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Abstract—Many target tracking algorithms for radar systems
assume homogeneous backgrounds of clutter. However, real
backgrounds are rarely homogeneous. By estimating background
intensity, and using the estimate in the likelihood measure, the
tracking algorithm is given the ability to adapt to the background.
In this work, a method for estimating the clutter intensity is
introduced. The method is based on locally adaptive Kernel
Density Estimation (KDE), where local 2D structure of the
background in terms of energy and orientation controls the
smoothing properties of the filter kernels. In regions with low
clutter intensity, the kernel adopts low-pass characteristics, and
the intensity estimate is based on observations from a larger
volume. In regions where there are ridges in the clutter intensity,
kernels are selected such that smoothing is carried out along
ridges instead of across them. Peaks in the clutter intensity are
left unsmoothed. The proposed method is compared to other
methods on synthetic data. Additionally, a demonstration is given
on recorded radar data.

I. INTRODUCTION

The radar clutter background consists of all radar observa-

tions from non-targets, i.e. targets whose observation pattern

deviate from that of typical targets. Radar systems have dedi-

cated filtering techniques, such as CFAR (constant false alarm

rate) [1] and clutter maps, designed to suppress or eliminate

observations from various clutter sources. In practice, residual

clutter observations may have spatial intensity that varies

greatly from one region to a neighboring region. Such non-

homogeneous clutter intensity constitutes a problem for a

tracker which assumes a known and constant clutter intensity.

A significant mismatch between the two reduces performance.

A tracker therefore benefits from a function that estimates a

spatially varying background intensity.

The background is suitably modeled as a non-homogeneous

Poisson point process. The process is parametrized with its

intensity function, which should be estimated. A natural step

is to try out a PHD (Probability Hypothesis Density) filter

[10], and in particular a Gaussian Mixture (GM) PHD [13],

since these filters maintain the intensity of a non-homogeneous

Poisson point process. However, the standard model used in

the derivation of these filters for target tracking assumes that

observations are generated by point sources that persist over

time. For extended clutter sources, such as a rain cloud, this

model is typically incorrect.

With modifications, a PHD for target tracking can still be

used. In [8], a PHD filter was derived with separate dynamic

models for the clutter, e.g., a random walk and blown up

system noise. A rain cloud is then for example modeled as

a set of point sources that jump around. Unfortunately, the

complexity of the spawning and merging process in the GM-

PHD implementation is quite high for extended clutter. In [9]

the measurement model is altered instead. The measurement

noise is derived from a single scan estimate of the intensity,

such that the measurement noise is low in dense regions and

high in sparse regions. A rain cloud is then modeled as a

set of point sources with fuzzified locations. In [4], clutter

is modeled by a mixture of sources with Gaussian extent. A

rain cloud is then represented by a set of extended sources,

each producing at most one observation per scan distributed

according to the Gaussian extent. Since the covariances are

estimated, the mixture components follow a normal-Wishart

distribution.

Mahler [11] adopts a general Poisson mixture for the

background. This model is appropriate for extended clutter.

However, there is an underlying problem of associating clutter

to mixture components. It is shown in [11] that a PHD filter

for the model requires a weighted sum over all partitions

of observations into mixture components. Practical methods

for this problem approximate the sum over partitions with

clustering, e.g., using soft clustering according to Expectation

Maximization (EM) GM estimation.

Considering the possible complexity of real radar data, see

the example in Figure 1, there is a risk that methods building

on GM-PHD require excessive management, in particular

merging, and that the real time performance suffers. As an

alternative, [7] provides an inverse intensity estimate derived

from the center of a background cell to the time averaged

distance to the nearest clutter point. The estimator is unbiased

for inverse intensity in homogeneous clutter. Given non-

homogeneous clutter, the performance can be greatly reduced.

Yet another alternative is Kernel Density Estimation (KDE)

[12]. In standard, non-adaptive KDE, the observed data points

are filtered spatially with a low-pass kernel uniformly over

the observation space. Again, this is suitable for homogeneous

clutter. Non-homogeneous contributions in the intensity func-

tions such as point sources and ridges are smoothed to the

same degree. Locally adaptive KDE approaches this problem

by adapting the kernel bandwidth to the local structure and

intensity of data at hand. In [3], a scheme is presented for adap-
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tively selecting kernel bandwidth. An optimization method for

a Gaussian bandwidth matrix is given that minimizes the mean

integrated square error (MISE) of the clutter density estimate.

To separately optimize a large number of local kernels with

the presented method might be prohibitively expensive, and the

local bandwidth matrix used in the scheme is a combination

of an overall MISE optimized kernel, and a local scaling

derived from a pilot estimate of the clutter intensity. Further

reduction in computational effort is achieved with merging,

where kernels related to past observations are accumulated

into a Gaussian mixture. The merging is similar to that in

GM-PHD.
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Figure 1. Histogram of observations from an experimental radar system. Most
real targets are excluded. The color intensity represents number of samples
per grid element.

In this paper, we present an alternative method to derive

kernels which are locally adaptive in the horizontal 2D plane.

The method is inspired from image processing, and in partic-

ular from estimation of local orientation. The aim is to select

kernels based on the 2D spatial structure of the background

such that

1) smoothing is made on similar kinds of background with

slowly varying intensity (isotropic low-pass inside a

region with similar background)

2) smoothing is made along ridges and edges instead of

across them (low-pass along edges and all-pass across

edges)

3) intensity of concentrated clutter sources should be left

unsmoothed (isotropic all-pass).

Note that the kernels are fixed and uncoupled in other mea-

surement dimensions, e.g., elevation and radial velocity. We

believe this approximation is a reasonable trade-off between

performance and complexity. The horizontal adaptation cap-

ture a lot of structure like ridges and peaks visible from above,

and within a local neighborhood imposed by a horizontally

adapted kernel the correlations between the horizontal coordi-

nates and other dimensions are typically low.

The paper has the following structure: Section II presents

a short problem formation. Section III introduces kernel in-

tensity estimation. In Section IV, an overview of the method

for local orientation estimation is given. Section V provides a

mapping of local orientation to kernel bandwidth. In Section

VI, a comparison between some of the previous methods

and our method is carried out on a synthetic test scenario.

Additionally, a demonstration of results on real radar data is

given.

II. PROBLEM FORMULATION

We assume that the background is modeled with a non-

homogeneous Poisson point process. In any region A, the

number of observations, N(A), is Poisson distributed with

P (N(A) = k) =
(µ(A))ke−µ(A)

k!
,

where µ(A) = E{N(A)} is the integrated intensity over A,

µ(A) =
∫

A
I(x)dx. The problem is to estimate the intensity

function I(x). In target tracking, the intensity enters the

standard data association likelihood measures, which include

a Poisson model for the clutter process [2]. The intensity is

often called βfa in target tracking.

III. KERNEL INTENSITY ESTIMATION

A locally adaptive kernel density estimator is given by [12]

f̂(x) =
1

N

N
∑

i=1

KH(xi)(x− xi) (1)

where x1, x2, . . . is a set of spatial samples recorded over a

time period, K is a kernel which integrates to one, and H(xi)
is a locally adaptive bandwidth matrix selected point-wise at

each data sample, see Sections IV and V below. Alternatively,

the bandwidth is selected at the evaluation point, H(x), but the

estimated density then looses the properties of smoothness and

being a probability density function. In this work, the Gaussian

kernel has been used primarily,

KH(x) =
1

√

(2π)n|H|
e−xTH−1x/2.

To estimate intensity, the normalization with the number of

samples in (1) is removed,

Î(x) =

N
∑

i=1

KH(xi)(x− xi). (2)

Note that integrating Î(x) over a volume A gives the approxi-

mate number of recorded observations in the volume, which in

a Poisson context is an estimate of µ(A), the expected number

of observations in A. In this document, intensity estimation of

the form (2) is denoted Kernel Intensity Estimation (KIE).

Due to the limited support of the kernels, only samples in

the vicinity of x are required to evaluate (2). With samples
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maintained in a horizontal position grid, and given a local

kernel bandwidth we can automatically select relevant samples

to the sum. Moreover, the more data in a region the smaller

the bandwidths, and the number of samples in the sum is

effectively limited.

Temporal filtering: To handle slowly changing back-

grounds exponential forgetting is applied. The kernel for

observation i in sum (2) is then extended to,

KH(xi)(x− xi)e
−(t−ti)/tf ,

where t is usually time of the most recent scan k, ti is

the time of observation i, and tf is the forgetting time

constant. Additionally, in target tracking we are interested in

the number of observations per scan, and the intensity should

be normalized with the number of scans,

Îs(x, t) =
1

Nscans(t)

N
∑

i=1

KH(xi)(x− xi)e
−(t−ti)/tf (3)

Counting the number of scans over an exponentially weighted

time window can be made with an AR-scheme,

{

∆tk = tk − tk−1

Nscans(tk) = e−∆tk/tfNscans(tk−1) + 1
(4)

where tk is the time of scan k. By this scheme, old obser-

vations and old scans at the same time instant are given the

same exponential weight.

Computational aspects: It is important that the sums

above are calculated efficiently. Observations are suitably

maintained in a grid in the horizontal plane, either in Cartesian

or polar coordinates, and at every grid cell the observations

are put in a queue. In some cells the detection rate is higher,

and the sums in (2) and (3) are more costly to evaluate.

Therefore, cell-wise component management is required, and

the following options can be considered:

• truncation: the tail of the queue is cut of so that the size

is limited to say n · 10 observations per cell. (Note that

the normalization with the number of scans in (3) will

become conditioned on the cell. Moreover, cutting the

tail in (4) must be compensated for.)

• pruning: aged components have low weight and should

be pruned as well. A simple rule is to prune components

with t− ti < 3 · tf .

• merging: given Gaussian kernels, the sums above are

Gaussian mixtures. Similar to GM-PHD and the method

in [3], we can use merging to reduce the number of

components.

Merging operations and evaluation of merging conditions are

expensive, and the gain should be substantial to motivate

merging. In this work the component management is restricted

to the first two options, i.e., truncation and pruning.

IV. LOCAL ORIENTATION

Given the sums in (2) and (3), the problem is now to

adaptively select the kernel bandwidth matrix H(xi) for each

recorded detection xi. We base this selection on an estimate

of local orientation in a 2D histogram, g, of observations over

a Cartesian or polar grid. For every histogram grid cell, a

local orientation estimate is computed, and the estimate is

mapped to a local kernel bandwidth matrix, see Section V. A

detection falling inside a grid cell inherits the local bandwidth

matrix of the cell. The grid for computing local orientation

herein is conveniently matched with the grid discussed for

computational aspects in Section III above.

The histogram g can be regarded as an image, see the

example in Figure 1 (a grid resolution of 200 meters is used

is the example, and anti-aliasing is performed, see the end

of this section). Local 2D-orientation of image data at a

certain sample i, j is suitably represented with a symmetric

2× 2 matrix T , similar to a covariance matrix (the matrix is

also denoted an orientation tensor or structure tensor in the

literature) [5]. Locally, images are often relatively constant in

one direction, and have the significant variation in the other

direction. Given an eigenvalue decomposition,

T = λ1e1e
T
1 + λ2e2e

T
2 , (5)

the significant direction of the variation corresponds to the

eigenvector e1 with the largest eigenvalue λ1, where λ1 > λ2.

If λ1 ≫ λ2, the variation in direction of e2 is comparatively

insignificant. If λ1 = λ2, the orientation is isotropic. The

Frobenius norm ‖T‖ =
√

∑

Tmn =
√

∑

λ2
i indicates the

overall energy in the local variation.

There are several methods to estimate the matrix T and we

have followed a method based on directional filters described

in e.g.,[5], [6]. Only an overview of the essential parts are

given here. It is advised to use a set of directional quadrature

filters specified in the 2D Fourier domain,

{

Fk(ω) = R(ρ)(ω̂ · n̂k)
2 ω · n̂k > 0

Fk(ω) = 0 ω · n̂k ≤ 0
(6)

where ω = [ω1, ω2]
T , ρ = ||ω||, R(ρ) is a radial bandpass

function common to the set of filters, ω̂ is the unit vector

in the direction of ω, and n̂k are filter specific directional

vectors. Corresponding filters in the spatial domain are fk =
IDFT (Fk). A motivation behind quadrature filters is that

they operate both as edge and line detectors. An interpretation

is that they have superposed even and an odd parts which

cancel in the negative hemisphere and coincide in the positive

hemisphere. The even part transforms to a real and even part

in the spatial domain with the ability to detect lines, and the

odd part transforms to a complex and odd part in the spatial

domain with the ability to detect edges. The filter localizes

edges and lines equally well.

To measure direction in 2D, three filters are enough, and it

is suitable to distribute the directions n̂k evenly,
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n̂1 = [ 1 0 ]T

n̂2 = [ − 1
2

√
3
2

]T

n̂3 = [ − 1
2 −

√
3
2

]T .

Figure 2 shows a contour plot of three quadrature filters in the

Fourier domain given these directions and with a log-normal

radial function, see filter selection below.

- - /2 0  /2  
- 

- /2

0

 /2

 

Figure 2. Contour plot in the Fourier domain of three quadrature filters
following (6) with the directions n̂1,n̂2,n̂3 specified in the text, and with a
log-normal radial function R(ρ), see (8).

The set of symmetric matrices N̂k = n̂kn̂
T
k form a non-

orthogonal basis for the space of symmetric 2D matrices. The

scalar product in this space is defined as

〈N,M〉 =
∑

i,j

NijMij .

Introduce a dual basis{Ñk} to {N̂k} such that

〈

N̂i, Ñj

〉

=

{

1 i = j

0 i 6= j

With the selection of N̂k above, the dual matrices are

Ñk =
4

3
N̂k −

1

3
I

An arbitrary symmetric matrix can now be written

M =
∑

k mkN̂k, where the coordinates are calculated as
〈

M, Ñk

〉

=
〈

∑

mlN̂l, Ñk

〉

= mk, and therefore M =
∑

k

〈

M, Ñk

〉

N̂k. Likewise, we have M =
∑

k

〈

M, N̂k

〉

Ñk.

Assume a simple, one-dimensional, local signal neighbor-

hood, s(ξ) = g(ξT x̂) (the Fourier transform of s is along

a line in the x̂ direction). It is possible to show that the

magnitude of the filter response from quadrature filter k is

qk = A(x̂T n̂k)
2, where A =

∣

∣

1
2π

∫

R(ρ)S(ρ)dρ
∣

∣ and S(ρ) is

the local signal spectrum in the direction of x̂. There is no

directional dependence in A. If we write the local orientation

given the simple signal neighborhood as T = Ax̂x̂T , the filter

responses are qk = A(x̂T n̂k)
2 = A

〈

x̂x̂T , n̂kn̂
T
k

〉

=
〈

T, N̂k

〉

.

Finally, given the dual basis we have

T =
∑

k

〈

T, N̂k

〉

Ñk =
∑

k

qkÑk. (7)

In conclusion, to estimate local orientations we do the

following sequence of operations:

1) run the three spatial, complex filters over the 2D array

g, i.e., compute the convolutions fk ∗g for k ∈ {1, 2, 3},

2) take the local magnitudes of their responses point-wise,

qk(i, j) = |(fk ∗ g)(i, j)|, for all i, j,

3) use qk(i, j) as weights in the dual basis according to (7)

and we arrive at the local orientation T (i, j).

Below, some practical considerations are discussed.

Filter selection: A suggestion in [5] is to use a log-normal

filter for the radial filter function,

R(ρ) = e−
4

B2 ln 2
ln2(ρ/ρ0), (8)

where B is the relative bandwidth and ρ0 is the center

frequency. In the evaluations, we have used ρ0 = 0.7 and

B = 3. Varying the parameters has little effects on the final

results.

The directional log-normal filters Fk(ω) are specified in the

Fourier domain. There is no known inverse transform to get

fk, and we use optimization to generate spatial kernels [5].

That is, the samples of fk are tuned to get a good match to

Fk(ω) in the Fourier domain,

f∗
k = argmin

fk
‖Fk(ω)−DFT {fk}(ω)‖ .

We have universally used a kernel size of 15x15 grid cells for

fk.

Grid selection: To handle background at a certain scale,

the grid resolution is selected to match that scale rather than

altering the design of the filter kernels. However, the grid size

is limited for computational reasons. Given a Cartesian grid,

we aim at a maximum of approximately 500 × 500 samples.

For a system with visible background up to 50km, a reasonable

grid size is then 200× 200 meters (used in the Figure 1).

In a polar grid, the resolution scales automatically with

range. For a moving system though, the polar grid must

continuously be translated such that the sensor is at the origin.

Given the Cartesian grid, sensor motion over short time scales

can simply be subtracted. Eventually, the sensor has moved

a certain distance from the grid center and the grid must be

translated to the new position.

Anti-aliasing: Aliasing is a problem when working with

gridded data. Anti-aliasing is herein handled in a standard

fashion by 1) forming the histogram g on a grid with double

resolution, 2) applying a Gaussian low-pass filter with band-

width ω0 = π/4, and 3) down-sampling g by a factor 2. The

quadrature filters are applied to the down sampled grid.

Averaging: In [5], low-pass filtering is applied to the co-

efficients of the estimated orientation matrices. Rapid changes

in the orientation are suppressed. Additionally, the consistency

of the orientation estimate around corners is improved. A

corner does not have a unique orientation, and the averaging

of the orientation from two perpendicular edges results in an

isotropic orientation. The averaging is applied to the elements

of T (i, j) separately. Thus, if
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T (i, j) =

[

t1(i, j) t2(i, j)
t2(i, j) t3(i, j)

]

(9)

the 2D arrays t1, t2, and t3 are averaged separately. An

isotropic filter of small size is appropriate.

Figure 3 shows an example of estimated orientation for a

line shape and a rectangular shape. Filter selections are as

above. One can observe that the energy, i.e., the length of the

vectors, is greater close to the shapes.

Temporal filtering: For the same reasons as for the

kernel evaluations, the histogram grid g should be subject

to exponential forgetting. At every scan, the histogram is

multiplied with a forgetting factor, g(i, j) := e−∆tk/tf g(i, j)
before new data enters the histogram.

Figure 3. Example of estimated orientation for a line object and a rectangular
object. The vector pairs at each point i, j illustrate the eigenvalue decompo-
sition of the estimated local orientation, T (i, j). The vectors with red colors
correspond to

√

λ1e1 (large eigenvalue), and the vectors with blue colors
correspond to

√

λ2e2 (small eigenvalue).

V. MAPPING OF ORIENTATION TO FILTER KERNEL

The estimated orientation T (i, j) at position i, j should

be mapped to a bandwidth matrix H(i, j) at the same grid

position so that it can be used in (2). Unfortunately, we do

not have a super-level modeling framework for guiding us to

interpret T (i, j) and optimize a response H(i, j). Thus, the

mapping is subject to ad hoc considerations. First, a fundamen-

tal observation is that H(i, j) should have an inverse relation to

T (i, j). That is, a large local variation in one direction should

be met with a small filter bandwidth in the same direction. The

reasoning can be applied to each eigenvalue and eigenvector

separately. The following exponential mapping empirically

produces reasonable results,







γi = f2
maxe

−λ
f
i
c + f2

min

H = γ1e1e
T
1 + γ2e2e

T
2 .

(10)

The constants c, fmin, fmax are design parameters, and

[λf
1 , λ

f
2 ] = f([λ1, λ2]) are normalized eigenvalues so that

λf
i ∈ [0, 1] (see below). In the evaluations we have used

c = 0.15, so at λf
i = 1 the attenuation of f2

max in (10) is

e−λf
i
/c ≈ 0.001, meaning that fmin is essentially selected as

kernel size in the ei direction. That is, the bandwidth is high in

the ei direction. Contrary, at λf
i = 0 we get essentially fmax,

the larger kernel size, and the lower bandwidth. It is important

that the selection of fmax matches the extent and bandwidth

of the directional filter kernels. A too large fmax smooths

the signal beyond the support of the directional kernels. For

example, a ridge in data would leak to a neighboring region

where the transient of the orientation estimate from the ridge is

essentially zero. Given the log-normal kernels with size 15×15
specified above, we use fmin ≈ 0.7∆ and fmax ≈ 3∆ with

some variations, where ∆ is the grid resolution.

Normalization: By selecting a mapping of λ1 and λ2

to λf
1 and λf

2 we can decide what is a prominent structure,

and what is not. Given filter selections according to above,

including anti-aliasing, a single observation yields a maximum

filter response in orientation energy ‖T‖ of approximately

0.05. A single observation is clearly no structure and should

result in the largest kernel, fmax, isotropically. Perhaps two

or three observations at the same position is the beginning of

structure. Based on this reasoning, we may set λf
1 and λf

2 to

0 for ‖T‖ < α with say α = 0.1.

At the upper limit, it is important to avoid clipping effects

around the high peaks, i.e., the high peaks give plateaus with

λf
1 = 1. The high bandwidth would otherwise be used in

too large regions around the peaks yielding undesirable ripple.

This is an argument for scaling the filter responses so that the

highest energy peak, maxij ‖T (i, j)‖, results in λf
1 = 1. The

smaller eigenvalue, λ2, is preferably scaled the same amount as

λ1 so that the shape of T is maintained. A mapping condensing

the reasoning herein is,







λf
1 (i, j) = max

(

‖T (i,j)‖−α
(maxkl‖T (k,l)‖)−α , 0

)

λf
2 (i, j) = λ2(i, j)

λf
1
(i,j)

λ1(i,j)
.

(11)

The mapping might be too conservative in promoting structure.

In [5], specific functions are provided such that they can be

tuned to enhance or suppress image features. Note that in

image enhancement, minor distortions which are invisible to

the eye are acceptable while they may be not in the context

of density estimation.

An alternative to the uniform normalization over the entire

2D array in (11) is to use regional normalization, for example

accomplished by a low pass filtered regional max.

Filter kernels in measurement coordinates: The target

tracker requires intensity expressed in the measurement space,

i.e., range, bearing, elevation, possibly radial velocity, and

radar cross section (RCS). The method herein adaptively

computes kernel bandwidth matrices only in the horizontal

plane, either in Cartesian or polar coordinates. In the other

dimensions, there is no adaptation at this point, and we select

fixed bandwidths. In practice, the local neighborhood imposed

by a horizontally adapted kernel implies that the correlations to

and between other dimensions are typically low. A bandwidth

matrix then has the following structure
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H =













Hx Hxy

Hxy Hy

Hel

Hvrad

HRCS













(12)

where Hel, Hvrad and HRCS are fixed bandwidth parameters.

When a Cartesian grid is used and the measurement space

is polar, the kernels must be compensated for the change of

variables, i.e., multiplying with range in (3).

Algorithm: The algorithm for mapping estimated orien-

tation from (7) to a kernel bandwidth matrix has the following

steps:

1) Average the coefficients of the estimated orientation

matrices from (7). That is, apply a low-pass filter over

the arrays t1, t2, and t3 defined in (9).

2) Calculate maxkl ‖T (k, l)‖ (or regional max) for normal-

ization in (11).

3) For all i, j, calculate the eigenvalues, λ1(i, j), λ2(i, j)
and the eigenvectors e1(i, j) and e2(i, j) of T (i, j).

4) For all i, j, normalize the eigenvalues according to (11)

to get λf
1 (i, j), λ

f
2 (i, j)

5) For all i, j, map the normalized eigenvalues to a 2D

bandwidth matrix H(i, j) according to (10).

The resulting H(i, j) is applied in the KDE and KIE sums (2)

and (3) for all detections falling in grid cell i, j. The matrix

can be combined with fixed kernels for other measurement

dimensions according to (12), where Hx, Hy and Hxy are

taken from H(i, j) and the combined bandwidth matrix is

applied in KDE and KIE.

VI. EVALUATIONS

The proposed method is first compared to the PHD filter

from [8], and the inverse intensity estimator [7] on a synthetic

data set. Then, a demonstration on recorded radar data is

shown.

A. Comparison on synthetic data

A simple evaluation example has been created for compari-

son of different methods, see Figure 4. The example contains

one larger area of 1000 × 1000 square meters with a low

clutter intensity of, on average, 10 observations per scan (10−5

observations per scan and volume). Inside the larger area is a

smaller area of size 200×200 square meters with an intensity

of on average 40 observations per scan (10−3 observations

per scan and volume). The number of observations in each

area is Poisson distributed. Over the whole area, the intensity

is non-homogeneous. We compare three methods on this data

set:

1) GM-PHD with a random walk dynamic model according

to [8].

2) The inverse intensity estimator, [7].

3) The method based on locally adaptive KIE given herein.

5000 5200 5400 5600 5800 6000
5000

5100

5200

5300

5400

5500

5600

5700

5800

5900

6000

Figure 4. Clutter observation in the xy-plane with two areas containing
different clutter intensities. In the smaller area, 40 observations on average
are generated per scan, and in the remaining area, 10 observations on average
are generated per scan.

GM-PHD: The properties of the PHD filter are controlled

by a number of parameters. The most prominent ones are:

pD: Detection probability

pS : Survival probability

T : Pruning threshold

U : Merging threshold used in the merging method de-

scribed by the original paper on GM-PHD, [13]

Jmax: Maximum number of mixture components after ev-

ery update step.

Parameter Value

pD 0.9

pS 0.99

T 0.01

U 20

Jmax 50

σvx ,σvy 1

σx,σy 10
Table I

PARAMETER VALUES FOR THE PHD-FILTER USED IN THE EXAMPLE.

The motion model in the PHD is a random walk with posi-

tion, [x, y], as the only state. The system noise is in the velocity

dimension and parametrized with σvx
and σvy

. Measurements

are assumed to be Cartesian with measurement noise σx and

σy . Parameter values are given in Table I. Figure 5 shows

an example of estimated intensity from the GM-PHD filter.

The round shapes from the GM components are apparent.

The pruning process has removed too many components in

the border regions. The behavior can be changed by adjusting

the parameter values, but it is not as straight forward as it may

seem to improve the overall behavior.

Inverse intensity estimator: The inverse intensity estima-

tor is simple to implement. We use the same grid definition

as for the locally adaptive KIE with resolution ∆ = 20, see

below. At every scan, the distance from every grid cell to the

closest observation in the scan is calculated. The grid is AR-

filtered across the scans point-wise, where the AR-parameter
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Figure 5. Example of estimated intensity from the GM-PHD filter. The color
scale is logarithmic and ranges from 10−6 to 10−2.5, see the color bar.

is set to 0.9. The result is normalized with the number of

scans, also AR-filtered by the same parameter, see (4). Figure

6 shows an example of estimated intensity, given exactly the

same data that Figure 5 is based on. Comparing with the GM-

PHD, the estimated intensity has more distinct transitions from

high to low intensity, and the intensity levels in respective

region are overall close to the true values (10−5 and 10−3).
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Figure 6. Example of estimated intensity from the inverse intensity estimator.
The color scale is logarithmic and ranges from 10−6 to 10−2.5, see the color
bar.

Locally adaptive KIE: The corresponding result for KIE

on the same data set is shown in Figure 7. The grid density

is here ∆ = 20 meters, and the time constant is 30 scans.

In comparison with Figure 6, the transition region between

the high and the low clutter areas is even sharper. Excluding

the transition region, the estimated intensities inside the two

areas are close to the true values. KIE manages to spatially

and temporally smooth the estimate to a much higher degree

than the GM-PHD with given parameters.

The kernels in KIE have limited support, implying that the

intensity is low where there is no data. This effect can be seen

on the border of the figure. The inverse intensity estimator

on the other hand may extend the estimate farther. Reducing

the grid resolution improves the support while affecting the

sharpness in transitions.
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Figure 7. Example of estimated intensity from the locally adaptive KIE. The
color scale is logarithmic and ranges from 10−6 to 10−2.5, see the color bar.

B. Demonstration on real data

We have also applied KIE on recorded radar data from an

experimental radar system, see the histogram in Figure 1. The

background in this data set is highly non-homogeneous, and

our implementation of the inverse intensity estimator fails to

pickup the local variations, see the contour plot in Figure 8 (the

data set contains approximately 300 scans, and the forgetting

factor is set to 0.95).

Figure 9 shows the corresponding results for KIE. The

method picks up peaks well and has a fair representation of

details. The contours nicely follow the edges of regions with

increased intensity. Computationally, the method is fast and

real time feasible for high data rates. Note that online operation

only requires the intensity estimator (3) to be evaluated point-

wise for every new observation. Moreover, the filtering oper-

ations for calculating local orientations and adaptive kernels

can be carried out at a moderate rate with regular intervals.
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Figure 8. Isocontours of the estimated intensity from the inverse intensity
estimator given the data in Figure 1. The contour intervals are logarithmic.

Example of KIE in other dimensions: The intensity

estimation handles other dimensions by extending the kernel
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Figure 9. Isocontours of the estimated intensity from the locally adaptive
KIE presented herein, given the data in Figure 1. The contour intervals are
logarithmic.

from 2D to ND using the diagonal bandwidth matrix according

to (12). We can extract data in arbitrary subspaces. Conditional

probabilities are easily calculated given KDE (1). For example,

let σ denote RCS. Then the conditional probability of RCS at

position x, y is expressed by

p(σ|x, y) =
p(x, y, σ)

∫

p(x, y, σ)dσ
.

Independence in the bandwidth matrix implies that we can

write

f̂(x, y, σ) =
1

N

N
∑

i=1

KHxy,i

([

x− xi

y − yi

])

·KHRCS
(σ − σi)

=

N
∑

i=1

wxy,i ·KHRCS
(σ − σi)

where

wxy,i =
1

N
KHxy,i

([

x− xi

y − yi

])

.

An estimate of the conditional probability density is therefore

f̂(σ|x, y) =

∑N
i=1 wxy,i ·KHRCS

(σ − σi)
∑N

i=1 wxy,i

.

Figures 10 shows an example of estimated conditional prob-

ability density of RCS at a given position. The weighted

histogram is also given for comparison, i.e., sample i is

weighted with wxy,i. Such a diagram is helpful for analysis

of background properties in the vicinity of a position.

VII. CONCLUSIONS

In this report, a new method for estimation of clutter

intensity is presented. The method is based on kernel density

estimation, and in particular estimation of local orientation in

the horizontal plane which provide bandwidths for the kernels.

RCS [dBm
2
]

-40 -30 -20 -10 0 10 20 30 40

P
(R

C
S

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
RCS

Histogram

Kernel estimator

Figure 10. Example of conditional probability of RCS at a certain position.

The local orientation estimates reflect the underlying structure

of background data, and the estimation thus adapts to the

recorded background.

The method has been implemented and tested on both

synthetic and recorded radar data. The results indicate that

the method performs well in comparison to the other methods

in the evaluation. The simplicity of the method further imply

that there is a good chance that the method will be robust for

many different kinds of background. Finally, the method is

computationally feasible for real-time processing.
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