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Abstract—Clutter measurement density (CMD) is one of data
association parameters, which indicates the number of clutter
measurements per unit volume of the measurement space. In
probabilistic data association based algorithms, the association
probability between a prior estimate and a measurement is pro-
portional to the ratio of target measurement likelihood and CMD.
Also the measurement likelihood is used for obtaining the target
existence probability for false track discrimination. Although
CMD is an important parameter for state estimation as well
as track management, it depends on surveillance environments
in which the true CMD is rarely known in advance. A clutter
measurement density estimator (CMDE) calculates the spatial
density of clutter adaptively using measurement information, and
provides its estimated CMD to data association algorithms for
adaptive target tracking in clutter. A spatial CMDE (SCMDE)
selects the measurement with the N -th smallest 2-norm distance
from the measurement of interest and evaluates volume of the hy-
persphere centered at the measurement of interest and touches the
selected measurement. The sparsity (inverse of CMD) is obtained
from dividing the hypersphere volume by N . It is only applicable
to homogeneous measurement spaces of which coordinates have
the same unit such as Cartesian coordinates. An improved
version of SCMDE which can be utilized in nonhomogeneous
measurement spaces with the different coordinate units such as
polar coordinates is proposed. By using weighted normal distance
that reflects the volume of the nonhomogeneous measurement
space, the proposed SCMDE calculates the ellipsoidal volume
for each measurement of interest. Performance of the proposed
SCMDE is verified by Monte Carlo simulations for various cases.

Keywords—Clutter Measurement Density, Adaptive Target
Tracking in clutter, Spatial CMDE

I. INTRODUCTION

Clutter measurement density (CMD) implies the expected
number of clutter measurements in the unit volume of mea-
surement space, which is an important parameter to obtain
the posterior probability density function of target state in
clutter. In [1]–[4], the measurement likelihood is divided by
CMD to calculate the measurement likelihood ratio which is
used to stochastically discriminate between target detections
and the clutter. The measurement likelihood ratio determines
target existence probability of the existing tracks for track
management [3]–[6]. In realistic situations, CMD is rarely
known as prior information.

A CMD estimator (CMDE) is needed for adaptive target
tracking in apriori unknown environments. The CMDE may be
explicit, implicit or embedded in target tracking algorithms.
Most track based CMDEs consider CMD as non-parametric

and evaluate CMD using the number of measurements in a
validation gate of each existing track and its spatial volume.
Since valid measurements which belong to the validation
gate of one track may include the target measurements, [7]
suggested the conditional mean estimation to get the expected
number of target measurements using the probability of target
existence by a similar method to Integrated Probabilistic Data
Association (IPDA) of [3]. The authors also introduced the
number of target measurement estimation based on maximum
likelihood method and method of moment for calculating
CMD. Although this track based CMDE provides good results
in calculating the expected number of clutter measurements in
the validation gate, the calculated CMD depends on volume
of the validation gate so that the CMD of the interest point
may not identical from scan to scan even for uniform cluttered
environments.

Multiscan CMDEs are proposed to get more robust perfor-
mance than single scan CMDEs. In [8], the clutter map consists
of several cells composed by partitioning surveillance space.
The clutter map counts the falling measurements per each cell
during a few scans to average the number of measurements
at each cell. The area of cell is a constant so that the CMD
estimation of the clutter map is independent to the existing
tracks. Also probability hypothesis density filters based CMDE
are proposed in [9]. They consider the clutter measurement as
the detection of ‘clutter generator’ and estimate its posterior
density.

Comparing with the above existing CMDEs, the spatial
CMDE (SCMDE) proposed in [10] estimates the inverse of
CMD (termed as ‘sparsity’) at each measurement point. The
SCMDE is a measurement oriented CMDE that evaluates the
sparsity of each measurement. Performance of the existing
CMDE depends on the volume of the validation gate while
that of the SCMDE depends on the relative distance between
measurements. Therefore, the SCMDE is independent of target
tracking performance and produces consistent CMD estimates.
The sparsity of each measurement is calculated by the mean
volume of hypersphere of which radius is Euclidean distance
between the measurement and its neighbor. The SCMDE
provides the adaptive estimation performance to target tracking
filters though the distribution of clutter measurement is non-
uniform, which enhances false track discrimination of inte-
grated probabilistic data association filters. However, the lim-
itation of the SCMDE is mentioned in [11] that the algorithm
is valid only for homogeneous measurement spaces because it
measures the Euclidean distance between measurement pairs.

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 1772



To eliminate this limitation, we propose the improved
version of the SCMDE which can measure CMD in non-
homogeneous measurement spaces as well as non-uniform
cluttered environments. The proposed algorithm uses a nor-
malized distance between the interesting point and one of its
neighbor measurement to calculate the sparse volume of the
interesting point in non-homogeneous measurement spaces.
When the measurement space is homogeneous, the proposed
algorithm is identical to the early version of the SCMDE.
The proposed algorithm makes the SCMDE generalized for
nonlinear tracking problems, i.e. active sonar/radar tracking.

The relation of clutter measurement sparsity and data
association is presented in Section II. The early version of
SCMDE in homogeneous measurement spaces is summarized
in Section III. Section IV shows the detailed representation
of the proposed SCMDE for non-homogeneous measurement
spaces. Performance evaluation of the proposed algorithm is
carried out by Monte Carlo simulations for various scenarios
in Section V followed by conclusions in Section VI.

II. ROLE OF SPATIAL CLUTTER MEASUREMENT DENSITY

IN DATA ASSOCIATION

In this paper, ρ indicates CMD and sparsity, an inverse
of CMD, is denoted by γ. Both are functions of the point
of interest z in the measurement space, the sparsity at the
interesting point z is defined by

γ(z) =
1

ρ(z)
=

V (z)

m
(1)

where V (z) and m denote the interest volume of z and
the number of clutter measurement in the area respectively.

Among the variety of existing data association methods,
IPDA is selected as an example to explain the role of CMD
in data association and false track discrimination.

IPDA is divided into two parts; state estimation and track
management. Former part contains track prediction, mea-
surement selection and update which are identical to those
of standard PDA [12]. Latter part includes track initiation,
track confirmation/termination and track merging. The detailed
derivation and expression of IPDA are represented in [3] and
[13].

In track update step of the state estimation part, the data
association probability between track τ and one of its valid
measurement zk,i is expressed by

βτ
k,i =

P τ
Dpτk,i/ρ(zk,i)

Λτ
k

=
P τ
Dpτk,iγ(zk,i)

Λτ
k

(2)

where P τ
D, pτk,i and Λτ

k denote the probability of target
detection, target measurement likelihood and measurement
likelihood ratio of track τ respectively. Using the data
association probability, each track provides the relative weight
to each measurement for distinguishing (expected) target
measurement and clutter measurement stochastically. Due to

the fact that the probability is proportional to the inverse
of CMD, the incorrect estimation of CMD reduces tracking
accuracy.

Measurement likelihood ratio of track τ is defined by

Λτ
k = 1− P τ

DP τ
G +

mτ

k
∑

l=1

P τ
Dpτk,lγ(zk,l) (3)

where P τ
G is a gating probability and mτ

k is the number
of selected measurements for track τ . The posterior target
existence probability for track τ , P

{

χτ
k|Z

k
}

, is calculated by

P
{

χτ
k|Z

k
}

=
Λτ
kP

{

χτ
k|Z

k−1
}

1− (1− Λτ
k)P {χτ

k|Z
k−1}

, (4)

where χτ denotes the hypothesis of target existence for
track τ .

The status of each track is determined by its target ex-
istence probability in track management part: confirmation,
tentativeness, or termination. With the incorrect measurement
likelihood ratio, false tracks which are initialized by the clutter
measurements may be confirmed and true tracks which follows
interesting targets may be terminated.

III. SPATIAL CLUTTER MEASUREMENT DENSITY

ESTIMATOR IN HOMOGENEOUS MEASUREMENT SPACES

The early version of the SCMDE procedure published in
[10] is represented in this section and the SCMDE is denoted
as “the standard SCMDE” in this paper. The inverse of CMD,
sparsity, at the point of interest zk,i given the measurement set
Zk at time k is evaluated.

If the order of sparsity is N , we first look up the distance
between zk,i and the N -th nearest measurement from zk,i

among Zk.

rmin(zk,i;N) = min
Nth
j 6=i

‖zk,j − zk,i‖ (5)

where ‖x‖ is 2-norm distance of residual vector x.

Denote by V ∗ (zk,i;N) the volume of a hypersphere
centered at zk,i which “touches” the N -th nearest
measurement.

V ∗ (zk,i;N) = CM (rmin(zk,i;N))
M

(6)

where M denotes the dimension of measurement space,
and CM denotes the unit sphere volume in the measurement
space. CM is described with Gamma function Γ (·) and
measurement dimension such as
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CM =
πM/2

Γ (1 +M/2)
=

2

M

πM/2

Γ (M/2)
(7)

which results in constant C1 = 2, C2 = π and C3 = 4π/3.

Since the N numbers of measurements are positioned in
the volume of (6), the estimated sparsity (inverse of CMD)
equals

γ̂∗
k,i =

V ∗ (zk,i;N)

N
(8)

Figure 1 shows the illustration of the SCMDE in the
homogeneous measurement space.

Fig. 1. SCMDE for N = 1 in the homogeneous measurement space

While most CMDEs provide the estimated CMD ρ̂ to a
data association filter, the SCMDE produces the estimated

inverse of CMDE, ˆρ−1, for the filter. Because the SCMDE
uses the hypersphere volume to measure the sparsity of clutter
measurements, the algorithm works only in homogeneous
measurement spaces. We propose this procedure for nonho-
mogeneous measurement spaces in the next section.

IV. NONHOMOGENEOUS SPATIAL CLUTTER

MEASUREMENT DENSITY ESTIMATOR

The procedure described in (5)-(8) is valid for uniform
clutter in the absence of target measurements, and is also
recommended [10] for the homogeneous measurement
space of which the coordinates have the same units. When
used in nonhomogeneous spaces, the SCMDE produces in
accurate estimates. The SCMDE used in a 2-dimensional
nonhomogeneous space needs to obtain the area of hyperplane
as depicted as an example in Figure 2: two measurements A,
B and the point of interest zk,i. Even the 2-norm distances
from the point to measurement A and B are equal to d, we
cannot distinguish which one is the nearest measurement from
the point of interest because the coordinate units are different.

Fig. 2. Limitation of the standard SCMDE in the nonhomogeneous measure-
ment space: which one is the nearest measurement of zk,i?

Fig. 3. Minimal hyperellipsoid in the nonhomogeneous measurement space

To generalize the SCMDE, we use a weighting matrix Wk

to alter the shape of hypersphere centered at zk,i, and touches
the N -th closest measurement.

First, define the normalized distance between zk,i and zk,j

as

γ (zk,i, zk,j) = (zk,i − zk,j)
T
W

−1

k (zk,i − zk,j) (9)

where x
T denotes the transpose of x. If zk,j is designated as

the N -th closest measurement of zk,i, then

γmin (zk,i;N) = min
Nth
j 6=i

γ (zk,i, zk,j) (10)

Denote by V (zk,i;N) the volume of the Wk-shaped
hyperellipsoid centered at zk,i which “touches” the N -th
nearest measurement. The volume of the hyperellipsoid is
obtained by multiplying the weight matrix to the normal
distance such as
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V (zk,i;N) = CM

√

|γmin (zk,i;N)Wk| (11)

where |A| denotes the determinant of A. The elements
of matrix Wk should be chosen with the consideration
of the nonhomogeneous relation between the measurement
coordinates to form a reasonable normalized distance.
These elements are set using the range of interest of each
measurement coordinates. When the detection ranges of sensor
in Figure 2 are 0 ∼ 2, 000m for range and −π ∼ π for bearing,
the weighting matrix Wk becomes diag[(2000)2, (2π)2].
Also we can discriminate that the nearest measurement of
the point of interest is A by (9). The hyperellipsoid of the
example is depicted in Figure 3.

The estimated sparsity equals

γ̂k,i =
V (zk,i;N)

N
(12)

This procedure is suitable for nonhomogeneous measure-
ment spaces. Note that, if Wk = σIM , where IM denotes
the M -dimensional identity matrix, (5)-(8) and (9)-(12) yield
the same result. Thus the proposed procedure (9)-(12) is a
generalization of (5)-(8).

V. SIMULATION STUDIES

Performance of the proposed method is evaluated by three
different simulation studies. The simulation environments
considered in this paper are listed below.

• Homogeneous measurement space: 2-dimensional
Cartesian (xy) coordinates

• Nonhomogeneous measurement space I: polar (rθ)
coordinates

• Nonhomogeneous measurement space II: inconvert-
ible case

No target exists in the scenarios so that there are only clut-
ter measurements in the measurement spaces. We compared the
proposed SCMDE, called the generalized SCMDE described
in Section IV, with the standard SCMDE in Section III. The
sampling time (scan) equals 1s and a single run consists of
50 scans, The mean values of estimated sparsity of the two
SCMDEs along the line of interest are used for performance
evaluation through 500 Monte Carlo trials per scenario.

A. Homogeneous measurement space

The measurement space of the first scenario consists of 2-
dimensional Cartesian coordinates and is shown in Figure 4.
The relation between the measurement variables in this sce-
nario is homogeneous that the unit of each variable is meter.
The distribution of clutter measurements is uniform and the
true CMD equals 5× 10−5/m2 and the number of the clutter
measurements follows Poisson distribution with the average
number of 220.5 per scan. The edge points of the line of
interest are (x = 0, y = 750) and (x = 1500, y = 750).

Fig. 4. Homogeneous measurement space and line of interest

Figure 5 shows the inverse of the mean estimated sparsity
along the line of interest compared with the exact value. The
notations of ‘SCMDE’ and ’gSCMDE’ indicate the standard
SCMDE and the proposed SCMDE respectively. The two
SCMDEs produce identical results close to the true CMD as
expected.

Fig. 5. The estimated CMD statistics (inverse of the mean estimated sparsity)
in Cartesian (xy) coordinates

B. Nonhomogeneous measurement space I

The measurement space in the second scenario is a polar
coordinate system which is used for most of active sensor sys-
tems. The space is nonhomogeneous as measurement variables
are range and bearing with different units. The detectable range
and bearing of the sensor are 0m ∼ 2000m and −π ∼ π
respectively. However, the measurement in polar coordinates
can be represented in Cartesian coordinates by measurement
conversion [14]. While the standard SCMDE can be applied to
homogeneous measurement space only, the proposed method
can be employed for all measurement spaces. True CMD
equals 3.18×10−3/(m·rad) and the average number of clutter
measurements in the space is 40 per scan.
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Fig. 6. Nonhomogeneous measurement space I and line of interest

As described in Figure 6, the distribution of clutter mea-
surement is uniform in polar coordinates but is nonuniform
in Cartesian coordinates. When the measurements are con-
verted into Cartesian coordinates, the clutter measurements are
densely populated near the origin. The line of interest starts
from (r = 0, θ = π/4) and ends at (r = 1500, θ = π/4).
Figure 7 and Figure 8 show the Monte Carlo simulation results
using converted measurements in Cartesian coordinates and
measurements in polar coordinates respectively. The true CMD
is only representable in the original measurement space, which
is illustrated in Figure 8. Although the results in Figure 7
cannot be compared with the exact CMD, the proposed method
has reasonable estimation performance for Cartesian coordi-
nates as depicted in Figure 7 which shows that CMD is high
near the origin and it becomes low as far from the origin. The
proposed method also works well in polar coordinates since
the estimated result is close to the true CMD as shown in
Figure 8.

C. Nonhomogeneous measurement space II

Next, we consider the target motion analysis with passive
information which is one of the challenging areas in target

Fig. 7. The estimated CMD statistics in Cartesian (xy) coordinates

Fig. 8. The estimated CMD statistics in polar (rθ) coordinates

tracking. The measurement space in the third scenario con-
sists of bearing(θ) and Doppler frequency(f ) of which the
detectable range of bearing is −π ∼ π and that of Doppler
frequency is 200Hz ∼ 300Hz.

In contrast to the second scenario, the measurement space
is not convertible to the homogeneous measurement space.
In addition, the spatial distribution of the measurements is
nonuniform. Figure 9 describes the measurement space in the
third scenario. The base CMD is 6.36 × 10−2/(rad · Hz),

Fig. 9. Nonhomogeneous measurement space II and line of interest

increasing to 1.27×10−1/(rad ·Hz) within the shaded patch.

Since it is impossible to utilize the standard SCMDE in
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this scenario, only the proposed method is compared with the
true CMD. The line of interest starts from (θ = −π/2, f =
250) and ends at (θ = π/2, f = 250). The inverse of the
mean estimated sparsity along the line of interest is shown in
Figure 10.

Fig. 10. The estimated CMD statistics in θf coordinates

The proposed method shows adaptive estimation per-
formance in the spatially nonuniform and nonhomogeneous
measurement space. The high CMD area is so narrow that
the estimated CMD cannot achieve the true value of high
CMD. Due to smudge effect (effect of neighboring regions
with different CMD on CMD estimation) generated near the
boundary of high and low density areas, the estimates show
biased results around the border lines.

VI. CONCLUSIONS

This paper presents the generalized version of SCMDE
for application in nonhomogeneous measurement spaces. The
proposed method is identical to the standard SCMDE in
homogeneous measurement spaces and the estimation of the
proposed method is adaptive to the environments and accurate
compared to the true CMD as shown in the simulation results.
As the proposed method does not take into account of the
target existence, performance degradation in CMD estima-
tion is expected for such environments. Discriminating target
measurements from the clutter measurements for CMDEs is
reserved for future studies.
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[10] T. L. Song and D. Mušicki, “Adaptive clutter measurement density esti-
mation for improved target tracking,” IEEE Trans. Aerospace Electronic

Systems, vol. 47, no. 2, pp. 1457–1466, April 2011.

[11] X. Chen, R. Tharmarasa, M. Pelletier, and T. Kirubarajan, “Integrated
Bayesian Clutter Estimation with JIPDA/MHT trackers,” IEEE Trans.

Aerospace Electronic Systems, vol. 49, no. 1, p. 395414, Jan 2013.

[12] Y. Bar-Shalom and E. Tse, “Tracking in a cluttered environment with
Probabilistic Data Association,” Automatica, vol. 11, pp. 451–460, Sep
1975.

[13] S. Challa, R. Evans, M. Morelande, and D. Mušicki, Fundamentals of
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