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Abstract—The motion models of individuals should mathemat-
ically describe, as well as possible, the movements executed by an
individual when he is walking, running or even stopping. There
are some references in the literature with respect to individuals
motion models, but most of them are based on image processing.
In this paper, we proposed three probabilistic distribution profiles
that can model the heading angle of an individual trajectory
without relying on image processing. These profiles are based
on probability density functions and cumulative distribution
functions. Objectivity tests and standard deviation analysis were
made in order to verify each profile behavior.

I. INTRODUCTION

In target tracking problems, aircrafts [1] and ground vehicles

[2] have well defined and categorized motion behaviors. For

example, when an aircraft will perform a curve, it tilts its

wings slowly inside the curve, executes the movement and

exits the curve to return to a rectilinear trajectory. For ground

vehicles, it is possible to observe its own motion behaviors. For

example, when a ground vehicle will perform a curve, it slows

down when it approaches the curve, executes the movement

and exits the curve to return to a rectilinear trajectory.

When the object to track is not an aircraft or ground vehicle,

but an individual walking or running, the situation is com-

pletely different as the motion behavior can be more erratic

then aircrafts and ground vehicles. When observing individuals

walking, several situations may occur in its trajectory: instant

stops, walking on winding trails etc. Note that the movements

of an individual have a lower inertia than aircrafts and ground

vehicles.

In the literature, there are some works about motion models

for individuals, but most of them are based on/combined with

image processing methods. For example, in [3], it is proposed

a method to obtain the number of individuals combining

tracking methods and image processing. In [4], it is proposed

combining image processing methods with behavioral models,

whose mathematical structure is very complex. In [5], the

objective is to track individuals in high density crowd based

on the crowd images pixels.

Also in the literature, there are some studies about crowd

disasters based on the individuals behaviors. In [6], a cognitive

science approach was proposed, which is based on a behavioral

heuristics model applied for the Love Parade crowd disaster

[7]. This model predicts the emergence of self-organization

phenomena, such as the spontaneous formation of unidirec-

tional lanes or stop-and-go waves. Moreover, the combination

of pedestrian heuristics with body collisions generates crowd

turbulence at extreme densities. However, this model is very

complex because is not only based on image processing but

also based on a large set of complex collective dynamics.

Simple motion models can also be found in the literature.

In [8], the directional process noise (DPN) model for ground

targets is used. This model deals with different process noise

variances for off-road (x and y directions) and on-road targets

(orthogonal and “along the road” directions). In [9], an initial

study of the individuals motion models can be found, where

a simple mathematical model for individuals motions is used

as the dynamic model for the GM-PHD filter in the target

tracking problem.

Thus, in the present paper, some motion models proposals

will be presented, whose objective is to reproduce individu-

als movements in a most plausible way without relying on

image processing. These proposals envolve the heading angle

probabilistic profiles, which aim is to create more realistic

movements based on individuals walking and running. Three

heading probabilistic profiles were proposed: the “drop”, the

“leaf” and the “balloon” profiles. These names come from the

fact that they have similar shapes to a water drop, a plant leaf

and a balloon, respectively.

At the end, an objectivity test will be applied to each of

the proposals, in order to analyze the behavior of each profile

and relating with their respective parameters. This objectivity

test can classify more focused individuals or more dispersed

behavior, with respect to its final destination.

II. PROBABILISTIC DISTRIBUTION PROFILES

The probabilistic profiles have a different point of view with

respect to image-based models, as in [10]. These image-based

models generally use videos and image processing methods

in order to obtain models for individuals movements. The

idea of the probabilistic profiles proposed in this paper is

to obtain plausible dynamic mathematical models for people

trajectories. This can be very useful for target tracking in

radar systems, from the point of view of state estimation. The

corresponding dynamic model in the built-in radar stochastic

filter can benefit from these probabilistic profiles.
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The probabilistic profile of an individual motion is based

on the heading angle α of the motion. This angle brings the

information of the direction in which the individual is moving.

These profiles are based on cumulative distribution functions

and probability density function (pdf) of the orientation (head-

ing angle). The three proposed profiles here are the “drop”,

the “leaf” and the “balloon” profiles.

A. “Drop” profile

The “drop” profile can be understood from the orientation

diagram on Figure 1, which shows a motion to the north

and it corresponds to the direction aligned to the individual

orientation in some time instant. The vectors, which have

the central point as the origin (individual position) and go

toward the “drop” contour, represent the possible directions

for which he may go. Each of the vectors magnitudes is

directly proportional to the probability of this individual go to

that corresponding direction. Therefore, the higher the vector

magnitude is, the higher the probability of the individual go

to the corresponding direction will be.

Fig. 1. Probabilistic profile – “Drop”.

This profile can also be constricted, depending on the degree

of objectivity in the movement. If an individual movement is

more objective, the spatial distribution of his heading becomes

more elongated since he tends to be less inclined to change

his path at random. Conversely, the stretching in the heading

distribution along the present heading is reduced in the ob-

servation of a more “distracted” walking. The more objective

the individual, the thinner the profile and the probabilities of

changing to a different direction becomes unlikely. The “drop”

profile deformations are shown in Figure 2; note that when the

objectivity becomes null (e.g., when an individual is stopped),

the profile turns into a circumference.

1) Probability distribution: In order to be useful, three

basic elements are defined, as follows:

• Choice of the probability density function fA(α)
• Determination of the cumulative distribution function

pA(α)
• Calculation of the instantaneous heading angle α using

the inverse function α = p−1

A (u)

P
No objectivity

Low objectivity

Medium objectivity

High objectivity

Fig. 2. “Drop” profiles for one direction with several objectivities.

Considering these steps, first we must choose a pdf fA(α)
in a way that the heading angle α has a profile similar to a

water drop. The choice is made, as follows:

fA(α) =
a

2(a|α|+ 1) ln(γ)
, α ∈ [−π,π] (1)

where a ∈ R and γ ∈ R, γ > 1.

Now, taking into account appropriate intervals for α, i.e.,

α ∈ [−π,0] and α ∈ [0,π],

• −π ≤ α < 0:
∫ α

−∞

fA(t)dt =
1

2
logγ

(

1 + aπ

1− aα

)

(2)

• 0 ≤ α ≤ π:
∫ α

−∞

fA(t)dt =
1

2
logγ ((1 + aπ)(1 + aα)) (3)

Therefore:

pA(α) =

⎧

⎪

⎨

⎪

⎩

1

2
logγ

(

1 + aπ

1− aα

)

, if α ∈ [−π,0)

1

2
logγ ((1 + aπ)(1 + aα)) , if α ∈ [0,π]

(4)

To obtain the constant a in (4), we calculate pA(α) at α = π.

pA(α)|α=π = 1 ⇒ a =
γ − 1

π
(5)

In Figure 3, the pdf was plotted for γ = 1.5, π, 5, 10.

In order to check the drop shape from the density given in

(1), the plot of the pdf from the polar point of view is shown

in the next plot. In Figure 4, there are four “drop” profiles for

the values for γ used before.

For simulation purposes, the third and last step involves the

calculation of the α angle from the inverse function p−1

A (u),
where u is a random variable with uniform distribution, i.e.,

U(0,1). Thus, we have:

• If 0 ≤ u < 0.5(≡ −π ≤ α < 0):

α(u) = π
1 − γ1−2u

γ − 1
(6)

• If 0.5 ≤ u ≤ 1.0(≡ 0 ≤ α ≤ π):

α(u) = π
γ2u−1 − 1

γ − 1
(7)

1757



-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6 γ =10

γ =5
γ = π

γ =1.5

Probability Density Function – Heading Angle

α

f A
(α

)

Fig. 3. Probability density function – “drop” profile.
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Fig. 4. “Drop” distribution profiles – polar format.

Therefore:

α(u) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

π
1 − γ1−2u

γ − 1
, if u ∈ [0,0.5)

π
γ2u−1 − 1

γ − 1
, if u ∈ [0.5,1.0]

(8)

Based on the equation (8), a polar histogram was created, in

order to observe how the values for the heading angle behave.

Figure 5 shows the mentioned polar histogram for the “drop”

profile for γ = 10, 10,000 replications and 60 histogram bins.

Note that the histogram bins reflect the “drop” profile as

expected. It is possible to observe that equation (8) can model

well the randomness of the motion in a trajectory. This is

allowed by the “drop” distribution.
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Fig. 5. “Drop” profile: polar histogram for heading angle.

B. “Leaf” profile

The “leaf” profile can be analyzed from the orientation

diagram on Figure 6. The vectors, which have the central

point as the origin (individual position) and go toward the

“leaf” contour, represent the possible directions in which the

individual may go. Each of the vectors magnitudes is directly

proportional to the probability of this individual go to that

corresponding direction, as in the “drop” profile.

Fig. 6. Probabilistic profile – “Leaf”.

This profile can also be stretched or compressed, depending

on the objectivity in which the individual moves, similarly to

the “drop” profile, as illustrated in Figure 2.

1) Probability distribution: As in the “drop” profile, the

determination of the “leaf” profile is based on the same three

steps listed in Section II-A1.

First we have to choose a pdf fA(α) for the heading angle

in a way that it has a similar shape of a plant leaf. The choice

is made based on the following pdf:

fA(α) = cλe−λ|α|, α ∈ [−π,π] (9)
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The next step is the determination of the cumulative distri-

bution function on appropriate intervals for the angle α, i.e.,

α ∈ [−π,0] and α ∈ [0,π].

• −π ≤ α < 0:
∫ α

−∞

fA(t)dt = c(eλα − e−λπ) (10)

• 0 ≤ α ≤ π:
∫ α

−∞

fA(t)dt = c
(

2− e−λπ − e−λα
)

(11)

Therefore:

pA(α) =

{

c(eλα − e−λπ) , if α ∈ [−π,0)
c
(

2− e−λπ − e−λα
)

, if α ∈ [0,π]
(12)

In order to determine the constant c in (12), we calculate

pA(α) at α = π, yielding:

c =
1

2 (1− e−λπ)
(13)

In Figure 7, the pdf given in equation (9) is shown for four

values of λ = 0.9, 1, π, 5.
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Fig. 7. Probability density function – “Leaf” profile.

Figure 8 shows the polar format of the pdf for the same

values of λ.
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Fig. 8. “Leaf” distribution profiles – polar format.

Note that the shape of the polar distribution in Figure 8

looks like a plant leaf. It is possible to notice that the “leaf”

profile is more elongated when compared with the drop profile,

which brings more objectivity to the individual motion. Also,

note that the parameter λ has the same effect as the parameter

γ from the “drop” profile, from the point of view of objectivity.

For simulation purposes, the heading angle is calculated us-

ing the inverse function of the cumulative distribution function

p−1

A (u), where u ∼ U(0,1). Considering the constant c from

the equation (13), we have the following:

• If 0 ≤ u < 0.5(≡ −π ≤ α < 0):

α(u) =
1

λ
ln

(

u+ ce−λπ

c

)

(14)

• If 0.5 ≤ u ≤ 1.0(≡ 0 ≤ α ≤ π):

α(u) =
1

λ
ln

(

c

2c− (u + ce−λπ)

)

(15)

Therefore:

α(u) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

λ
ln

(

u+ ce−λπ

c

)

, if u ∈ [0,0.5)

1

λ
ln

(

c

2c− (u+ ce−λπ)

)

, if u ∈ [0.5,1.0]

(16)

Based on the equation (16), a corresponding polar histogram

was created, in order to observe how the values for the heading

angle behaves. Figure 9 shows the mentioned polar histogram

for the “leaf” profile for λ = 3, 10,000 replications and 60
histogram bins.
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Fig. 9. “Leaf” profile: polar histogram for heading angle.

Note that the histogram bins resemble the “leaf” profile as

expected. It is possible to observe that the equation (16) shows

the randomness of the motion in a trajectory. This is allowed

by the “leaf” distribution.

C. “Balloon” profile

The “balloon” profile is the most simple among the pro-

posed profiles because it is based on a zero-mean gaussian
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distribution. Its pdf and cdf is given by:

fA(α) =
1

σ
√
2π

exp

(

− α2

2σ2

)

(17)

pA(α) =
1

2

[

1 + erf

(

α

σ
√
2

)]

(18)

where

erf(x) =
1√
π

∫ x

−x

e−t2dt (19)

is the error function. In Figure 10, it is shown the polar format

for the pdf for four values of σ = 0.45, 0.55, 0.65, 0.75.
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Fig. 10. “Balloon” distribution profiles – polar format.

Note that the cdf pA(α) depends on the error function,

which does not allow to obtain the inverse function p−1

A (u)
analytically. As this step has the purpose of simulating, the

inverse function will be determined considering the y =
erf(x) and x = erf−1(y) functions, commonly found and

implemented in mathematical softwares, such as Matlab, and

therefore can be calculated numerically in simulations:

α(u) = erf −1(2u− 1)
√
2σ (20)

where u is a random variable with uniform distribution, i.e.,

U(0,1).
Based on the equation (20), a polar histogram was created,

in order to observe how the values for the heading angle

behave. Figure 11 shows the mentioned polar histogram for

the “balloon” profile for σ = 1, 10,000 replications and 60
histogram bins.

Note that the histogram bins are more spread out around

the heading of the individual. This is a more flat profile at its

peak providing some degrees of motion for left and right.

III. OBJECTIVITY TEST

Based on the probabilistic profiles proposed in the previous

sections, tests will be applied on these profiles to verify the

behavior in regards to the objectivity of each profile.

The objectivity characteristic is directly linked to the pa-

rameters of each probabilistic profile: γ for the “drop” profile,

λ for the “leaf” profile and σ for the “balloon” profile. It will

be analyzed the behavior of a simple trajectory, based on these

parameters.
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Fig. 11. “Balloon” profile: polar histogram for heading angle.

To perform the objectivity test, a simple bidimensional

scenario was created. In these scenarios, a single individual is

generated over the magenta point at the center and walks freely

through the green zone until it reaches the black region, where

the trajectory ends. For both profiles, we adopted an average

speed with a magnitude of 1.5m/s and a standard deviation of

0.5m/s around the average speed.

A. “Drop” profile

The first test takes into account the “drop” profile (Section

II-A). Figure 12 shows the trajectories for γ = 10 and γ =
100. The small arrows represent the velocity vector and they

contain the heading angle information.

5 10 15 20 25 30 35 40 45 50
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25

30

35

40

45

50
Scenario – Drop Profile

Fig. 12. Trajectories using “drop” profile (red arrows: γ = 10; blue arrows:
γ = 100).

It is interesting to observe that the trajectories have similar

objectivity behavior, even when the parameter γ was changed

by a multiplicative factor of 10.

B. “Leaf” profile

The second test takes into account the “leaf” profile (Section

II-B). Figure 13 shows the trajectory for λ = 2 and λ = 5. The
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small arrows represent the velocity vector and they contain the

heading angle information.
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Scenario – Leaf Profile

Fig. 13. Trajectories using “leaf” profile (red arrows: λ = 2; blue arrows:
λ = 5).

Differently from the “drop” profile, the two trajectories

have distinct behaviors. For λ = 2, the trajectory changes

considerably along its path. In the case λ = 5, the trajectory

features a more objective behavior in regards to the motion

direction towards the final destination.

C. “Balloon” profile

The third and last test takes into account the “balloon”

profile. Figure 14 shows the trajectory for σ = 0.1 and

σ = 1.0. The small arrows represent the velocity vector and

they contain the heading angle information.
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Scenario – Balloon Profile

Fig. 14. Trajectories using “balloon” profile (red arrows: σ = 1.0; blue
arrows: σ = 0.1).

The third case presents the following behavior: for σ = 0.1,

the trajectory is very objective with respect to its the final

destination. For σ = 1.0, the trajectory becomes more adrift.

Note that the individual objectivity is inversely proportional

to the σ parameter: the greater the variance, the greater the

variability of trajectory and vice versa. The “balloon” profile

can be modeled directly by a gaussian distribution, bringing a

special appeal to the point of view of stochastic filtering based

on noises with gaussian distribution.

D. Standard deviation analysis

In order to verify the influence of the parameters γ, λ and σ
on the variability of the trajectories, we analyzed the heading

angle random variable standard deviations1 as a function of

1/γ, 1/λ and σ.

The standard deviation for the “drop” profile can be cal-

culated using the pdf fA(α) in equation (1) and the standard

deviation definition (assuming zero-mean random variable):

σdrop(γ) =

√

∫ π

−π

α2
a

2(a|α|+ 1) ln(γ)
dα, a =

γ − 1

π
(21)

Note that the integral in equation (21) is not analytical and,

the analysis of this standard deviation will be on the numerical

point of view.

For the “leaf” profile, the standard deviation can be obtained

as follows:

σleaf(λ) =

√

∫ π

−π

α2cλe−λ|α|dα, c =
1

2(1− e−λπ)
(22)

Calculating the integral in (22), we obtained the following

result (as a function of λ):

σleaf(λ) =

√

−π2λ2 + 2πλ− 2eλπ + 2

λ2(eλπ − 1)
(23)

Figure 15 shows the standard deviation as a function

of 1/γ, 1/λ and σ. For the integral in (21), we used

the Wolfram Alpha tool [11]. The website provides several

mathematical calculations both numeric and analytical. Us-

ing the Wolfram Alpha tool, we calculated 15 values of

σdrop for 15 values of γ: γ = 1.01, 1.5, 2, 10, 20, 30, 50,
70, 100, 150, 200, 250, 300, 350, 400 (note that 1/γ < 1; see

eq. (1)).

Note from the plots on Figure 15 that the “drop” standard

deviation is always greater than σleaf and σballoon. This plot

shows what was seen on Figure 12, i.e., the lack of objectivity

of the trajectories originated from the “drop” profile, whereas,

it can also be seen that the smaller the parameter λ, the greater

the standard deviation and, from 1/λ = σ = 1.25, the σleaf is

always lower than σballoon.

E. Trajectory model

In the simulations presented in Sections III-A, III-B and

III-C, it was used a trajectory model based on the time

evolution of six elements of the state vector: the position

1The standard deviation parameter σ works as a reference for the other two
parameters.
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Fig. 15. Standard deviations × {1/γ, 1/λ, σ}.

components (xk,yk), the velocity components (sxk,s
y
k), the

speed (sk) and heading angle (αk).

The position and velocity components are determined based

on a constant velocity motion. Considering that pk = [xk yk]
T

and sk = [sxk syk]
T

, we have:

pk+1 = pk + skdT

[

cos(αk)
sin(αk)

]

(24)

sk+1 =
pk+1 − pk

dT
= sk

[

cos(αk)
sin(αk)

]

(25)

where dT is the sampling time.

The speed component is evaluated based on the average

speed of an individual i (s̄i) and its standard deviation (σsi ).

These values are predetermined in the simulation. So, we have:

sk = s̄i ± σsiu1 (26)

where u1 is a random variable based on some distribution with

zero mean.

Finally, the heading angle αk evolves according with the

following expression:

αk+1 = αk + α(u2) (27)

where u2 ∼ U(0,1) and α(u2) is given by equation (8) or

(16), depending on the chosen profile (“drop” or “leaf”).

It is possible to express equations (24)–(27) in a matrix

notation, as follows:

xk+1 = Axk + b (28)

where

xk =
[

x y sx sy s α
]T

k
(29)

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 cos(αk)dT 0
0 1 0 0 sin(αk)dT 0
0 0 0 0 cos(αk) 0
0 0 0 0 sin(αk) 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(30)

b =
[

0 0 0 0 s̄i ± σsiu1 α(u2)
]T

(31)

Figure 16 shows an example of a scenario with a high

number of individuals moving around, which can be employed

on radar surveillance studies. The colors that appear in this

scenario represents several types of terrains (easy to walk ter-

rains – blue, difficult to walk terrains – yellow, insurmountable

obstacles – red). In this case, the direction of each trajectory is

modeled by the “leaf” profile. The general behavior presents

a good resemblance to real movement of individuals. In this

scenario, the “leaf” profile was primarily used to generate

the trajectories, combined with elements that restrict the free

movement.

Some brief details about how the trajectories behave in

the scenario with obstacles are provided. The trajectories are

generated at magenta points. When a trajectory is generated,

its final destination is already defined from the begining

(towards the black region). The trajectory is guided by the

so-called subdestinations (cyan points). These subdestinations

are previously defined in the scenario. When the trajectory

find a subdestination, the new subdestination is calculated

based on the preferred choice between the distance to its final

destination and the nearest subdestinations; the one with the

smallest distance is the chosen one. This is repeated until the

trajectory arrives to its final destination, where the trajectory

vanishes.

The different terrains have different probability values rela-

tive to change to a new direction to proceed. For example,

an individual walking on the yellow terrain has a higher

probability to stop and change the direction of the trajectory

than on the blue terrain. The red obstacle is different: when

the trajectory hits a red obstacle, a new direction is defined,

acting like a wall. The green terrain is a free movement zone.

IV. CONCLUSION

In this paper, three types of probabilistic profiles were

proposed. These profiles models the heading angle of tra-

jectories of individuals and they are able to provide the

direction in which an individual is moving. Each probabilistic

profile is based on the definition of the cumulative distribution

function and the probability density function of the random

variable, which models the heading orientation of the walking

movement of an individual. The “drop” profile provides a more

erratic movement; the “leaf” profile gives a characteristic of

greater objectivity to the individual, in relation to his final

destination; the “balloon” profile has a more flat profile at its

peak providing some degrees of motion for left and right. It
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Fig. 16. Example of a scenario with a high number of trajectories.

was observed that the parameters γ, λ and σ are responsible

for the objectivity of the individual.

For each probabilistic profile, a test was performed to verify

the behavior of the model, as regards to the sensitivity of their

adjustment parameters. Some interesting characteristics are

observed. For example, the “drop” profile has a low sensitivity

to changes in the value of γ, while the sensitivity of the “leaf”

profile is reasonable, when the parameter λ is modified. The

“balloon” profile objectivity is inversely proportional to the σ
parameter. The influence of each parameter was evaluated by

means of the standard deviation analysis with respect to the

heading random variable.

Based on the results in Section III-A (objectivity test,

standard deviation analysis), it is possible to conclude that

the parameters γ, λ and σ in each profile are responsible

for shaping the probabilistic heading behavior, with different

sensitivity for each model. Furthermore, from the simula-

tions, we observe that the trajectories can represent not only

pedestrians walking/running (trajectories with small heading

changes), but depending on the parameters, foraging animals

or ants searching for food (trajectories with frequent heading

changes). In both cases, the model can be inserted in structured

scenarios with or without obstacles.

One possible extension of the models proposed here would

be to apply them to target tracking problems, in order to

observe the performance of the proposed probabilistic models

in comparison with standard models, such as nearly-constant

velocity model. There is also a possible extension of the

profiles to the 3D space for aircrafts, UAVs or even birds.

However it is necessary to verify its complexity since it must

take into account not only the heading angle but also roll and

pitch angles.
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