b

j,τ
k ) + w

j,τ
k (2)

where xk and yk represent the system state and measurement.

The state transition function fk, measurement function hk,

and control matrix Γk are given. The continued-value ak

and bk are unknown disturbed inputs in dynamic model and

measurement model, respectively. The process noise vk and

measurement noise wk are zero-mean white Gaussian noises

with the known covariance Qk and Rk > 0. The initial

state x0 is Gaussian distributed with known mean x̄0 and

associated covariance Σ0. The superscript i ∈ {1, 2, ..., t},

r ∈ {1, 2, ..., ι}, j ∈ {1, 2, ..., s}, µ ∈ {1, 2, ...,mj}, and

τ ∈ {1, 2, ..., lµ} are index of target, sensor, motion mode,

measurement and propagation mode with {t, ι, s,mj , lµ} are

corresponding number. The superscript k is time instant.

Definition 2.1 Define Xk , {x1k, · · · , x
t
k} as the states of

targets with ithe target state xik, and Yk , {Y 1
k , · · · , Y

s
k } as

the measurements of all sensors with jth sensor measurement

set Y
j
k , {yj,1k , · · · , yj,m

j

k }, respectively.

Definition 2.2 Define the track-track association as αk ,

{i, j}, track-motion mode association as βk , {i, r}, track-

measurement association as γk , {i, µ}, and measurement-

propagation mode association as δk , {i, τ}, respectively. Let

Θk , {fk, hk, Rk, Qk, x̄0,Σ0, αk, βk, γk, δk, ak, bk} as model

dependent parameters.

The Bayesian inference is the foundational of modern target

tracking, and its central task is the evaluation of the posterior

distribution p(X|Y) of the state variables X given the observed

data variables Y , and the evaluation of expectations computed

with respect to this distribution [11]. The Bayesian inference

for multisensor multitarget tracking problem is computational-

ly intractable in all but the simplest problem [12]. However, as

described by John W. Tukey, ”An approximate answer to the

right problem is worth a good deal more than an exact answer

to an approximate problem”. Assuming the model parameter

Θk are exactly known, and given the measurement Y , the

Bayesian inference is to obtain the probability density function

of X conditioned on Y and Θk, i.e.,

p(Xk|Yk) = p(Xk|Yk,Θk) (3)

where the model parameters Θk are only partly known, that

is, the association hypothesis αk, βk, γk, δk, and the inputs ak

and bk are unknown. It turns out that the posterior distribution

is in the form of hybrid, high dimensional integrations:

p(Xk|Yk) =
∑

αk

∑

βk

∑

γk

∑

δk

∫

ak

∫

bk

(4)

p(Xk|Yk, αk, βk, γk, δk, ak, bk)dakdbk

Remark 2.1: The key of target tracking is to solve the

integration of hybrid system (4), which has the complex

of uncertainty (continue variables ak and bk), multi-mode

(discrete variables αk, βk, γk, and δk), high dimensionality of

latent space Θk. Essentially, it is NP-hard problem. In the case

of continuous variables, the required integrations may not have

closed-form analytical solutions, while the dimensionality of
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the space and the complexity of the integrand may prohibit nu-

merical integration. For discrete variables, the marginalization

involve summing over all possible configurations of the hidden

variables, there may be exponentially many hidden states so

that exact calculation is prohibitively expensive in practice.

III. THE EM FRAMEWORK FOR JOINT TRACKING

A. Expectation Maximization Algorithm

The EM algorithm has been widely used in the engineering

and statistical literature as an iterative optimization procedure

for computing maximum likelihood (or MAP) parameter esti-

mates of incomplete data problem. Since formally introduced

by Dempster et al. (1977) in three decades ago, the EM

algorithm had received tremendous attention from researchers

across different disciplines. The popularity of EM lies mainly

in its ability to find the ML or MAP estimation for many

popular statistics models in a widely acclaimed manner of

simplicity and stability [13]. A good survey on the EM

algorithm can be found in [14]. The common derivation of

EM algorithm is based on Jensens’ inequality. Here, we briefly

describe the EM algorithm under the criterion of Maximum

Likelihood Estimation (MLE).

Consider a probabilistic model in which we collectively

denote all of the observed variables by Y and all of the hidden

variables by Θ. The joint distribution p(Y,Θ|X ) is governed

by a set of parameters denoted X . Our goal is to maximize

the log likelihood function given by

L(X ) = log p(Y|X ) = log
∑

Θ

p(Y,Θ|X ) (5)

A key observation is that the summation over the latent

variables appears inside the logarithm, which results in com-

plicated expressions for the maximum likelihood solution. The

EM algorithm can be derived using Jensens inequality, i.e.,

l(X|X (n)) ≥
∑

θ

p(θ|Y,X (n)) log
p(Y|θ,X )p(θ|X )

p(θ|Y,X (n))p(Y|X (n))

(6)

We emphasize that the object is to choose a values of X

so that L(X ) is maximized. Directly optimizing of L(X ) is

difficult, but optimizing the lower bound function l(X|X (n))

is often significantly easier. Therefore, the EM algorithm calls

for selecting X such that l(X|X (n)) is maximized. That is,

X (n+1) = argmax
X

∑

Θ

p(Θ|Y,X (n)) log p(Y,Θ|X ) (7)

= argmax
X

EΘ|Y,X (n)(log p(Y,Θ|X ))

The conditional expectation EΘ|Y,X (n)(log p(Y,Θ|X )) is

also called Q function and written as Q(X|X (n)), which takes

the expectation of complete-data likelihood with respect to the

latent variables Θ. The EM algorithm completes the MLE by

iteratively operating the following two steps:

• E-step: Determine the conditional expectation Q function;

• M-step: Maximize this expression with respect to X .

Remark 3.1: The convergence of EM algorithm depends on

filter initialisation, likelihood property and Q function.

Remark 3.2: The EM algorithm involves the two iterative

steps E-step and M-step, which correspond exactly to the

estimation and identification problem with the target tracking.

Due to the inherent iterative convergence characteristics of EM

algorithm, the closed feedback loop between state estimation

X and identification Θ, which is desirable for dealing with the

couple problem between estimation and identification.

Remark 3.3: The EM algorithm requires that p(Θ|X ,Y) is

explicitly known, or at least we should be able to compute the

conditional expectation of its sufficient statistics Q-function in

(8). While p(Θ|X ,Y) is in general much easier to infer than

p(Y|X ), in many interesting problems, especially when the

hidden variables are of high-dimensions, it is not possible and

thus the EM algorithm is not applicable.

After it was formalized and generalized by A.P. Dempster

et al, EM has received tremendous attention in many different

research areas. Great efforts were made to simplify the im-

plementation of EM in some situations, in particular, when

there is no analytical solution available for the calculation

of Q(X|X (n)) in the E-step or for the maximization of it

in the M-step. Here, we briefly review several developments

of the EM algorithm, including its convergence, initialization,

extensions and properties.

1) Convergence of the EM Algorithm: The appealing

property of EM algorithm is that the likelihood function

monotonously increases with respect to the iteration number

before reaching the local optimization value. However, the

monotonicity of the EM algorithm guarantees that as EM iter-

ates, its guesses won’t get worse in terms of their likelihood,

but the monotonicity alone cannot guarantee the convergence

of the sequence {X (n)} with n is the nth iteration. As stated

in [13], there is no general convergence theorem for the EM

algorithm: the convergence of the sequence {X (n)} depends

on the characteristics of likelihood function and Q-function,

and also the starting point X (0). Under certain regularity

conditions, A.P. Dempster et al prove that {X (n)} converges to

a stationary point with a linear convergence rate. The detailed
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discussion on EM convergence is given by C. F. J. Wu [15],

which is based on Zangwill’s global convergence theorem.

Consider the joint state estimation and mode identification of

jump Markov linear systems, three EM schemes were present-

ed and their convergence was given [16]. The convergence

rate of the EM algorithm is addressed in [17]. However, the

convergence of EM algorithm is still a open problem.

2) Initialization of the EM Algorithm: The EM algorithm is

often sensitive to the choice of the initial parameter vector, ef-

ficient initialization is an important preliminary process for the

future convergence of the algorithm to the best local maximum

of the likelihood function [18]. All initialization strategies can

be generally classified as deterministic or stochastic. Some

popular deterministic initialization approaches choose starting

values based on the solution obtained from hierarchical cluster-

ing, model-based Gaussian hierarchical clustering [19], or the

multistage procedure based on finding the best local modes. A

considerable disadvantage of all deterministic methods is their

incapability to propose another starting point. The proposed

starting value may lead to an incorrect solution or even no

solution when the likelihood function is unbounded. Stochastic

initialization strategies do not share this shortcoming as they

normally allow restarting from another point of the parameter

space. The general idea is to try different starting values of

parameters and choose the one that yields the largest local

maximum. Because of the need to repeat the initialization

step several times, these procedures are typically more time

consuming than deterministic approaches. Among the well-

known stochastic initialization methods are the emEM [20]

and RndEM [21] algorithms, share the common idea of trying

different initial values of parameters and choosing the one that

yields the largest local maximum.

3) Extensions of the EM Algorithm: The EM algorithm

breaks down the potentially difficult problem of maximizing

the likelihood function into two stages, the E-step and the

M-step, each of which will often prove simpler to implement.

Nevertheless, for complex models it may be the case that either

the E-step or the M-step, or indeed both, remain intractable.

This leads to several extensions of the EM algorithm as

follows. More details see [22].

The generalized EM (GEM) [23] algorithm addresses the

problem of an intractable M-step. Instead of aiming to max-

imize Q-function Q(X|X (n)) with respect to X , it seeks

instead to change the parameters in such a way as to increase

its value. Again, because Q(X|X (n)) is a lower bound on the

log likelihood function, each complete EM cycle of the GEM

algorithm is guaranteed to increase the likelihood function.

The expectation conditional maximization (ECM) [24] algo-

rithm replaces the M-step of EM with a sequence of simpler

constrained or conditional maximization (CM)-steps, indexed

by s = 1, ·, S. The advantage of the above strategy is that, in

many cases, the CM-steps can be very simple (either analytical

solutions or elementary numerical solutions are available)

while Q(X|X (n)) itself is difficult to optimize directly over

the whole parameter space.

The expectation conditional maximization either (ECME)

[25] algorithm is an extension of ECM, which further partition-

s the CM-steps into two groups ψQ and ψL with ψQ

⋃

ψL =

{1, ·, S}. While the CM-steps indexed by s ∈ ψQ remain the

same with ECM, the CM-steps indexed by s ∈ ψL remain the

same with EM. It has been shown theoretically and empirically

that ECME typically has a greater speed of convergence than

ECM, and enjoys the same stability as EM with typically

higher efficiency than EM.

The Monte Carlo EM (MCEM) [26] algorithm addresses

the problem of an intractable E-step. Instead of computing

the intractable analytical solution of Q(X|X (n)), the MCEM

algorithm approximate it via the Monte Carlo method. When

implementing MCEM, maintaining a balance between efficien-

cy and accuracy is important and relies on a smart choice of

the sample size in the E-step. In general, the MCEM algorithm

converges almost surely to the standard EM auxiliary function

thanks to the law of large numbers.

The parameter expanded EM (PX-EM) [27] algorithm

speeds EM by expanding the complete-data mode p(Y,Θ|X )

to a larger model p(Y,Θ|X , α), and α is an auxiliary pa-

rameter whose value is fixed at α0 in the original model.

Then, the PX-EM algorithm can be considered to be an EM

algorithm with respect to the expanded model. Actually, the

PX-EM algorithm turns a low dimensional problem to a high

dimensional one and it is developed for acceleration.

The accelerated EM (AEM) [28] algorithm is developed by

appending a line search to each EM iteration. Formally, given

starting value X0, in the (n+1)th iteration, the new estimation

X (n+1) is computed by X (n+1) = X (n)+α(n)d(n), where d(n)

is a direction composed from the current direction and the

previous directions, and α(n) is a step size typically computed

from a line maximization of the complete-data likelihood. The

AEM algorithm usually converges much faster than EM, since

conjugate direction method is considered to be one of the

best general purpose optimization methods in terms of both

stability and efficiency.
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B. Applications of Target Tracking Base on EM

Consider the following discrete linear dynamic systems

xk = Fk−1xk−1 + Γk−1vk−1 (8)

yk = Hkxk + wk (9)

where xk, vk and wk are Gaussian and mutually independent.

Compare the multisensor multitarget tracking system de-

scribed by equations (1) - (2) with equations (8) - (9), the

difference is the parameter Θ is partly known in multisensor

multitarget tracking. The single sensor single target tracking

without clutter is a special case when Θ is completely known,

which is turned into the standard KF problem. In this sense, the

KF can be regarded as the complete data estimation problem.

In practice, the parameter Θ always cannot known completely,

which makes the target tracking suffer from complex situation

such as maneuvering target tracking, data association in the

case of multiple target tracking or in the clutter environment

and etc. Here, we review different applications of target

tracking by using the EM algorithm according to different

unknown parameter θ with θ ⊂ Θ. Actually, the EM algorithm

has been used widely in target tracking, ranging from single

sensor target tracking to cooperate tracking in sensor networks.

1) Single Sensor Multiple Target Tracking: Parameter

estimation for linear dynamic systems
(

θ , {F,H,R,Q}
)

: It is known from the theory that the KF is optimal in

case that the model perfectly matches the real system, the

entering noise is white and the covariances of the noise are

exactly known. That is, the parameter θ is completely known.

Shumway and Stoffer [29] first presented an EM algorithm

for linear dynamical systems where the parameter θ is partly

known (the measurement function h is known), this work

was further modified by Ghahramani and Hinton [30], which

presented a basic form of the EM algorithm with h unknown.

Nonlinear dynamic systems with model uncertainties
(

θ , {h,R,Q}
)

: Consider the nonlinear state estimation

problem with possibly non-Gaussian process noise in the

presence of a certain class of measurement model uncertainty,

Amin and Thia [31] proposed an EM-PF algorithm that casts

the problem in a joint state estimation and model parameter

identification framework. The E-step is implemented by a

particle filter that is initialized by a Monte Carlo Markov

chain algorithm, while the M-step estimates the parameters

of the mixture of Gaussian, which is used to approximate the

nonlinear observation equation. The EM-PF is used to solve

a highly nonlinear bearing-only tracking problem and sensor

registration problem in a multi-sensor fusion case.

Stochastic dynamic systems with unknown inputs
(

θ , {a, b}
)

: Consider the joint estimation and identification

problem of a class of discrete-time stochastic systems with

unknown inputs in both the plant and sensors, Lan and Liang

[5] proposed an EM based iterative optimization method.

The system state is estimated by using the KS in E-step, and

the analytical solution of unknown inputs is obtained in the

M-step by maximizing the Q-function. The proposed method

is used to solve the maneuvering target tracking in electronic

counter environments.

Maneuvering target tracking in clutter
(

θ , {β, γ}
)

: The

problem of maneuvering target tracking in a clutter free

environment with unity detection probability is addressed

in [32], where the EM algorithm is used to compute hard

maneuver command assignments, the target state estimate is

computed based on the measurements and the hard input

control sequence estimate. Andrew and Vikram [33] extended

this work to the case of maneuvering target tracking in clutter,

where both uncertain origin of the measurements and the

maneuvering command are uncertainty. The proposed scheme

combines a hidden Markov model smoother (HMMs) and a

Kalman smoother (KS), whereby the E-step computes the joint

posterior probability density of association and control input

by HMMs, and the M-step obtains the MAP sequence of target

state based on a modified state-space model via the KS.

Multiple target tracking
(

θ , {γ}
)

: The well-known prob-

abilistic multiple-hypothesis tracker (PMHT) [34], [35], [36],

[37] is a preferred multitarget target tracking and association

algorithm derived from the application of the EM algorithm. A

fundamental difference between the PMHT and other standard

tracking approaches is that PMHT assumes that the assignment

indices for each measurement are independent random vari-

able. The PMHT algorithm forms an estimate of the unknown

model states based on a collection of state observations with

uncertain origin, and estimates the model states by maximizing

the conditional expectation of the log likelihood with respect

to the model to measurement assignments.

Multiple detection tracking systems in clutter
(

θ , {γ, δ}
)

: In most tracking systems which referred as single-detection

systems are based on the common assumption that in every

scan there is at most one measurement from each interested

target. In fact, multiple measurements may be simultaneously

generated by the same target via different measurement modes,

and the association hypothesis among targets, measurements

and measurement modes are unknown. Such systems are

referred as multiple detection systems, including over-the-

1798



horizon radar (OTHR) [38], [39] etc. The difficulty in track-

ing a target for multiple detection systems arises from the

uncertain origin of the measurements and the uncertainty

of measurement mode. Pulford and Logothetis presented the

expectation maximization data association (EMDA) [40] for

fixed-interval Kalman smoothing conditioned on the MAP

estimation of target-measurement-mode triple association se-

quence in the EM framework. However, the EMDA is suitable

for off-line, batch computation. It is suggested that an approx-

imate method is needed to decrease the computation cost. Lan

and Liang proposed the joint multipath data association and

state estimation (JMAE) [6] algorithm also based on the EM

algorithm to obtain the approximate solutions, which carried

out the identification of ionospheric mode and measurement

association in the E-step, where the pseudo-measurement and

a posterior probability of each propagation mode are derived.

Meanwhile, the JMAE updates the state estimation in the

M-Step, where path-conditional state estimates and multipath

state fusion are implemented. Furthermore, Lan and Liang

proposed a distributed EM based on consensus filtering (D-

CEM) [7] to solve the approximate problem posed by JMAE.

The DCEM regards the multiple detection systems as sensor

networks where each sensor node corresponds to a measure-

ment mode. In the E-step, each mode independently calculates

local state estimate by using its associated measurement. A

consensus filter is used to exchange its localized estimate

with its neighbors and then fuse them. In the M-step, each

mode uses the estimated global state to find the local optimal

measurement in the nearest neighbor sense.

2) Multiple Sensors Multiple Target Tracking: Multisensor

multitarget tracking systems introduce a major complication

that is absent from single-sensor, single-target problems. In

the traditional centralized setting for both measurement level

fusion and track level fusion, multitarget tracking is difficult

[41]. There is a combinatorial explosion in the space of

possible multiple target trajectories due to the uncertainty of

the track-track association α and track-measurement associ-

ation γ at each timestep, i.e., θ , {α, γ}. Tracking is also

complicated by the fact that, for many sensing modalities,

targets in close proximity tend to interfere with sensing one

another. Compensating for this problem often requires sensing

in a higher-dimensional joint space, again increasing compu-

tational complexity. Due to the above challenges, multitarget

tracking is still an open problem in centralized systems.

Consider the multisensor multitarget tracking in a cen-

tralized measurement level fusion, Molnar and Modestino

proposed an iterative procedure for time-recursive multitar-

get/multisensor tracking based on EM algorithm [42]. More

specifically, target updates at each time use an EM based

approach that calculates the MAP estimate of the target states,

under the assumption of appropriate motion models. The

approach uses a Markov random field (MRF) model of the

associations between observations and targets and allows for

estimation of joint association probabilities without explicit

enumeration. The advantage of this EM-based approach is that

it provides a computationally efficient means for approaching

the performance offered by theoretical optimum approaches

that use explicit enumeration of the joint association proba-

bilities. Frenkel and Feder [43] investigated the application of

EM algorithm to the classical problem of multitarget tracking

for a known number of targets, three different schemes, includ-

ing EM-Newton, EM-Kalman and EM-HMM were proposed

based on different optimization criteria. The EM-Newton was

a second approximation of the recursive EM algorithm in

maximum likelihood criteria, and the EM-Kalman algorithm

used EM localization with Kalman tracking in MSE criteria,

while the EM-HMM algorithm that used a discrete model for

the parameters and a Viterbi search for the optimum parameter

sequence in the MAP criteria. Sensor registration and data

association are two fundamental problems in multisensor mul-

titarget tracking systems, they actually affect each other. Li and

Chen [44] presented a joint sensor association, registration and

fusion algorithm based on the EM framework for multisensor

multitarget tracking, i.e., θ , {α, γ, b} . More precisely, the

target state is regarded as the missing data and estimated

in the E-step via KS, and the optimal target-to-measurement

association is chosen via the multi-dimensional assignment,

thus the registration parameters is obtained in M-Step.

3) Distributed Target tracking in Sensor Networks: Dis-

tributed estimation and tracking is one of the most fundamen-

tal collaborative information processing problems in sensor

networks [46]. Decentralized Kalman filtering involves state

estimation using a set of local Kalman filters that communi-

cate with all other nodes [47], [48], [49]. Control-theoretic

consensus algorithms have proven to be effective tools for

performing network-wide distributed computational tasks such

as computing aggregate quantities and functions over networks

[50]. Naturally, the distributed EM algorithm is developed for

the distributed joint estimation and identification in sensor

networks. Maybe the distributed EM algorithm was firstly pro-

posed by Nowak for the joint density estimation and clustering

in sensor networks [51], which is viewed as an application
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and adaptation of the incremental EM algorithm. It views the

E-step and M-step both as the maximization of an ”energy

function” over distribution and parameters. Based on the

partially increasing, the distributed EM algorithm constructs

a path through the network, which passes through all nodes.

The incremental based distributed EM algorithm uses the

partially accumulated global sufficient statistics to estimate the

parameters in each node. The convergence of the distributed

EM algorithm is also investigated, under mild conditions, the

distributed EM converges to a stationary point of the log

likelihood function with a (at least) linear rate, potentially

converging more rapidly than standard EM. This makes the

distributed EM attractive for sensor network applications.

However, the incremental based distributed EM algorithm is

slow when the network becomes complex and demands a full

network access in each updating step. Therefore, Gu [52] pro-

posed a consensus based distributed EM algorithm to handle

this difficulty through estimating the global sufficient statistics

using local information and neighbors’ local information. In

the E-step, each sensor node independently calculates local

sufficient statistics by using local observations. A consensus

filter is used to diffuse local sufficient statistics to neighbors

and estimate global sufficient statistics in each node. By using

this consensus filter, each node can gradually diffuse its local

information over the entire network and asymptotically the

estimate of global sufficient statistics is obtained. In the M-step

of this algorithm, each sensor node uses the estimated global

sufficient statistics to update model parameters of the Gaussian

mixtures. The convergence is proved and it is a stochastic

approximation to the standard EM with probability one.

Consider the problem of distributed joint state estimation

and identification for a class of stochastic systems with un-

known inputs, Lan and Bishop [8] proposed a distributed EM

algorithm to estimate the local state at each sensor node by

using the local observations in the E-step, and three different

consensus strategies developed to diffuse the local state estima-

tion to each sensor’s neighbours and to derive the global state

at each node. In the M-step, each sensor identifies the local

unknown inputs by using the global state estimate. Pereira [53]

proposed a diffusion-based distributed EM algorithm (DB-

DEM) for distributed estimation in unreliable sensor networks,

where sensors may be subject to data failures and report only

noise. The propagation of information across the network is

embedded in the iterative update of the parameters, where a

faster term for information diffusion is combined with a slower

terms is controlled by assigning them appropriate time-varying

step-size sequence.

IV. CONCLUSION

In this paper, an overview of the approaches for joint track-

ing using EM algorithm is presented. The discussion focus on

the coupling relationship between estimation and identification

problem of the target tracking. The interdependence between

estimation and identification add additional difficulty for the

solution of a target tracking problem. The joint tracking

framework, which simultaneously takes both estimation er-

ror and identification risk of target state into account, can

effectively solve this kind of target tracking problem using the

EM algorithm. From another view point, this target tracking

problem can be treated as the state estimation using incomplete

data, that is, some unknown parameters needs to be identified

before we can estimate the underlying target state. The EM

algorithm is shown being an effective method to solve a range

of joint estimation and identification problems in the paper.
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