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Abstract—A great deal of interest has been paid to target
tracking for the last decades. When using Bayesian estimation
algorithms, choosing relevant motion models is crucial for accurate
localization. Information on the type of target and its maneuver
capability can be helpful in the motion model design. Thus,
joint tracking and classification (JTC) methods based on target
features have been recently developed. In this paper, JTC is
addressed by using target extent measurements. We present a
flexible formulation of the JTC problem where a target class is
characterized by a set of possible motion models. Two multiclass
multiple-model algorithms are first derived. Then, to alleviate
the difficult tuning of the model parameters, we take advantage
of Bayesian non-parametric models. A Dirichlet-process based
algorithm is presented for the JTC and the model parameter
estimation. Finally, a comparative study of these three approaches
is carried out for maritime-target tracking.

Keywords—Joint tracking and classification (JTC), target extent,
Bayesian estimation, multiple models, dirichlet process.

I. INTRODUCTION

Among the functions performed by a surveillance radar,

tracking algorithms allow targets to be located at each instant

so that their evolutions can be observed by the user over time.

In general, tracking is based on recursive Bayesian approaches

such as Kalman filtering or particle filtering. In this case, the a

priori choice of the motion model impacts the tracking accuracy.

Taking into account information about the target type can help

defining relevant models [1]–[5]. This is one of the reasons

why joint tracking and classification (JTC) methods have been

recently proposed.

Classically, the target classification is based on target features

such as the shape, the size or the dynamical capabilities. In [6],

Ristic et al. propose to use kinematic information to classify air

targets. More particularly, all the target classes share the same

dynamical model but differ by the span of possible accelerations.

In [7], Challa et al. address the target classification issue by

using both radar measurements and electronic support measures

(ESM) data. Then, they present the corresponding Bayesian

radar and ESM data fusion algorithm.

To our knowledge, the target size has not been considered yet as

a target feature for JTC algorithms. In classical target tracking

approaches, single-point measurements of the target position

are used [7]–[9]. However, the target extent measurements,

which are one-dimensional measurements of the target length

along the radar-to-target line of sight (LOS) [10] [11], can

be provided by recent sensors such as high-range resolution

(HRR) radars. In [10], the authors suggest using this attribute

in target tracking to improve the performance of classical data

association algorithms. For this purpose, an elliptical target

model is introduced so that target extent measurements can be

exploited for any target orientation regarding the sensor-to-target

direction. However, there is no classification in this method.

In this paper, JTC algorithms based on both kinematic measure-

ments and target extent measurements are presented. A target

is assumed to belong to one among several predefined target

classes. Each class corresponds to a specific type of targets

(small or large, cooperative or not, maneuvering or not, etc.).

Conditionally to this class, contrary to [11], we suggest model-

ing the target dynamic by different motion models. The target

class and the kinematic parameters are jointly estimated from

both the noisy kinematic measurements and the target extent

measurements. First, two multiclass multiple-model (MM) based

Bayesian algorithms are derived. One is an extended Kalman

filter (EKF) based interactive MM (IMM) algorithm whereas

the other is an MM particle filter (PF).

Nevertheless, classical MM-based approaches rely on the strong

assumption that the system can only switch between a finite

number of a priori known models. Recently, Bayesian non-

parametric (BNP) models have been introduced. They are

mainly popular in statistics or machine learning [12]–[14]. These

approaches make it possible to relax assumptions regarding the

number of evolution models to be considered and the distribu-

tions of their parameters. Indeed, if the state transition matrix

and/or the model noise and measurement covariance matrices

are assumed to be unknown, their probability density functions

(pdfs) can be modeled as Dirichlet process (DP) mixtures

which can be seen as infinite mixtures of Gaussian distributions

[12] [14]. This amounts to considering that the matrices to be

estimated can switch between an unknown number of persistent

modes. This approach has the advantage of being flexible but its

drawback lies in the dimension of the model parameters to be

learnt. It is all the higher as the state-vector size is large. In this

paper, we suggest finding a compromise between the number of

variables to be estimated and the flexibility of the algorithm. For

this purpose, within each target class, we propose to categorize

the motion models in families. For each of them, the state-

transition and model-noise covariance matrices are characterized

by a known functional form but they differ by a reduced set of

unknown hyperparameters such as the model-noise variance or

motion-model time constants. Only these hyperparameters thus

need to be estimated by using non-parametric models called

DPs.

Finally, the MM-based and the DP-based Bayesian algorithms

are applied to maritime-target tracking. In this case, the clas-
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sification consists in identifying if a target is non-maneuvering

or potentially maneuvering. A comparative study between the

three proposed approaches is then carried out in terms of

computational cost and estimation performance.

Our paper is organized as follows: in section II, the problem

statement is presented. Then, the multiclass MM-based and

DP-based approaches are detailed in section III and section IV

respectively. They are then applied to maritime-target tracking

in section V where simulation results are presented. Finally,

conclusions and perspectives are drawn in section VI.

In the following, ⊗ denotes the Kronecker product, T the

transpose, δx(.) the Dirac distribution centered in x and IN
the identity matrix of size N . blkdiag and diag create a block

diagonal matrix and a diagonal matrix respectively. In addition,

∼ stands for is distributed according to and N (x, µ,Σ) is

the Gaussian distribution for the variable x whose mean and

covariance are µ and Σ respectively. The sequence {u1, ..., ul}
is denoted u1:l.

II. PROBLEM STATEMENT

A. System modeling only based on target dynamics

When tracking a maneuvering target, there is a high uncer-

tainty about its evolution model. In this case, classifying the

target in one of some predefined classes can help the practitioner

to adjust the target dynamical model.

Let us assume that a target belongs to one among C target

classes, denoted by c ∈ {1, ..., C}. This attribute does not vary

over time and characterizes a type of target. We then assume that

its trajectory in the xy-plane can be described by a finite number

r(c) of possible motion models denoted {M c
1 , ...,M

c
r(c)}. Within

each class, the transition between the different motion models is

described by a Markov chain whose transition probability matrix

(TPM) is denoted by Πc. If mc
k denotes the motion model of

the target at time k, the elements {Πc
ij}

j=1,...,r(c)
i=1,...,r(c) of Πc satisfy:

Πc
ji = Pr(mc

k+1 =M c
i |m

c
k =M c

j ) (1)

For the motion model mc
k at time k, the system evolution model

is described by:

xk+1 = Fmc
kxk + u

mc
k

k (2)

where:

• the state vector xk is defined for second-order and third-

order motion models respectively as follows:

xk = [xk, ẋk, yk, ẏk]
T ; xk = [xk, ẋk, ẍk, yk, ẏk, ÿk]

T (3)

with xk and yk the positions, ẋk and ẏk the velocities and

ẍk and ÿk the accelerations on the x and y dimension.

• Fmc
k denotes the transition matrix, u

mc
k

k is a zero-mean white

Gaussian noise with covariance matrix Qmc
k .

It should be noted that the functional forms of Fmc
k and

Qmc
k are different according to the type of motion model.

For instance, among the possible system evolution models, the

constant velocity (CV) [15] is defined by the following transition

and covariance matrices:

FCV = I2 ⊗

[

1 T

0 1

]

; QCV = I2 ⊗ σ2
CV

[

T 3

2
T 2

2
T 2

2 T

]

(4)

with T the sampling period and σ2
CV the acceleration variance.

When considering a Singer motion model [16], one has:

FSin = I2 ⊗





1 T
(αT+ρ)

α2

0 1 (2−ρ)
α

0 0 ρ+ 1



 ; QSin = I2 ⊗ σ2
SinQ̃

Sin (5)

where ρ = e(−αT ) − 1 and α = 1
τSin

with τSin the Singer time

constant. σ2
Sin is the acceleration variance and Q̃Sin a matrix

of size 3 × 3 and whose elements are functions of both α and

T . For the sake of space, their expressions are not detailed but

can be found in [16].

As an airborne radar usually provides the radar-to-target distance

and the bearing angle, the measurement function is:

h(xk) =

[
√

(xk − xr)2 + (yk − yr)2

tan−1( yk−yr

xk−xr
)

]

(6)

where (xr, yr) are the radar coordinates which are known. The

noisy measurement yk and the state vector thus satisfy:

yk = h(xk) + vk (7)

where the measurement noise vk, uncorrelated with u
mc

k

k , is

a zero-mean white Gaussian noise with covariance matrix

R = diag(σ2
d, σ

2
ba) where σ2

d and σ2
ba are the variances on the

distance and bearing angle measurements respectively.

This system modeling only based on target dynamics is used in a

wide range of approaches. Nevertheless, knowing target features

such as the target dimension can be of real interest to improve

the tracking performance. Therefore, we jointly estimate the

target kinematic parameters and the target length.

B. System modeling including the target length

In practical cases, the dimensions of the target are not directly

available. However, the range extent of a moving target, which is

a function of both the target dimension and the relative geometry

between the target and the sensor, can be estimated from an HRR

radar. Under some assumptions, it can be related to the target

length. In order to exploit the target extent measurements for

any target orientation regarding the radar, the maritime-target

shape is based on an elliptical model [10]. From this model, as

illustrated by Fig. 1, it can be shown that the down-range extent

of a target is defined as follows:

L∗(φ, l) = l

√

cos2(φ) +

(

b

a

)2

sin2(φ) (8)

where φ denotes the angle between the direction of the target

and the radar-to-target LOS. In addition, l is the target length

and b
a is the ratio between the major and the minor axis lengths

of the ellipse. As suggested by [10], the ratio b
a is assumed to

be known. In the framework of maritime target tracking, it can

be considered that the target is oriented according to the same

direction as the target velocity vector.

In addition, in practice, the down-range extent measurement is

disturbed by an additive zero-mean Gaussian noise wk with
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Fig. 1. Target elliptical model

variance σ2
dr and uncorrelated with vk as well as u

mc
k

k . Thus, it

can be shown that it is expressed as:

Lk = L∗(xk, l) + wk

=
l

√

(ẏk∆y + ẋk∆x)2 +
(

b
a

)2
(ẏk∆x − ẋk∆y)2

√

∆x
2 +∆y

2
√

ẋ2
k + ẏ2k

+ wk

(9)

where ∆x = xk − xr, ∆y = yk − yr.

In the remainder of the paper, given (2) and (9) an extended

state vector which includes both the kinematic parameters and

the target length is introduced. It satisfies:

Xk = [xT
k l]T (10)

where l does not vary over time unlike xk.

In this case, for the motion model mc
k at time k, the extended

state vector evolves over time as follows:

Xk+1 = Fmc
kXk +U

mc
k

k (11)

where U
mc

k

k = [(u
mc

k

k )T 0]T is the zero-mean extended model

noise with covariance matrix Qmc
k and the state-transition and

covariance matrices are defined by:

Fmc
k = blkdiag([Fmc

k 1]) ; Qmc
k = blkdiag([Qmc

k 0]) (12)

As for the measurement equation, (7) becomes:

Yk = [yT
k Lk]

T = h(Xk) + Vk (13)

with h(Xk) = [h(xk)
T L∗(xk, l)]

T and Vk = [vT
k wk]

T

the measurement noise with covariance matrix

R = blkdiag(R, σ2
dr).

Given the above state space representation (SSR) for the

motion model mc
k, target tracking can be done by sequentially

estimating the state vector Xk by using the noisy observations

Y1:k.

As depicted by (11), the system evolution model can switch

from one motion model to another at each instant. To take it

into account, multiple models algorithms can be used [17] [18].

For a given motion model, as the measurement equation (13)

is non-linear, one of the following approaches can be used: an

extended KF (EKF), a second-order EKF, a sigma-point KF such

as the unscented KF [19], the central difference difference KF

[20] and the cubature or the quadrature KF [21]. The EKF, which

usually exhibits a good compromise between computational cost

and estimation accuracy is usually preferred. Alternatively, if

the non-linearity of the measurement function defined by (13)

is high, a PF can be considered.

III. JOINT TRACKING AND CLASSIFICATION ALGORITHM

Given (1), (11) and (13), the objective is to determine the

actual target class c and to estimate the state vector Xk given

the sets of kinematic measurements y1:k and the target extent

measurements L1:k.

In a Bayesian context, the estimation of the state and the target

class can be performed by using the maxima or the mean of

the joint posterior distribution. This issue can be decomposed

in two steps. First, the posterior distribution of the cth target

class can be sequentially computed as follows:

Pr(c|Y1:k) =
p(Yk|Y1:k−1, c)Pr(c|Y1:k−1)

p(Yk|Y1:k−1)

=
p(Yk|Y1:k−1, c)Pr(c|Y1:k−1)

∑C
c=1 p(Yk|Y1:k−1, c)Pr(c|Y1:k−1)

(14)

where at the initial time ∀c ∈ {1, ..., C}, P r(c) = 1
C .

Then, using the Bayes rule, the posterior pdf p(Xk|Y1:k) is:

p(Xk|Y1:k) =
C
∑

c=1

p(Xk|Y1:k, c)Pr(c|Y1:k) (15)

At the initial time p(l|c) = N (l, lc0, P
c
0 ) and p(x0) is Gaussian.

To address the problem described by (14) and (15), three

methods are proposed. They all share the same architecture

depicted by Fig. 2, but differ by the way the estimation within

each class is performed. In the following of this section, two

MM-based approaches are first presented: a multiclass IMM

(MC-IMM) algorithm based on EKFs and a multiclass MM

particle filter (MC-MMPF).

Yk

Classe 1:

Bayesian

Estimator

Class

update

State

update

p(Xk|Y1:k)

p(c = 1|Y1:k−1)

p(c = C|Y1:k−1)

p(Xk|Y1:k, c = 1)

p(Xk|Y1:k, c = C)

p(Yk|Y1:k−1, c = 1)

p(Yk|Y1:k−1, c = C)

Classe C:

Bayesian

Estimator

probability vector

Fig. 2. Architecture of the proposed algorithms

A. Multiclass IMM filter

For this first approach, we propose to estimate Xk within

each class by using an IMM algorithm. The latter consists in

running a finite number of filters in parallel, each one based

on a different state-model hypothesis. Here, EKFs are used.

Their outputs are sequentially merged by using a cooperation

strategy to prevent an exponential increase of the computational

complexity. At each instant, the predictive and the posterior

distributions are approximated one after the other by a mixture

of Gaussian distributions. In our case, they are expressed as:

p(Xk|Y1:k−1, c)≃

r(c)
∑

i=1

µ
(i,c)
k|k−1N (Xk,X

(i,c)
k|k−1, P

(i,c)
k|k−1) (16)

p(Xk|Y1:k, c)≃

r(c)
∑

i=1

µ
(i,c)
k N (Xk,X

(i,c)
k|k , P

(i,c)
k|k ) (17)
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where X
(i,c)
k|k−1 and X

(i,c)
k|k are the prediction and the estimation

of the state vector Xk computed by the ith EKF at time k.

P
(i,c)
k|k−1 and P

(i,c)
k|k are their corresponding error covariance

matrices. In addition, the filter weights are updated recursively

as follows:

µ
(i,c)
k|k−1 ∝

r(c)
∑

j=1

Πc
jiµ

(j,c)
k−1 (18)

µ
(i,c)
k ∝ p(Yk|Xk, c)µ

(i,c)
k|k−1 (19)

The proportionality constant is adjusted so that:
∑r(c)

i=1 µ
(i,c)
k|k−1 =

∑r(c)
i=1 µ

(i,c)
k = 1.

Finally, (17) is substituted in (15) to yield the posterior distri-

bution of the state vector.

As for the posterior distribution of the class Pr(c|Y1:k), it is

recursively computed by using (14) with:

p(Yk|Y1:k−1, c)

=

∫

Xk

p(Yk|Xk, c)p(Xk|Y1:k−1, c)dXk

≃
(16)

r(c)
∑

i=1

µ
(i,c)
k|k−1

∫

Xk

p(Yk|Xk, c)N (Xk,X
(i,c)
k|k−1, P

(i,c)
k|k−1)dXk

≃

r(c)
∑

i=1

µ
(i,c)
k|k−1N (Yk,Y

(i,c)
k|k−1, S

(i,c)
k )

(20)

with N (Yk,Y
(i,c)
k|k−1, S

(i,c)
k ) the pdf of the ith-EKF innovation for

the IMM of the class c at time k and where S
(i,c)
k and Y

(i,c)
k|k−1

denote the innovation covariance matrix and the predicted mea-

surement respectively. They are computed as follows:

Y
(i,c)
k|k−1 = h(X

(i,c)
k|k−1) (21)

S
(i,c)
k = H(i,c)P

(i,c)
k|k−1(H

(i,c))T +R (22)

with H(i,c) the Jacobian matrix of the measurement function

h evaluated at X
(i,c)
k|k−1. Its elements are recalled in [10]. As a

consequence, our first approach consists in combining (16)-(22).

B. Multiclass MMPF

As an alternative to the MC-IMM filter, we propose to

jointly estimate within each class the continuous-valued states

{xk, l} and the motion model mc
k by using particle filtering.

More precisely, it can be observed that conditionally upon

x̄k = [xT
k mc

k]
T , the state-space model is linear Gaussian

with regard to the target size l. In this case, Rao-Blackwellized

particle filters (RBPFs) are classically used. They are based on

the following decomposition of the joint posterior pdf:

p(x̄0:k, l|Y1:k, c) = p(l|x̄0:k,Y1:k, c)p(x̄0:k|Y1:k, c)

= p(l|x̄0:k, L1:k, c)p(x̄0:k|Y1:k, c)
(23)

where p(l|x̄0:k, L1:k, c) is Gaussian. Thus, for each class, only

p(x̄0:k|Y1:k, c) is estimated by particle filtering as follows:

p̂(x̄0:k|Y1:k, c) =

Np
∑

i=1

w
(i,c)
k δ

x̄
(i,c)
0:k

(x̄0:k) (24)

where the support points x̄
(i,c)
0:k are sequentially generated ac-

cording to a proposal distribution q(x̄
(i,c)
k |x̄

(i,c)
0:k−1,Y1:k, c) and

the so-called weights {w
(i,c)
k }i=1,...,Np

are computed to correct

for the discrepancy between the actual posterior distribution and

the proposal distribution. They can be recursively computed as:

w̄
(i,c)
k = w

(i,c)
k−1

p(yk|x̄
(i,c)
k )p(Lk|x̄

(i,c)
0:k , L1:k−1)p(x̄

(i,c)
k |x̄

(i,c)
k−1 , c)

q(x̄
(i,c)
k |x̄

(i,c)
0:k−1,Y1:k, c)

w
(i,c)
k =

w̄
(i,c)
k

∑

i w̄
(i,c)
k

(25)

Then, it suffices to run a Kalman filter (KF) for each particle

x̄i
0:k to compute in closed-form the conditional pdf:

p(l|x̄i
0:k, L1:k, c) = N (l, l̂

(i,c)
k , P

(i,c)
k|k ) (26)

where l̂
(i,c)
k and P

(i,c)
k|k are the target length estimate and the cor-

responding error covariance matrix for the ith KF, respectively.

By inserting (24) and (26) into (23) and then integrating out

x̄0:k, it finally ensues:

p̂(l|Y1:k, c) =

Np
∑

i=1

w
(i,c)
k N (l, l̂

(i,c)
k , P

(i,c)
k|k ) (27)

Given the distribution (27), the target length can be estimated.

Concerning the class probability, it can be recursively expressed

from (14) by first computing:

p(Yk|Y1:k−1, c)

=

∫

l

∫

x̄0:k

p(Yk|l, x̄0:k,Y1:k−1, c)p(l, x̄0:k|Y1:k−1, c)dx̄0:kdl

(28)

with p(l, x̄0:k|Y1:k−1, c) = p(l|x̄0:k,Y1:k−1, c)p(x̄0:k|Y1:k−1, c).
Then, within the PF, the predictive distribution can be

approximated by:

p(x̄0:k|Y1:k−1, c) ≃

Np
∑

i=1

w
(i,c)
k|k−1δx̄(i,c)

0:k

(x̄0:k) (29)

with w
(i,c)
k|k−1 ∝ w

(i,c)
k−1

p(x̄
(i,c)
k

|x̄
(i,c)
k−1 ,c)

q(x̄
(i,c)
k

|x̄
(i,c)
0:k−1,c,Y1:k)

.

Replacing (29) into (28) and taking into account conditional

independencies lead to:

p(Yk|Y1:k−1, c)

≈

∫

l

Np
∑

i=1

w
(i,c)
k|k−1p(Lk|l, x̄

(i,c)
0:k )p(yk|x̄

(i,c)
k )p(l|x̄

(i,c)
0:k , L1:k−1)dl

≈

Np
∑

i=1

w
(i,c)
k|k−1p(yk|x̄

(i,c)
k )

∫

l

p(Lk|l, x̄
(i,c)
0:k )p(l|x̄

(i,c)
0:k , L1:k−1)dl

≈

Np
∑

i=1

w
(i,c)
k|k−1p(yk|x̄

(i,c)
k )N (l, l̂

(i,c)
k|k−1, s

(i,c)
k )

(30)

where l̂
(i,c)
k|k−1 is the predicted length associated to the ith particle

at time k and s
(i,c)
k is its variance.

Note that in practice, we have used as proposal distribution

q(x̄
(i,c)
k |x̄

(i,c)
0:k−1,Y1:k, c) = p(x̄

(i,c)
k |x̄

(i,c)
k−1 , c).
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IV. EXTENSION TO UNKNOWN MODEL PARAMETERS

The above algorithms rely on the strong assumption that

the target of a given class can only switch between a finite

number of motion models whose model-noise variances should

be a priori set. However, these variances cannot be finely

tuned in practice whereas they may severely impact the tracking

performance. A standard solution to this problem is to increase

the number of models in the MM structure by representing a

given maneuver by several models characterized by different

model-noise variance values. Its main limitation is that using

too many competing models in parallel can degrade the estima-

tion performance, as suggested in [17]. In order to relax this

constraint on the model set design, non-parametric models have

been recently considered [12], [14]. The idea is to impose no

prior on the cardinality of the models as well as their parameters

so that the latter are learnt directly from the data. In [12] and

[14], the distributions of either the model control input or the

model noise are assumed unknown and modeled as infinite

mixture of distributions. Conversely, the state transition matrix

is assumed to be known.

The specificity of our approach is the following: we consider

that the target motion models can be categorized in a finite

number of model families (CV, constant acceleration, constant

turn, Singer, etc.) corresponding to a given maneuver mode. All

the models within a class share the same known functional form

but differ from a model-noise variance parameter denoted γk.

Only the latter is allowed to switch between an infinite number

of values. The proposed hierarchical model thus includes a

discrete variable that indicates the model family. Conditionally

to it, the distribution of the time-switching model-noise variance

is modeled by a DP. The system evolution is hence described

by a mixture of DPs. On the basis of our hierarchical model,

Bayesian inference of the target class, the current model family,

the state vector and the model-noise variance is performed at

each instant by using particle filtering.

A. DP principle

Let us consider a set of variables {γk}k≥0 assumed to be inde-

pendent and identically distributed according to a distribution G.

Bayesian non-parametric modeling consists in considering that

G is unknown and is assigned a prior distribution. In this paper,

we consider a class of prior termed DPs that have the advantage

of being very flexible and making the inference easily tractable

thanks to the so-called polya-urn representation. DPs are defined

as distributions over the space of probability measures [12].

They are uniquely characterized by a base distribution G0 and a

scale factor α0. If G is the unknown distribution of the variables

{γk}k≥0, one has:

G ∼ DP (G0, α0) (31)

The realizations G of a DP are infinite distributions. By using

the stick-breaking representation, they can be expressed as:

G(γk) =
+∞
∑

j=1

πjδUj
(γk) (32)

where Uj ∼ G0, πj = βj

∏j−1
l=1 (1 − βl) and βj ∼ B(1, α0),

where B stands for the Beta law. Note that (32) defines a

probability measure since
∑+∞

j=1 πj = 1.

Estimating G is an infinite-dimensional problem. However,

Blackwell et al. showed in [22] that the DP inference procedure

boils down to the estimation of the latent variable γk. Indeed,

the predicted distribution of γk given the latent variables γ1:k−1

can be directly computed by marginalizing G. It leads to the

Polya urn representation:

p(γk|γ1:k−1, α0) =
1

α0 + k − 1

k−1
∑

j=1

δγj
(γk)+

α0

α0 + k − 1
G0(γk)

(33)

It can be interpreted as a reinforcement property: given the

previous latent variables γ1:k−1, a new sample can either be

drawn from the distribution G0 with probability α0

α0+k−1 or take

the same value as a previous sample with probability k−1
α0+k−1 .

Therefore, the scale parameter plays a key role. If α0 is small,

the same value of γk is drawn several times whereas if α0 tends

to infinity, the samples become iid from G0.

In the next subsection, the proposed hierarchical model based

on mixtures of DPs is detailed.

B. Proposed hierarchical model

Let zck ∈ {1, ..., f(c)} denote the index of the actual motion-

model family at time k for the class c and f(c) the number

of model families in this class. Here, the sequence {zck}k>0

is assumed to be a Markov chain with TPM denoted as

πc = {πc
ij}

j=1,...,f(c)
i=1,...,f(c) . Note that unlike the previous MM-based

approaches, the index zck does not refer to a well-defined model

but to a family composed of an infinity of models corresponding

to different values for the variance parameter γk.

Conditionally to zck, the distribution of γk is assigned a DP

prior. The specificity of our work is hence that we consider as

many DPs as possible model families for a given target class.

Their realizations are denoted as {Gc,m}c=1,...,C
m=1,...,f(c). Each DP

is characterized by its own base distribution G
c,m
0 and its scale

parameter α
c,m
0 .

Given the above considerations, the relationships between zck,

Gc,m, γk, Xk and Yk can be described by the following

hierarchical model:

zck|z
c
k−1 ∼ πc

zc
k
zc
k−1

(34)

Gc,m ∼ DP(Gc,m
0 , α

c,m
0 ) for m = 1, ..., f(c) (35)

γk|{z
c
k, {G

c,m}m=1,...,f(c)} ∼ Gc,zc
k(γk) (36)

Xk|{Xk−1, γk, z
c
k} ∼ p(Xk|Xk−1, γk, z

c
k) (37)

Yk|Xk ∼ p(Yk|Xk) (38)

Based on the Polya urn representation, the unknown distribu-

tions {Gc,m}m=1,...,f(c) can be integrated out of this hierarchi-

cal model. However, the switching between the different model

families has to be taken into account. The predictive distribution

of γk becomes:

γk|{γ1:k−1, z
c
k, c} ∼

1

α
zc
k

0 + nzc
k

k−1
∑

j=1
s.t. zc

j=zc
k

δγj
(γk)+

α
zc
k

0

α
zc
k

0 + nzc
k

G
zc
k

0 (γk)

(39)
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where nzc
k
=

∑k−1
j=1 δzc

k
(zcj ) is the number of times the model

family zck has previously appeared.

The hierachical model defined by (34)-(38) thus reduces to (34),

(39), (37), and (38) as depicted in Fig. 3.

zck−1 zck zck+1

Gc,zc
k

α
c,zc

k

0G
c,zc

k

0

γk−1 γk+1γk

Xk−1 Xk Xk+1

Yk−1 Yk+1Yk

... ...

... ...

......

... ...

model class
index

DP

latent variable

state vector

observation

Fig. 3. Graphical representation of the hierarchical model

The objective is then, for each class, to on-line estimate

the joint posterior distribution of all the unknown parameters

p(l,x0:k, z
c
0:k, γ0:k|Y1:k, c). The latter does not admit a closed-

form expression due to the non-linearity and non-Gaussianity

of the proposed model. Therefore we use particle filtering

techniques. Similarly to section III, the hierarchical model

is linear Gaussian for the target length l conditionally upon

x0:k, zc0:k and γ0:k. As a consequence, for each class, we

propose to run a particle filter to address the estimation of

the nonlinear states x0:k, zc0:k, γ0:k while the target length is

optimally dealt with Kalman filtering. As for the propagation

of the particles, the easiest way to proceed is to simulate them

sequentially according to the prior model (34), (37), (39). Then,

the particle weights are merely proportional to the likelihood

p(yk|x
(i,c)
k )p(Lk|x

(i,c)
0:k , γ

(i,c)
0:k , z

(i,c)
0:k , L1:k−1). However, a great

number of particles is necessary to yield a good approximation

of the highly multi-dimensional posterior pdf. As an alternative,

we have considered an approximation of the optimal proposal

distribution [23]:

q(γ
(i,c)
k ,x

(i,c)
k , z

(i,c)
k |γ

(i,c)
0:k−1,x

(i,c)
0:k−1, z

(i,c)
0:k−1,y

(i,c)
1:k , c)

= q(γ
(i,c)
k |γ

(i,c)
0:k−1,x

(i,c)
0:k , z

(i,c)
k ,y1:k, c)

× q(x
(i,c)
k |x

(i,c)
0:k−1, z

(i,c)
k ,y1:k, c)Pr(z

(i,c)
k |z

(i,c)
k−1 )

(40)

Finally, as for the estimation of the class, the same expression

as in (25) is used but the expression of the predictive weights

is modified as follows:

w
(i,c)
k|k−1 ∝

w
(i,c)
k−1

p(x
(i,c)
k |x

(i,c)
k−1 , γ

(i,c)
k , c)p(γ

(i,c)
k |γ

(i,c)
0:k−1, c)

q(γ
(i,c)
k ,x

(i,c)
k |γ

(i,c)
0:k−1,x

(i,c)
0:k−1, z

(i,c)
0:k ,y

(i,c)
1:k )

(41)

V. APPLICATION TO MARITIME-TARGET TRACKING

A. Preliminary step: target class and model settings

Before analyzing the relevance of our approaches, let us define

the type of target classes that are considered. According to

Table I where the target lengths and the maximal accelerations

are given for various target types, it can be deduced that a target

is assumed to be potentially1 maneuvering if its length is small

enough.

Target Target maximal Target
type length (m) acceleration class

Freighter ≥ 100 0.02g Non-
Tanker ≥ 50 0.02g maneuvering

Ocean-going tug ≥ 50 0.02g targets

Fiching vessels ≈ 20 0.1g

Rubber boats ≈ 10 0.4g Maneuvering
Jetski ≈ 3 0.5g Targets

Pleasure boats ≈ 10 0.2g

TABLE I
MARITIME TARGET FEATURES

In the following, a maritime target thus belongs to one of the

C = 2 following classes:

• non-maneuvering targets,

• potentially maneuvering targets.

Let us now select the number and the type of motion models

in each class. For the non-maneuvering target class, r(1) = 1:

the motion model M1
1 is hence a CV with model-noise standard

deviation (std) denoted by σCV,1. Concerning the maneuvering-

target tracking, we suggest combining r(2) = 2 models: M2
1 is

a CV motion whose std is σCV,2 and M2
2 is a Singer motion

model whose model-noise std and time constant are σSin,2 and

τSin,2. The switching between both is then described by (1).

B. Simulation protocol

To analyze the relevance of the three proposed approaches, a

freighter of 120 m and a rubber boat of 10 m, denoted target 1

and target 2 respectively, are separately tracked.

At each instant, the trajectory of the target 1 is generated from

a CV motion model whose acceleration std σCV,1 can switch

between 5 × 10−2 m.s−3/2 and 0.2 m.s−3/2. The probability

to change from one value to another is 0.02.

Concerning target 2, its trajectory is generated from a

two-state Markov chain whose transition probability matrix

is

[

0.98 0.02
0.1 0.9

]

. The first state characterizes a CV motion

model whereas the second state is a Singer motion model. As

long as the target is described by the same model family, the

corresponding model-noise std remains unchanged and can take

one among the following values with an equiprobable way. For

the CV model, σCV ∈ {10
−1; 2 × 10−1} m.s−3/2 and for the

Singer model σSin ∈ {1; 2; 3; 4; 5}m.s−2 and τSin = 15 s.

Target trajectories are estimated from noisy radar measurements

which consist of both position and target extent measurements.

Note that for the measurement noise stds of the range and

bearing angle, three different configurations are tested:

• Conf. 1: σd = 10 m, σba = 0.001 rad.

• Conf. 2: σd = 10 m, σba = 0.005 rad.

• Conf. 3: σd = 20 m, σba = 0.001 rad.

In addition, the model-noise std of the down-range extent is

σdr = 5 m and T = 1 s. Note that at the initial time,

l10 = 120 m, P 1
0 = 400 m2 and l20 = 10 m, P 2

0 = 400 m2.

One trajectory realization for target 2 and the associated radar

measurements are represented in Fig. 4.

1The term ’potentially’ is used because, most of the time, maneuvering targets
do not actually maneuver.
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Fig. 4. Trajectory of target 2 and corresponding radar measurements

The three proposed approaches are designed as follows:

Multiclass IMM algorithm (MC-IMM):

The model parameters are: σCV,1 = σCV,2 = 0.2 m.s−3/2,

σSin,2 = 5 m.s−2 and τSin,2 = 15 s. In addition, the TPM is

set at2: Πc=2 =

[

0.98 0.02
0.1 0.9

]

.

Multiclass MMPF-based algorithm (MC-MMPF):

For both classes, the model-parameter setting is the same as in

MC-IMM. Moreover, the algorithm is run with Np = 3000.

Algorithm based on the mixture of DPs (MDP):

For each class, the model-noise variance γk corresponding to

the model family zck is estimated. For the first class, f(1) = 1.

zck = 1 thus refers to a CV motion model, whereas for the

second class f(2) = 2 so that zck ∈ {1, 2} refers to either a CV

motion model or a Singer motion model. In this latter case, the

model-family Markov chain is characterized by the following

TPM: πc=2 =

[

0.98 0.02
0.1 0.9

]

. As suggested in [12], the DP base

distribution G0 is defined as an inverse Gamma conjuguate

prior Γ(azc
k
, bzc

k
) on the MDP precision parameter. In order to

consider a weakly informative setting, for the first target class:

a1 = 4, b1 = 40. For the second target class, a1 = 4, b1 = 40
and a2 = 10, b2 = 0.01. Finally, the algorithm is run with

Np = 3000.

The results presented in the sequel are obtained from trajectories

of 200 samples averaged over 100 Monte Carlo simulations.

C. Simulation results

In the following, we give some comments about the com-

putational costs, the relevance of the algorithms concerning the

class estimation as well as the position estimation and the target

length estimation.

Computational cost:

Regarding the tests that have been performed, compared to a

single-model based EKF filter or an EKF-based IMM that do

not include classification, the computational cost of MC-IMM

is only slightly higher. Nevertheless, concerning MC-MMPF, its

complexity is more significant (around 50 times higher than MC-

IMM when Np = 3000) and is closely related to the number of

particles that is used. Finally, the computational cost of MDP is

the highest among all the proposed approaches (around 5 times

2It corresponds to a mean sojourn time of 50T and 10T in the first and the
second model respectively.

higher than MC-MMPF). Note that the computational cost is not

related to the classification since the calculations can be done

using parallel computing for each class.

Class estimation:

According to Fig. 5, where the class probabilities for the three

proposed approaches are represented for the 40 first samples,

using both kinematic and target extent measurement allows the

target class to be well-identified. The convergence is rather

fast and similar for the three proposed approaches. More pre-

cisely, because of the estimation of the model-noise variance,

the convergence of MDP is the fastest. It should be noted

that the clear-cut decision directly stems from the simulation

protocol. Indeed, we have on purpose considered target lengths

that clearly categorize them in one of the classes so as to

better emphasize the influence of this information on the JTC.

Moreover, due the model switching probabilities, it at worst

takes a few iterations for target 2 to be maneuvering. In practice,

for a target of medium length that does not maneuver during a

long time period, the classification can take far more iterations.
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Fig. 5. Target class probabilities averaged over 100 Monte Carlo simulations

Position estimation:

The root mean square errors (RMSEs) on the positions for the

three proposed approaches are compared with:

1/ the RMSE related to the measurement noise, i.e. without

applying any filtering algorithm. It is denoted Meas..

2/ the RMSE when using an EKF, denoted Ref., based on the

true motion model and set with the true model-noise std.

3/ the RMSE when using an IMM without classification com-

bining two EKFs [17]. The first one is based on a CV motion

model with σCV = 2.10−1 m.s−
3
2 . The second one is based on

a Singer motion model with σSin = 5 m.s−2 and τSin = 15 s.

Config. Meas. Ref. IMM MC-IMM MC-MMPF MDP

Conf. 1 15.33 7.88 8.62 8.16 8.27 8.04

Conf. 2 53.91 26.44 27.59 27.01 26.95 26.62

Conf. 3 59.25 33.43 34.91 34.37 34.23 33.67

TABLE II
RMSES FOR TARGET 1 (NON-MANEUVERING TARGET)

Config. Meas. Ref. IMM MC-IMM MC-MMPF MDP

Conf. 1 14.75 8.08 8.92 8.91 8.78 8.43

Conf. 2 54.23 27.57 28.46 28.43 28.35 27.85

Conf. 3 60.68 34.32 35.68 35.66 35.32 34.77

TABLE III
RMSES FOR TARGET 2 (POTENTIALLY MANEUVERING TARGET)
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According to Table II and III, compared to IMM, the three

proposed approaches have better performance for position es-

timation. In particular, as the model-noise variance is estimated

with MDP at each instant, this approach outperforms the others

for which the variance is set to a predefined value. In addition,

MC-MMPF is slightly better than MC-IMM due to the non-

linearity of the measurement function. Finally, one can remark

than MC-IMM and IMM have close performance when dealing

with the maneuvering target but differ for the non-maneuvering

one. Indeed, for target 1, if the classification is correct, both

IMM and MC-IMM are equivalent, whereas for target 2, MC-

IMM reduces to a single CV-based EKF. This latter is then better

than MC-IMM because, due to the IMM mixing strategy, the

weights in favor of a given model are not necessarily clear-cut.

Infuence of the size estimation:

Finally, the target size estimation for one realization of the

trajectory of target 1 (non-maneuvering) and target 2 (maneu-

vering) respectively obtained with Conf. 2 is analyzed.
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Fig. 6. Target size estimation: averaged over 100 Monte Carlo simulations

As depicted in Fig. 6, the target length estimation converges

quickly to the true value. This characteristic is partly the cause of

the fast convergence of the target-class probabilities. Indeed, as

depicted by Fig. 7 for MC-IMM approach, without considering

the target length estimation, the class probability convergence

is slower. Therefore, the resulting RMSE is slightly higher than

the one obtained with target extent measurements.
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Fig. 7. Comparison of the MC-IMM performances with and without target
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VI. CONCLUSIONS AND PERSPECTIVES

New JTC algorithms that take into account the target extent

measurement are proposed. First, a multiclass EKF-based IMM

filter and a multiclass MMPF are derived. Then, to alleviate

the uncertainty on the time-varying model-noise variance, a

new DP-based non-parametric model is introduced. The three

proposed approaches are applied to maritime-target tracking.

They are compared one another and with an IMM algorithm.

It is shown that the DP-based algorithm outperforms the other

algorithms. Nevertheless, this is at the cost of a high compu-

tational cost. As a perspective, we plan to test our approaches

with real radar data and to generalize it to multitarget tracking.
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