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Abstract—In joint tracking and classification (JTC) problems,
both decision and estimation are involved and they affect each
other. Good solutions for JTC require solving the two problems
jointly. A joint decision and estimation (JDE) framework based
on a generalized Bayes risk was recently proposed for solving
the problem of inter-dependent decision and estimation. In the
JDE framework, a conditional JDE (CJDE) risk was proposed,
and the corresponding optimal solution was obtained. Due to
the development of modern sensor technology, multisensor data
with different characteristics are available. In this paper, we
solve a JTC problem using multisensor data by the CJDE
method. First, a dynamic JTC problem based on kinematic and
attribute measurements is formulated as a JDE problem. To
solve this problem, we propose a multiple-model recursive CJDE
(RCJDE) method, which is an extension of the original RCJDE
to the multisensor scenario. For joint performance evaluation,
we suggest two joint performance metrics (JPM) for the cases
with known and unknown ground truth, respectively. Simulation
results demonstrate the effectiveness of the proposed RCJDE
method. They show that the multisensor data based RCJDE can
outperform the traditional two-step strategies in JPM.

I. INTRODUCTION

Target tracking is critical in many military and civilian

fields. It has been studied extensively with abundant results

[1]–[3], which usually estimate the target state (e.g., position,

velocity, and acceleration). Target classification is also a

critical problem, which aims to identify the target allegiance

(friend, foe, and neutral), class label (bomber, fighter, commer-

cial jet, ship, etc.), and so on [4]–[7]. In reality, there exists

also the problem of joint tracking and classification (JTC), in

which we want to know not only the target state but also the

target class, and tracking and classification are usually inter-

dependent. For example, tracking may affect classification by

providing flight envelope information for different classes,

while classification affects tracking via selecting appropriate

class-dependent kinematic models. JTC has received increas-

ing attention in recent years [8]–[17]. In essence, JTC is

a typical joint decision and estimation (JDE) problem [18],
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and thus good solutions require solving the tracking and

classification problems jointly.

The traditional strategies for solving JDE problems can be

classified into the following four categories [19]:

(a) Decision and estimation are handled separately: deci-

sion and estimation are considered as two separate problems

without considering their inter-dependence [5], [8].

(b) Decision then estimation: first make the best decision

disregarding estimation and then solve the estimation problem

as if the decision were surely correct. Two serious disadvan-

tages of this strategy are: it does not account for possible

decision error in the subsequent estimation; decision is done

disregarding the quality of the estimation that it would lead to

[20], [21].

(c) Estimation then decision. This strategy considers that

decision relies heavily on accurate estimation, and thus it

does estimation first and then makes a decision based on the

estimation [6], [7], [13]. The generalized likelihood ratio test

(GLRT) and the marginalized likelihood ratio test (MLRT)

follow this strategy if the goal is dual: hypothesis testing and

particular estimation. However, this strategy does not work

well if estimation depends significantly on decision [22].

(d) Decision and estimation are handled based on density

estimation. This is beyond the scope of this paper, which is

for point inference.

These solutions all have their drawbacks in solving JDE

problems. In general, a joint approach would be more promis-

ing than separate decision and estimation as well as decision

then estimation or estimation then decision. For the JDE

problem, [18] proposed an integrated paradigm for JDE based

on a new Bayes risk, which is a generalization of the traditional

Bayes decision risk and estimation risk. This approach is

inherently superior in joint performance to the conventional

two-stage strategy or separate decision and estimation, espe-

cially for problems where decision and estimation are highly

correlated. Reference [22] verifies the power of JDE through a

static JTC example. For dynamic JDE problems, [19] proposed

a recursive JDE (RJDE) method in the paradigm of [18]. In

[23], we solved an extended object JTC problem in the JDE

framework, and proposed a random-matrix-based multiple

model RJDE method for extended objects. In [24], we applied
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the RJDE method to a multisensor data based JTC problem,

which is formulated based on homogenous sensor data.

In the JDE framework of [18], we proposed a conditional

JDE (CJDE) risk in [25], which is a Bayes JDE risk con-

ditioned on data. To minimize the CJDE risk, the optimal

solution was derived in [25]. CJDE inherits the theoretical

superiority of JDE by fully utilizing the coupling between

decision and estimation. For calculation, the CJDE method

is simple and efficient, which makes it more practical.

Due to the development of modern sensor technology, more

and more types of sensors are available, such as high resolution

radar, electronic support measure (ESM), infrared imagers,

identification of friend and foe (IFF), and electromagnetical

imaging sensor. With more heterogeneous sensors, various

data containing useful information for tracking and/or clas-

sification is available.

Although tracking and classification are fundamentally re-

lated, they are usually treated separately and solved by differ-

ent techniques using various data. For example, many tracking

algorithms are based on kinematic (e.g., radar and sonar) mea-

surements, and target classification is usually handled using

identity or attribute data from high resolution radar, acoustic,

passive infrared, and seismic sensing modalities [6], [7], [14].

That is, either tracking or classification only utilizes partial

measurements. With various data available, an integrated use

of these data is promising to improve JTC performance [16].

JTC using multisensor data is a typical JDE problem and

thus good solutions require solving the two problems jointly.

The recently proposed CJDE is an integrated approach to

solving JDE problems, and its superior performance and sim-

ple calculation make it preferable for practical JTC problems.

When it is applied to solve real-world problems, however, it is

often the case that great efforts are needed because the CJDE

method proposed in [25] only provides a general solution for

JDE problems. To apply it to JTC using multisensor data,

intensive work is needed due to the characteristics of the

heterogeneous data from multisensors.

In this paper, we extend the RCJDE method of [25] to a

dynamic JTC problem using heterogenous sensor data, which

is more practical. We first formulate JTC using radar data

and ESM data as a JDE problem. These two representative

measurements are continuous and discrete, respectively. To

adapt the RCJDE method of [25] to this multisensor problem,

significant modifications are needed mainly in the calculation

of class probability and expected estimation cost. By fully

considering the characteristics of the multisensor data, we

propose a multiple model (MM) RCJDE method for this JTC

problem.

To evaluate the estimation and decision performance jointly,

we present two joint performance metrics (JPMs) for the

cases with known and unknown ground truth, respectively. For

unknown ground truth, a JPM based on the idea of mock data

[22] is presented, which aims to measure the statistic distance

between the original data and the mock data generated using

the output of evaluated algorithms.

The novelties of this paper are as follows.

1) We formulate the multisensor data based JTC as a JDE

problem, where radar and ESM data are used.

2) Considering the characteristics of the heterogeneous

sensor data, we extend the original RCJDE method to the

multisensor scenario by several modifications. The multiple

model RCJDE method is then proposed for JTC using multi-

sensor data.

3) For joint performance evaluation, we present two metrics

which are suitable for this JTC problem.

This paper is organized as follows. Section II overviews

the existing JDE and CJDE methods and techniques. Sec-

tion III applies CJDE to the multisensor data based JTC

problem. After formulating the problem based on radar and

ESM measurements, the multiple model RCJDE algorithm is

proposed. Two JPMs are also presented in this section. Section

IV presents the simulation results. Section V concludes the

paper.

II. CONDITIONAL JOINT DECISION AND ESTIMATION

A. Joint Decision and Estimation (JDE)

In the JDE framework, the following generalized Bayes risk

[18] is minimized:

R̄ =
∑

i,j

(αijcij + βijE[C(x, x̂)|Di, Hj ])P{Di, Hj} (1)

where Di stands for the ith decision, which is equivalent to

the event {z ∈ Di} (Di is the decision region for Di in

the data space); cij is the cost of deciding on Di while the

true hypothesis is Hj ; P{Di, Hj} is the joint probability of

decision and hypothesis; C(x, x̂) is the cost of estimating x
by x̂; E[C(x, x̂)|Di, Hj] is the expected cost conditioned on

the fact that Di is decided but Hj is true; and αij and βij are

weight coefficients for decision and estimation, respectively,

which provide additional flexibilities.

The optimal JDE is as follows [18]. For any given

E[C(x, x̂)|Di, Hj ], the optimal decision D is

D = Di, if Ci(z) 6 Cl(z), ∀l

where the posterior cost is given by

Ci(z) =
N

∑

j=1

(αijcij + βijE[C(x, x̂)|Di, Hj ])P{Hj|z} (2)

and given any partition {D1, · · · ,DM} of the data space, the

optimal estimator for (13) with C(x, x̂) = x̃′x̃ is the following

generalized posterior mean:

x̂ =

M
∑

i=1

1(z;Di)x̌(i) (3)

where x̃ = x − x̂, 1(z;Di) =

{

1, z ∈ Di

0, else
, and for z ∈ Di

x̌(i) =

N
∑

j=1

x̂(j)P̄i{H
j|z}, x̂(j) = E[x|z, Hj ] (4)

P̄i{H
j|z} =

βijP{Hj|z}
∑N

k=1 βikP{Hk|z}
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and they are undefined if z /∈ Di. Here P{Hj|z} is the

posterior probability of Hj .

A JDE algorithm with guaranteed global convergence is

presented in [18]. This JDE approach explicitly accounts for

the inter-dependence between decision and estimation, and it

is theoretically superior to the existing method of separate

decision and estimation or the two-stage methods.

B. Conditional JDE (CJDE)

In the above JDE framework, a conditional JDE (CJDE) risk

was proposed [25], which is a generalization of the Bayes risk

for decision and estimation conditioned on data.

The basic idea of CJDE is to minimize the CJDE risk:

RC(z) =
∑

i,j

(αijcij +βijE[C(x, x̂)|Di, Hj, z])P{Di, Hj|z}

(5)

To minimize RC(z) (5), for any given estimation cost

E[C(x, x̂)|Di, Hj, z], the optimal decision D is

D = Di, if Ci
C(z) 6 Cl

C(z), ∀l (6)

where the posterior cost is

Ci
C(z) =

∑

j

(αijcij + βijE[C(x, x̂)|Di, Hj, z])P{Hj|z}

(7)

And given any partition {D1, · · · ,DM} of the data space,

the optimal estimator with C(x, x̂) = x̃′x̃ has a simple form,

which is the same as (4). A proof of the optimal CJDE is

given in [25].

Remark 1: To calculate the posterior CJDE cost Ci
C(z), the

key is to obtain E[C(x, x̂)|Di, Hj , z]. With C(x, x̂) = x̃′x̃,

we have

εij(z) , E[x̃′x̃|Di, Hj, z]

= mse(x̂(ij)|Di, Hj , z) + E[(x̂(ij) − x̂)′(·)|Di, Hj, z]

= mse(x̂(j)|Hj , z) + E[(x̂(j) − x̌(i))′(·)|Di, Hj, z], ∀z ∈ Di

= mse(x̂(j)|Hj , z) + (x̂(j) − x̌(i))′(·), ∀z ∈ Di (8)

where x̂ is the CJDE estimate, mse(x̂|A) = E[(x − x̂)′(x −
x̂)|A] is the conditional (on A) scalar mean square error, and

(·) denotes the same term right before it. For z ∈ Di, we have

x̂ = x̌(i), x̂(ij) = E[x|Di, Hj , z] = E[x|Hj , z] = x̂(j), and

mse(x̂(ij)|Di, Hj, z)=mse(x̂(j)|Hj , z). Note that in the last

equation above, the expectation disappear since x̂(j) and x̌(i)

are both fixed given z and Di.

In the JDE risk (1), for C(x, x̂) = x̃′x̃,

εij , E[C(x, x̂)|Di, Hj] = mse(x̂|Di, Hj)

= E[(x − x̂(ij))′(·)|Di, Hj ] + E[(x̂(ij) − x̂)′(·)|Di, Hj ]

= mse(x̂(ij)|Di, Hj) + E[(x̂(j) − x̌(i))′(·)|Di, Hj ], ∀z ∈ Di

(9)

With the linear Gaussian assumption under Hj ,

mse(x̂(j)|Hj , z) with z ∈ Di does not depend on the

realization of z and is equal to mse(x̂(ij)|Di, Hj), and the

only difference between εij(z) of (8) and εij of (9) lies in

the calculation of the second term.

In εij(z) for CJDE, (x̂(j) − x̌(i))′(·) is based on the current

observation z and can be obtained easily using z. In εij for

JDE, however, the expectation E[(x̂(j) − x̌(i))′(·)|Di, Hj] is

taken over the whole data space of the current observations,

and thus integration is needed. This is the main difference in

computation between CJDE and JDE.

Optimal CJDE algorithm

Because the optimal CJDE is the joint of (4) and (6), we

have the following CJDE algorithm:

(1) E-step. Given z, compute the estimate x̌(i)(z) for each

i by (4).

(2) D-step. Compute εij(z) by (8) and Ci
C(z) by (7). Then

the optimal partition is D = {D1
, · · · ,DM}, where Di = {z:

Ci
C(z) 6 Cl

C(z), ∀l}.

(3) Output. The optimal CJDE decision is D if z ∈ Di from

step 2, and the optimal CJDE estimator is x̂ = x̌(i)(z) from

step 1.

1) Analysis of CJDE

a) Compared with JDE, the main difference of CJDE results

from the introduction of the data in the CJDE risk (5), which

was discussed in detail in [25]. Considering the risk functions,

the JDE risk R̄ of (1) is averaged over the whole data space

of the data z, but the CJDE risk RC(z) of (5) depends on

a particular realization of z. If (x̌(i)(z), Di(z)) minimizes the

CJDE risk RC(z), then it is Bayes optimal for every z. A JDE

result (x̌(i), Di) is optimal only on the average for all possible

data.

b) CJDE inherits the superiority of JDE by unifying decision

and estimation into an integrated framework. For calculation,

by conditioning on z, CJDE simplifies computation greatly

compared with JDE. This makes CJDE more applicable in

practice.

c) The CJDE algorithm differs from the JDE algorithm in

[18] in implementation steps. In the CJDE algorithm, once the

current data is available, the decision and estimation results

can be obtained without decision-estimation iteration.

2) Recursive CJDE (RCJDE)

For dynamic systems, measurements are usually obtained

sequentially. Although the CJDE algorithm is optimal theoret-

ically, because of its batch form it may be computationally

inefficient as data cumulate. A recursive CJDE (RCJDE)

algorithm was developed for dynamic JDE problems in [25],

which is a recursive implementation of CJDE.

At time k, the following RCJDE risk is minimized

RC(Zk) =
∑

i,j

(αijcij + βijE[C(xk, x̂k)|Di
k, Hj , Zk])

× P{Di
k, Hj|Zk} (10)

where xk is the true state at time k, x̂k is its estimate,

Di
k stands for the ith decision at time k, and Zk =

{z1, z2, · · · , zk}. To minimize the RCJDE risk (10), the op-

timal RCJDE solution is given in (4) and (6) by substituting

Zk for z. More details about RCJDE can be found in [25].

In RC(Zk), the expected estimation cost with C(xk, x̂k) =
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x̃′
kx̃k is

εij
k (Zk) , E[x̃′

kx̃k|Z
k, Di

k, Hj ] (11)

= mse(x̂
(j)
k |Hj , Zk) + (x̂

(j)
k − x̌

(i)
k )′(·), Zk ∈ Di

k

where x̂
(j)
k is the state estimate under hypothesis Hj , and

x̌
(i)
k is the CJDE estimate under decision Di. Under the linear

Gaussian assumption, mse(x̂
(j)
k |Hj, Zk) = tr(P

(j)
k ) does not

depend on Zk.

One cycle of RCJDE at time k.

1) Initialization: Obtain x̂
(j)
k−1 and P{Hj|Zk−1}.

2) Get the one-step prediction based on dynamics of xk .

3) Update: With the current data zk, update x̂
(j)
k and

P{Hj|Zk}. Compute x̌
(i)
k for each i by (4).

4) Calculate εij
k (Zk) by (11) to get the cost Ci

C(Zk). Then

the CJDE decision is Di
k if Ci

C(Zk) 6 Cl
C(Zk), ∀l.

5) Output the CJDE solution for time k: Dk = Di
k in step

4 and x̂k = x̌
(i)
k in step 3.

Following the spirit of CJDE, the RCJDE solution min-

imizes the proposed RCJDE risk, which fits dynamic JDE

problems well.

III. CJDE BASED JTC USING MULTISENSOR DATA

As mentioned in Introduction, JTC using multisensor data is

a typical JDE problem, and thus good solutions require joint

tracking and classification. CJDE is promising for practical

JTC problems due to its superiority in performance and

simplicity in calculation. However, the original CJDE method

can not be applied to multisensor data based JTC due to the

characteristics of the heterogeneous sensor data.

In this paper, we aim to solve the multisensor data based

JTC problem using the CJDE method. In the following, we

present the problem formulation, the multiple model RCJDE

algorithm, and the joint performance metrics suitable for this

JTC problem.

A. Problem Formulation

Suppose that there is one target with multiple possible

classes in the field of interest, and classes differ from each

other in two aspects: dynamic behavior and feature attributes.

Our goal is to estimate the target state and classify the target

jointly, using mixed data from heterogeneous sensors.

The classes of targets are characterized by the dynamic

behaviors and feature attributes. For dynamic behaviors, dif-

ferent target classes may differ in maneuverability, which is

reflected in the dynamic model (change in position, velocity,

acceleration etc.). For feature attributes, we consider a typical

attribute measurement—electronic support measure (ESM).

Different classes have different emitters on board, leading

to different ESM characteristics, which contain emitter type

information. Based on these feature attributes, we classify the

target into one of s known classes {1, · · · , s}.

Denote by xk the state at time k and by ci the target class,

where ci belongs to the set {1, · · · , s}. The goal of the JTC is

to estimate xk and get ci jointly using multisensor data (i.e.,

Hi = ci). In this JDE problem, “decision” is to decide on the

class label: Di = “ci” = “Hi”. In the following, suppose the

true target class is constant over time.

Usually, the joint target state-class pdmf (probability

density-mass function) p(xk, Hi|Zk) is a joint description of

the true target state and class, where Zk = {Zk
c , Zk

x} with

Zk
c = {zc

1, z
c
2, · · · , zc

k} and Zk
x = {zx

1 , zx
2 , · · · , zx

k} being

the measurement sequences from an attribute sensor and a

kinematic sensor, respectively.

The joint measurement process of a kinematic sensor and

an attribute sensor could be modeled by the following pdmf

p(zx
k , zc

k|xk, fk, Hi, Zk−1) (12)

where fk is the target feature at k. For simplicity, as-

sume that the two measurement processes (zx
k and zc

k)

are conditionally independent: p(zx
k , zc

k|xk, fk, Hi, Zk−1) =
p(zx

k |xk, fk, Hi, Zk−1)p(zc
k|xk, fk, Hi, Zk−1); the measure-

ment process of a kinematic sensor can be represented

by p(zx
k |xk, mi

k, fk, Hi, Zk−1) = p(zx
k |xk)—that is, con-

ditioned on the target state xk, zx
k is statistically inde-

pendent of all other variables; and the attribute process

p(zc
k|xk, mi

k, fk, Hi, Zk−1) = p(zc
k|fk)—that is, conditioned

on the target feature fk, zc
k is statistically independent of all

the other variables. The above assumption also means that the

kinematic measurement model does not depend on the target

class or feature, and the attribute model does not depend on

target kinematic state or motion.

B. Modeling

1) Dynamic model and kinematic measurement model:

Assume each target class ci has a set of ri possible motion

models. With the linear motion assumption, the jth motion

model for class i is

xk = F ij
k−1xk−1 + Gij

k−1u
ij
k−1 + Γij

k−1w
ij
k−1, j = 1, · · · , ri

(13)

where uk is the deterministic input, wk is zero-mean white

Gaussian noise with known covariance Qk. Fk , Gk, and Γk

are known matrices, and the superscript ij signifies quantities

for the jth motion model of a class i target.

With the linear measurement assumption, the kinematic

measurement is

zx
k = Hkxk + vk (14)

where Hk is the measurement matrix, and vk is zero-mean

white Gaussian noise with known covariance Rk.
2) Attribute model and ESM measurement model: ESM

sensors are passive directional receivers which scans the fre-

quency range of interest to intercept emitted electromagnetic

signals from targets and identifies the likely source emitters.

The signal processing that is carried out in ESM sensors is

complicated and there are many sources of error in the emitter

identification process [15]. In this paper, assume the detection

probability is 1; that is, once the emitter is “on”, it can be

detected with probability 1. We only consider the following

primary sources of error: (a) emitters may be on or off (usage);

(b) detected emitters may be confused with other emitters.
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a) Attribute model: Possible emitter types under consid-

eration belong to the set ΩE = {E1, E2, · · · , EN}, where

N is the total number of emitter types in the ESM sensors’

emitter library. For simplicity, we consider the case with two

emitters (N = 2) and each class has one and only one type

of emitter on board. Class 1 has emitter E1 and class 2 has

emitter E2, and therefore ΩE = {E1, E2}.

Emitter switching behavior is described by defining an emit-

ter usage Markov chain for each emitter on a target. In this case

we model emitter j as having a fixed usage Markov chain re-

gardless of which target it is located on and independent of the

other emitters. Let Ei
k denote the event that emitter i is “on”

at time k, and Ēi
k for “off”. The transition probabilities matrix

for emitter Ei is Φi =

[

P (Ei
k+1|E

i
k) P (Ēi

k+1|E
i
k)

P (Ei
k+1|Ē

i
k) P (Ēi

k+1|Ē
i
k)

]

.

Based on the above, a possible emitter feature at time

k, denoted by fk, belongs to the feature set ̥ =
{Ē1Ē2, E1Ē2, Ē1E2, E1E2}. Thus the feature probability

vector consisting of the probabilities of all possible features is

µ
k

= [p
(1)
k p

(2)
k p

(3)
k p

(4)
k ]T (15)

where p
(i)
k (i = 1, 2, 3, 4) is the probability that the ith feature

in ̥ is true. The attribute model for a target in class i is

µ
k+1

= Ψiµ
k

(16)

where Ψi is the 2N ×2N overall feature transition probability

matrix. For more details about Ψi, see [24].

b) ESM measurement model: To account for the errors

which may be caused by the processing chain of the ESM

receiver, we define an m× m measurement confusion matrix

Π, where m = 2N − 1 and Π has the (i, j)th entry

πij = P{declare Ej |Ei is true}, i, j = 0, 1, · · · , m (17)

The entry πij of the measurement confusion matrix Π is

defined as the probability of declaring detecting the emitter

Ej while the actual emitter is Ei. In this example, the

ESM measurement zc
k comes from the measurement space

{Ē1Ē2, E1Ē2, Ē1E2}, which contains all possible emitter

type combinations. Then zc
k is a function of the feature fk

and the confusion matrix Π. More details can be found in

[15].

C. RCJDE for JTC Using Multisensor Data

To use the ESM measurement, the original RCJDE [25]

needs to be modified. By fully considering the characteristics

of the ESM measurement, we propose the following multisen-

sor data based RCJDE algorithm:

1. Assume x̂
(j)
k−1, P{Hj |Zk−1}, and uj

k−1
have been

obtained. Here x̂
(j)
k−1 is the MMSE estimate under Hj ,

P{Hj|Zk−1} is the posterior probability of Hj conditioned

on both Zk−1
c and Zk−1

x , and uj
k−1

is the feature probability

vector under hypothesis Hj , given by (15).

2. Update. Given zx
k and zc

k, update x̂k and P{Hj|Zk}
according to (4) and (18). The elements of uj

k
are also updated

as in [15].

3. Calculate εij
k (Zk) = mse(x̂k|Z

k, Di
k, Hj) to get the cost

Ci
C(Zk) =

∑

j(αijcij + βijε
ij
k (Zk))P{Hj|Zk} by (7). Then

the optimal CJDE decision is Di
k: Ci

C(Zk) 6 Cl
C(Zk), ∀l.

4. Output the CJDE solution for time k: Dk = Di
k and

x̂k = x̌
(i)
k . Then let k − 1 = k and go to step 1.

Remark 2: Compared with RCJDE using radar data only,

the above multisensor data based RCJDE has two main differ-

ences: the posterior probability P{Hj|Zk} in step 2 and the

expected estimation cost εij
k (Zk) in step 3. In general, to use

the attribute data, these two terms are calculated based on both

the kinematic measurements Zk
x and the ESM measurements

Zk
c .

Specifically, to calculate P{Hj|Zk}, both radar and ESM

measurements are used since they both carry target class

information. Based on the assumption that different types of

data are conditionally independent [17],

P{Hi|Zk} = P{Hi|Zk
x , Zk

c } (18)

=
1

c
p(zx

k , zc
k|H

i, Zk−1)P{Hi|Zk−1}

=
1

c
p(zx

k |H
i, Zk−1

x )p(zc
k|H

i, Zk−1
c )P{Hi|Zk−1}

where c is the normalization factor, Zk−1 contains both the

kinematic measurement Zk−1
x and the attribute measurement

Zk−1
c . p(zx

k |H
i, Zk−1

x ) and p(zc
k|H

i, Zk−1
c ) are likelihoods

of Hi based on the kinematic and the ESM measurements,

respectively. See [17] for more details.

For the expected estimation cost,

εij
k(Zk)=mse(x̂k|Z

k
c , Zk

x , Di
k, Hi)

=mse(x̂
(j)
k |Hj , Zk) + (x̂

(j)
k − x̌

(i)
k )′(·), Zk ∈ Di

k

is calculated based on both the attribute measurement Zk
c and

the kinematic measurement Zk
x . x̂

(j)
k and x̌

(i)
k have the same

meanings as in (11). With the linear Gaussian assumption,

mse(x̂
(j)
k |Hj , Zk) = tr(P

(j)
k ) does not depend on Zk

c or Zk
x .

Remark 3: Compared with RJDE based JTC using multi-

sensor data [24], RCJDE has much simpler computation. In

RJDE [19], the expected estimation error is

εij
k =mse(x̂k|Z

k−1, Di
k−1, H

j)

= mse(x̂k|Z
k−1, Hj) + ε̃ij

k

where ε̃ij
k = E[(x̂

(j)
k − x̌

(i)
k )2|Zk−1, Di, Hj] is difficult to

calculate and is usually approximated by the Monte Carlo

(MC) method in RJDE. In JTC using multisensor data, both

the kinematic and the attribute MC simulation data need to be

generated, which aggravates the computation of RJDE. Note

that this MC simulation consumes the most computation in the

calculation of the RJDE algorithm. In view of this, the RCJDE

method is preferable for JTC using multisensor data: not only

is the coupling between tracking and classification utilized, but

RCJDE has also much simpler computation compared with

RJDE.

Remark 4: In the above steps, only the single model version

is presented for simplicity, but the same approach works for
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the multiple-model cases without difficulty. A multiple model

approach such as the IMM algorithm [1], [26] is a well-known

candidate for improving overall tracking performance if the

target may maneuver. The IMM algorithm can be integrated

into our proposed RCJDE method easily, for example, using

ri models for the deterministic input uk.

D. Joint Performance Evaluation Metrics

Traditionally, for performance evaluation of many practical

JDE problems, decision performance and estimation perfor-

mance are evaluated separately using their own metrics. For

example, correct-decision rate is usually used for decision

performance evaluation while mean square error is used

to evaluate the estimation performance [27], [28]. This is

seriously flawed since these measures do not consider the

“joint” characteristics of decision and estimation, which is

the cornerstone of JDE problems. As analyzed in [25], for

JDE problems, decision and estimation performance should

be evaluated jointly rather than separately. [22] proposed a

joint performance measure (JPM) based on the statistical

distance between the real data and the mock data generated by

the JDE algorithm. Following this spirit and considering the

characteristics of JTC using multisensor data, we present the

following two JPMs for joint performance evaluation. These

two metrics fit the cases with known and unknown ground

truth, respectively.

(a) JPM1. For the case with known ground truth, we propose

to use the mean predicted-state distance, defined as [25]

λk ,
∫

d(xk, x̂k|k−1)dF (xk, x̂k|k−1, H
j |x̂k−1, Dk−1)

where d(·) is the distance between the true state xk and

the one-step predicted state x̂k|k−1 at time k. In λk, both

the decision and estimation parts of the JDE results are

contained in the one-step predicted state x̂k|k−1, so it is a

joint performance metric.

(b) JPM2. For unknown ground truth, we suggest to use the

metric proposed in [24]:

dk = dk
c (Zc

k, Ẑc
k) + γ · dk

x(zx
k , ẑx

k ) (19)

where dk
c (·) and dk

x(·) are the measures for the discrete data

and the continuous data, respectively [24]. γ is a weight factor.

Here, Zc
k and Ẑc

k are the real ESM data set and the mock ESM

data set, respectively. zx
k and ẑx

k are the real radar data and

the mock radar data at time k on the same simulation run,

respectively.

For discrete data, we propose to use the Wasserstein distance

[28] to measure the distance between the original data set Zc
k

and the mock data set Ẑc
k. Specifically in this JTC example,

suppose Zc
k and Ẑc

k have the same size n, and each point

in Zc
k = {zc,i

k }n
i=1 may be matched by one and only one

point in Ẑc
k. Let I be a permutation of data points in Ẑc

k, and

under one specific permutation, we can get Ẑc
k = {ẑ

c,(i)
k }n

i=1.

All possible I’s form a set I. Then the Wasserstein distance

between z
c
k and ẑ

c
k is [28] [24]:

dk
c (Zc

k, Ẑc
k) = min

I∈I

∑n

i=1
d(zc,i

k , ẑ
c,(i)
k )

Considering the characteristics of ESM measurements, we

recommend Hamming distance for d(zc,i
k , ẑ

c,(i)
k ) in this paper.

For the continuous data, we propose to use the mean predicted-

measurement distance [24]. For more details, see [24].

IV. SIMULATION AND DISCUSSION

In this section, we present a JTC example using the CJDE

method with radar and ESM measurements. The compared

methods are the traditional decision-then-estimation (DTE)

and estimation-then-decision (ETD) in terms of Average Eu-

clidean Error (AEE), the probability of correct classification

(PC ), and the joint performance measure. We use AEE for

estimation performance evaluation, because it is better than

RMSE (root-mean-square error) as analyzed convincingly in

[29].

A. Existing Methods

For JTC using multisensor data, traditional methods handle

tracking and classification separately using their respective

measurements. Specifically:

a) DTE. The optimal Bayes decision is made first based on

posterior class probability P{Hi|Zk} using ESM and radar

data
P{H1|Zk}

P{H0|Zk}

D1

≷
D0

c10 − c00

c01 − c11

where cij is the cost of deciding on Di while Hj is true.

Then estimation is obtained using radar data only based on

the decided class.

b) ETD. The best estimation of the target state is obtained

by the autonomous multiple model (AMM) algorithm first,

and then decision is made based on the ratio of current

measurement likelihoods conditioned on the one-step predicted

state x̂k|k−1 and Hj [19]. From the perspective of information

utilization, estimation is based on radar data only while

decision is based on both radar and ESM data. Note that ESM

is important for classification and can be used for decision

directly. Although ESM can help estimation (help build a

more accurate kinematic model), it is difficult to be used for

estimation directly without going through decision.

B. Simulation and Analysis

There is only one target with two possible classes c1 and c2.

Classes differ from each other in the kinematic state and the

ESM attributes. The dynamic model and measurement model

are the same as in [24]. A target in class i (i ∈ {1, 2}) has its

own model set M i of possible control input uk, given by

M1 = {0, g,−g}, M2 = {2g, 2.5g,−2.5g, 3g,−3g}

The initial state is [x0, ẋ0] = [8000m, 200m/s]. Each class has

an equal initial probability, so are the models in M i initially.

The radar data follows the measurement model (14) with Hk =
[1, 0] and vk ∼ N (0, 502m2).

The usage process for each emitter and the ESM measure-

ment process are the same as that in [24]. The probability of

emitter “on” at the initial time is assumed to be 0.5. In this

simulation, the joint performance metric (19) with γ = 0.5 is
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used. To save space, JPM1 (for the case with known ground

truth) is omitted since its result is similar to JPM2. The

parameters in RCJDE are chosen as: cij = 1, cii = 0, αij = 1,

and we add the constraints
∑

i βij = 10−4, βii/βij = 2 for

the comparison purpose. All results were obtained from 3000
MC runs. It is assumed that the target class is time invariant

and is Bernoulli distributed with probability 0.5.

The comparison results are shown in Fig. 1. It can be seen

that for position and velocity estimation, ETD performs worst,

RCJDE best, and DTE is in the middle. ETD performs worst

since only radar data is used for estimation, while DTE uses

all information for estimation. DTE is inferior to RCJDE

because DTE does estimation based on the decided class

without considering possible decision errors. For estimation in

RCJDE, all information is used and the effect of decision on

estimation is also considered. So RCJDE outperforms the other

methods in estimation performance. For decision performance,

all methods are close to each other, and RCJDE is slightly

worse than DTE and ETD methods.

For the joint performance, RCJDE outperforms DTE and

ETD. This demonstrates that RCJDE can effectively utilize all

the available data from multisensors and the coupling between

decision and estimation.

Remark 5: This example verifies the superiority of CJDE in

solving multisensor data based JTC problems in two aspects:

a) CJDE can make full use of all the information contained in

the heterogeneous senor data; b) CJDE can also take advantage

of the coupling between decision and estimation, and can beat

the traditional two-step strategies in joint performance.

V. CONCLUSIONS

In this paper, we have proposed a CJDE method for JTC

using multisensor data. After formulating a representative JTC

problem based on radar and ESM measurements, we solved it

in the JDE framework. We adopt the CJDE method due to its

theoretical superiority and simple calculational complexity.

Due to the introduction of the ESM measurement, the

original CJDE method cannot be used directly. By fully

considering the characteristics of the heterogeneous sensor

data, we propose an applicable multiple-model RCJDE method

for this JTC problem. The two main modifications lie in

the calculation of the posterior probability and the expected

estimation cost. Moreover, we present two JPMs for evaluating

the joint performance of algorithms solving multisensor data

based JTC problems. These two metrics can be used for the

cases with known and unknown ground truth, respectively.

Simulation results show that the RCJDE method outper-

forms the traditional two-step strategies in JPM. This example

verifies that RCJDE can fully utilize the information contained

in all available data from heterogeneous sensors. Furthermore,

it can take advantage of the inter-dependence between tracking

and classification, which is critical for JDE problems.

In general, this paper sets an example for applying the CJDE

method to real-world JTC problems. The superiority of CJDE

for solving the JTC problem is demonstrated theoretically

and also by simulation. In this paper, only a single target

is considered. The problem of multiple targets with more

available data is under further investigation.
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