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Abstract—This paper addresses multitarget tracking (MTT)
in clutter, including jointly detecting targets and estimating their
states. Good solutions for MTT require solving the two problems
jointly. A joint decision and estimation (JDE) framework based
on a generalized Bayes risk was recently proposed for solving
problems involving inter-dependent decision and estimation. In
the JDE framework, a conditional JDE (CJDE) approach was
proposed, which is conditioned on data. However, direct applica-
tion of CJDE to MTT is difficult because the estimation cost for
the case of multi-targets is not defined. The key to applying CJDE
to MTT is to design a reasonable and tractable estimation cost. In
this paper, we propose a CJDE risk that is inspired by the optimal
subpattern assignment (OSPA), which is a widely used metric for
MTT performance evaluation. OSPA unifies the estimation error
of tracking and the cardinality error of detection, and has many
nice properties. The proposed CJDE risk with the OSPA-like cost
takes advantage of both OSPA and CJDE. Furthermore, this risk
is not only reasonable but also easy to optimize. Based on this
risk, we derive the optimal joint decision and estimation. For
MTT, simulation results show that both the proposed CJDE and
the existing recursive JDE (RJDE) outperform the traditional
decision then estimation strategy in OSPA, and CJDE with the
OSPA-like cost is better than RJDE in many cases.

I. INTRODUCTION

Multitarget tracking (MTT) is an old and still open problem
[1]. In an MTT problem, not only do the targets states vary
with time but also the number of targets also changes due
to the target appearing and disappearing. Often, not all the
existing targets can be detected, and sensors receive clutter
not originating from the targets. In an MTT scenario, we
want to infer both the number of targets and their states from
observations in the presence of clutter.

MTT has been studied extensively and abundant results
are available. The random finite set (RFS) approach has
attracted much attention in recent years. Several filters were
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developed: the probability hypothesis density (PHD) filter
[2], the cardinality PHD (CPHD) filter [3], and the multi-
target multi-Bernoulli (MeMber) filter [4]. Sequential Monte
Carlo (SMC) and Gaussian mixture (GM) implementations
of these filters [5]–[7] have also been reported for MTT,
and numerous applications have been made. However, these
methods are in nature for multitarget densities due to their
RFS basis. In this paper, we focus on the point estimation
rather than density estimation. In many data association-based
MTT algorithms, multiple hypothesis tracking (MHT) [8] and
joint probabilistic data association (JPDA) [1] methods are
adopted. These methods, however, either assume a known
number of targets or determine the number of targets first and
then estimate their states based on the determined number.
In some other applications, for example, for radar detection
and target tracking of low-observed objects, tracking-before-
detection (TBD) is adopted [9].

MTT problems have two main goals: deciding on the
number of targets and estimating their states, and they affect
each other. A correct decision on the number can help state
estimation and accurate state estimation can also help make a
correct decision on the number. In essence, this is a so-called
joint decision and estimation (JDE) problem [10], and good
solutions require solving the two problems jointly.

The prevailing strategies for solving JDE problems can
be classified into the following categories [11]. (1) Separate
decision and estimation: decision and estimation are consid-
ered as two separate problems without considering their inter-
dependence [12], [13]. (2) Decision then estimation (DTE):
make a best decision first disregarding estimation and then do
estimation as if the decision were surely correct. A serious
disadvantage of this strategy is that it does not account for
possible decision error in the subsequent estimation. Also,
decision is done disregarding the quality of the estimation it
would lead to [14], [15]. (3) Estimation then decision (ETD).
It would not work well if estimation is significantly dependent
on decision [16], [17]. These separate or two-step strategies all
have their respective drawbacks in solving JDE problems, and
an effective remedy is hard to come by within these strategies.

In the general case, decision and estimation by a joint
approach would be more promising than the existing methods
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since it can take advantage of the coupling between deci-
sion and estimation. Reference [10] proposed an integrated
paradigm for JDE based on a new Bayes risk, which is a gen-
eralization of the traditional Bayes decision risk and estimation
risk. This approach is inherently superior in performance to
the conventional two-stage strategy or separate decision and
estimation, especially for problems where decision and esti-
mation are highly correlated. [11] adapted the JDE approach
to the dynamic case and proposed a recursive JDE (RJDE)
algorithm. The power of the proposed JDE has been illustrated
by applications to several JDE problems [11], [18]–[20]. In
[19], we solved an extended object tracking and classification
problem in the JDE framework and proposed a random-matrix-
based multiple model RJDE method for extended objects.
In [20], we applied the RJDE method to a multisensor-data
based joint tracking and classification (JTC) problem, which
is formulated based on homogenous sensor data. [21] applied
RJDE to the MTT problem by defining a new estimation
cost for multi-targets, and its superiority was also verified by
comparing with the traditional DTE method.

Based on JDE, we proposed a conditional JDE (CJDE)
risk in [22], which is a Bayes JDE risk conditioned on data.
To minimize the CJDE risk, the optimal joint decision and
estimation was derived in [22]. CJDE inherits the theoretical
superiority of JDE by making full use of the coupling between
decision and estimation. For calculation, CJDE has simple
complexity due to its conditioning on data, which is more
practical. In [23], we applied the proposed CJDE approach
to a practical JTC problem using multisensor data, and the
superiority of CJDE was demonstrated.

In this paper, we address the MTT problem using the CJDE
method. The key to applying CJDE to MTT is to design a
reasonable and tractable estimation cost, especially for the
case that decision is incorrect. For example, how should we
define the error of an estimator of two targets, each with a
state dimension n, while there is only a single target with a
state dimension n? To solve the MTT problem, in the RJDE
method, [21] uses a simple and direct estimation cost, which
is easy to handle. However, this definition is not well justified.

For performance evaluation of MTT, the recently proposed
optimal subpattern assignment (OSPA) has been widely used in
the literature addressing the MTT problem [24] [25]. As a joint
performance metric, OSPA has many nice properties and is
shown to eliminate most shortcomings of the Hoffman-Mahler
metric and the optimal mass transfer (OMAT) metric [26]. In
the context of MTT, OSPA unifies the localization error of
estimation and the cardinality error of decision. This is similar
to the JDE risk, in which decision risk and estimation risk are
combined into a unified framework. The similarity between
the OSPA metric and the JDE risk motivated our work.

To solve the MTT problem, we propose a new CJDE
risk that is inspired by OSPA. It takes advantage of both
the OSPA and CJDE, which are an evaluation metric and
an optimization objective function, respectively. An evaluation
metric aims to faithfully judge the performance and thus the
key is to be objective, little distortion, and computable. For
an optimization function, however, its objective is to explore
solutions which have good performance, and thus it is critical
to be mathematically tractable and practically acceptable [27].
Considering this, we integrate OSPA and CJDE in a promising

way by several improvements. The resulting risk is not only
reasonable but also tractable.

Based on the proposed risk, we derive the optimal joint
decision and estimation and present the corresponding algo-
rithm. The superiority of our method is verified through an
illustrative scenario of an MTT problem. Simulation results
show that both RJDE and the proposed CJDE outperform the
traditional DTE method in OSPA, and CJDE with OSPA-like
cost performs better than RJDE in several typical cases.

This paper is organized as follows. Section II overviews the
CJDE method, the existing RJDE method for MTT problems,
and the OSPA metric. Section III proposes a new CJDE risk
with OSPA-like cost, which is reasonable and tractable. The
optimal JDE minimizing this risk is also derived. In Section
IV, an illustrative MTT example is presented. The proposed
method is compared with DTE and RJDE methods. Section V
concludes the paper.

II. REVIEW OF CJDE APPROACH AND OSPA METRIC

A. Joint Decision and Estimation (JDE)

The basic idea of the JDE approach is to minimize the
following generalized Bayes risk [10]

R̄ =
∑

i,j

(αijcij + βijE[C(x, x̂)|Di, Hj ])P{Di, Hj} (1)

where Di stands for the ith decision, which is equivalent to the
event {z ∈ Di} (Di is the decision region for Di in the data
space); cij is the cost of deciding on Di while the truth is Hj ;
P{Di, Hj} is the joint probability of decision and hypothesis;
C(x, x̂) is the cost of estimating x by x̂; E[C(x, x̂)|Di, Hj ]
is the expected cost conditioned on the fact that Di is decided
but Hj is true; and αij and βij are the weight coefficients
of decision and estimation costs, which provide additional
flexibilities. To minimize R̄ of (1), the optimal JDE {D, x̂}
was given [10]. Here, D and x̂ are the decision and estimation
results, respectively.

Remark 1: This Bayes risk R̄ is a generalization of the
traditional Bayes risks for decision and for estimation, respec-
tively. A JDE algorithm with guaranteed global convergence
was presented in [10]. This JDE approach explicitly accounts
for the inter-dependence between decision and estimation, and
it is theoretically superior to the existing method of separate
decision and estimation or two-stage methods.

Based on JDE, we proposed a conditional JDE (CJDE) risk
in [22], which is a Bayes JDE risk conditioned on data.

B. Conditional JDE (CJDE)

The basic idea of CJDE is to minimize the CJDE risk:

RC(z) =
∑

i,j

(αijcij +βijE[C(x, x̂)|Di, Hj, z])P{Di, Hj|z}

(2)
To minimize RC(z) (2), given any estimation cost
E[C(x, x̂)|Di, Hj, z], the optimal decision D is

D = Di, if Ci
C(z) 6 Cl

C(z), ∀l (3)
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where the posterior cost is

Ci
C(z) =

∑

j

(αijcij + βijE[C(x, x̂)|Di, Hj , z])P{Hj|z}

(4)
and given Di, the optimal estimator with C(x, x̂) = x̃′x̃ is

x̂ = x̌(i) =

N
∑

j=1

E[x|z, Hj ]P̄i{H
j|z} (5)

P̄i{H
j|z} =

βijP{Hj|z}
∑N

k=1 βikP{Hk|z}

A proof of the optimal CJDE was presented in [22]. To
calculate the posterior cost Ci

C(z) (4), the key is to obtain
E[C(x, x̂)|Di, Hj, z]. In CJDE, with C(x, x̂) = x̃′x̃,

εij(z) , E[x̃′x̃|Di, Hj , z]

= mse(x̂(ij)|Di, Hj , z) + E[(x̂(ij) − x̂)′(·)|Di, Hj , z]

= mse(x̂(j)|Hj , z) + E[(x̂(j) − x̌(i))′(·)|Di, Hj , z], ∀z ∈ Di

= mse(x̂(j)|Hj , z) + (x̂(j) − x̌(i))′(·), ∀z ∈ Di (6)

where x̂ is the CJDE estimate, mse(x̂|A) denotes the con-
ditional (on A) scalar mean square error, and (·) denotes
the same term right before it. For z ∈ Di, we have x̂ =
x̌(i), x̂(ij) = E[x|Di, Hj , z] = E[x|Hj , z] = x̂(j), and
mse(x̂(ij)|Di, Hj, z)= mse(x̂(j)|Hj , z). Note that in the last
equation above, the expectation disappear since x̂(j) and x̌(i)

are both fixed given z and Di.

For dynamic JDE problems, measurements are usually
obtained sequentially, and the above CJDE algorithm maybe
computationally inefficient due to its batch form. Considering
this, we propose a recursive CJDE (RCJDE) algorithm [22]
based on the following RCJDE risk:

RC(Zk) =
∑

i,j

(αijcij + βijE[C(xk, x̂k)|Di
k, Hj, Zk])

× P{Di
k, Hj |Zk} (7)

where xk is the true state at time k, x̂k is its estimate, and Di
k

stands for the ith decision at time k. Zk = {z1, z2, · · · , zk}.
The optimal RCJDE algorithm is given in [22].

Remark 2: The main difference between JDE and CJDE
results from conditioning on data in the latter’s risk, as
discussed in detail in [22]. CJDE inherits the superiority of
JDE by unifying decision and estimation into an integrated
framework. For calculation, by conditioning on the data, CJDE
is computationally simpler than the unconditional JDE. This
makes CJDE more applicable in practice.

C. Recursive JDE for MTT

Extending JDE to the dynamic case, [11] proposed a recur-
sive JDE (RJDE) method, which is a recursive implementation
of JDE. The proposed RJDE was applied to MTT in [21] by

defining a new estimation cost for multi-targets. Suppose Hj
k

is the hypothesis that j (1 6 j 6 N ) targets are actually
present in the surveillance region at time k and Di

k is the
decision that there are i (1 6 i 6 M ) targets. Conditioned

on hypothesis Hj
k , Xk is a stacked vector of j target states:

Xk = [(x1
k)′, (x2

k)′, · · · , (xj
k)′]′, and X̂k is its estimate. The

expected estimation cost is defined as

εij
k = E[C(Xk, X̂k)|Zk−1, Di

k, Hj
k] (8)

≈

{

τ(i)
i mse(X̂k|D

i
k, Hj

k), if i = j
η, if i 6= j

where η is a cost parameter and τ (i) is a non-increasing

positive function of i with τ(1) = 1. X̂k as the estimate of
Xk under decision Di

k is a stacked vector of i target state

estimates. Note that the expected cost εij
k is defined this way

because Xk and X̂k have different dimensions if i 6= j, and
thus the estimation error cannot be defined in the usual way

as X̃k = Xk − X̂k. In (8), this phenomenon is reflected by a
cost parameter η, which may be either a constant or a function

of Di
k and Hj

k . For the case that i = j, the normalized mean
square error is adopted together with an adjustment function
τ (i). For more details, see [21].

D. Optimal Subpattern Assignment (OSPA) Metric

In evaluating the performance of an MTT algorithm, the
goal is to measure the distance between two sets of tracks:
the set of ground truth and the set of estimated tracks output
by the MTT algorithm. For measuring the distance between
any two sets, there are a few known metrics starting from the
Hausdorff metric. Hoffman and Mahler [28] proposed a new
metric based on the Wasserstein distance, which partially fix
the undesirable cardinality behavior of the Haudorff metric.
Schuhmacher et al. [26] subsequently demonstrated a number
of shortcomings of the Hoffman-Mahler metric and proposed
a new consistent metric for sets, referred to as the optimal
subpattern assignment (OSPA) metric. OSPA eliminates most
shortcomings of the Hoffman-Mahler metric, as shown in [24].

Denote by d(c)(x, y) = min(c, d(x, y)) the distance be-
tween x, y ∈ W cut off at c > 0, where W is a closed and
bounded observation window and W ∈ R

N . Πk is the set of
permutations on {1, 2, · · · , k} for any k ∈ N = {1, 2, · · · }.
For 1 6 p < ∞, c > 0, and arbitrary finite subsets
X = {x1, · · · , xm} and Y = {y1, · · · , yn} of W , where
m, n ∈ N0 = {0, 1, 2, · · · }, define

d̄(c)
p (X, Y ) , (

1

n
[ min
π∈Πn

m
∑

i=1

d(c)(xi, yπ(i))
p + cp(n − m)])1/p

(9)

if m 6 n, and d̄
(c)
p (X, Y ) = d̄

(c)
p (Y, X) if m > n. We call the

function d̄
(c)
p the OSPA metric of order p with cut-off c.

In (9), p determines the sensitivity of d̄
(c)
p to outlier

estimates, and c determines the relative weighting of how
the metric penalizes the cardinality error as opposed to the
localization error. For MTT performance evaluation, OSPA is
widely used due to its nice properties, given in detail in [26].
OSPA considers both the cardinality error and the localization
error, and its superiority is demonstrated in [26].

III. JOINT MULTI-TARGET DETECTION AND TRACKING

USING CJDE WITH OSPA-LIKE COST

A. Motivation

As mentioned in Introduction, MTT is a JDE problem, and
thus good solutions require deciding the number of targets and
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estimating their states jointly.

(a) CJDE is a promising JDE approach due to its perfor-
mance optimality and simplicity. However, when applying it
to the MTT problem, difficulty arises because the estimation
cost E[C(x, x̂)|Di, Hj , z] for multi-targets is not defined.
To illustrate, suppose Hi stands for the truth that there are
i targets [10]. Then the target state x will have different
dimensions under H1 and H2. But the estimator x̂ must be
the same for both cases since it does not know the truth. As a
result, the estimation error x̃ = x − x̂ and the corresponding
E[C(x̃)|Di, Hj , z] cannot be defined for both H1 and H2 in a
unified way directly: what is the error of an estimator (x̂1, x̂2)
assuming two targets, each with a state dimension of n, while
there is only a single target with an n-dimensional state x?

For applying RJDE to MTT, [21] defined an estimation

cost εij
k (8), in which a cost parameter η was adopted when

the decision Di is incorrect (i.e., i 6= j). This is simple and
direct for MTT problems. However, it is not well justified. In
this paper, we consider a new and better estimation cost.

(b) In the context of MTT performance evaluation, OSPA
distance is comprised of two components accounting for the
localization error and the cardinality error, respectively [26].
Precisely, for p < ∞ and m 6 n, they are given by

ē
(c)
p,loc(X, Y ) =

1

n
min
π∈Πn

m
∑

i=1

d(c)(xi, yπ(i))
p

ē
(c)
p,card(X, Y ) =

cp(n − m)

n

Taking ē
(c)
p,loc(X, Y ) as estimation error and ē

(c)
p,card(X, Y ) as

decision error, the OSPA metric (9) is similar to the JDE
risk (1). Specifically, the JDE risk combines the decision cost
cij and the estimation cost E[C(x, x̂)|Di, Hj , z] to form a
unified cost through the parameters αij and βij . In the OSPA

metric, the decision error ē
(c)
p,card(X, Y ) and the estimation

error ē
(c)
p,loc(X, Y ) are also combined in a unified way. So,

they are somewhat similar in spirit.

Based on the above analysis, we consider solving the MTT
problem by introducing the idea of OSPA to the CJDE risk.
This is promising since it can take advantage of both the OSPA
metric and the CJDE risk.

B. CJDE with OSPA-like cost

Although it is theoretically promising, direct introduction
of OSPA to the CJDE risk is challenging. When using OSPA to
evaluate the performance of MTT, all the required quantities,
i.e., both the ground truth (the number of targets and their
states) and the decision and estimation results, are already
known, and we just need to plug them into (9). Note that in the
OSPA metric (9), a key step is to find the optimal permutation,
which results in the minimum distance between the two sets
to be evaluated.

In the CJDE risk (2), we do not know the decision and
estimation results beforehand since they are our goals. As a
result, when introducing OSPA to the CJDE risk, the explicit
form of the estimation cost is not available. This is because
the optimal permutation needed by OSPA is undefined since

the ground truth and the CJDE estimate are unknown. Note
that even if Di and Hj are fixed, we can not define the CJDE
estimation cost, not to mention that in (2), given Di we need
to consider all possible Hj(j = 1, · · · , N ), and the optimal
permutation under different Hj maybe different.

1) Analysis and illustration: To begin with, suppose Hj

denotes that there are j targets, and then conditioning on Hj ,
X = {x1, · · · , xj} is the set of the true states of j targets.
Suppose decision is to “choose” one hypothesis, i.e,. Di =
“Hi”. Conditioning on Di, X̌ = {x̌1, · · · , x̌i} is the set of
the estimated states of i targets.

In the CJDE risk (2), the multi-targets estimation cost
which measures the difference between X and X̌ needs to
be defined. To to this, we need to know the correspondence
relationship between elements in X and X̌ according to the
OSPA metric (9). This correspondence can be described by
a permutation, as detailed in [26]. For convenience, when
Hj and Di are given, denote πij as a permutation on
{1, 2, · · · , max(i, j)}, and Πij = {πij} is the set of all pos-
sible permutations. Denote m = max(i, j) and n = min(i, j),

the total number of elements in Πij is nij = P
max(i,j)
min(i,j) =

m!
(m−n)! , where Pm

n denotes n-permutations of m. Given Di,

there are nij possible permutations under each hypothesis Hj .

To illustrate, suppose we have three hypotheses Hj (j =
1, 2, 3). Take D = D2 as an example. A and B are two targets
under decision D2. Then

1) Under H1, the true target is T . In this case, there are two
possible correspondences—(A, T ) and (B, T ). Here, (A, T )
means that target A corresponds to the true target T and (B, T )
means that target B corresponds to T . Suppose permutation
π1

21 and π2
21 represent (A, T ) and (B, T ), respectively. Finally,

we have Π21 = {π1
21, π

2
21} under H1.

2) Under H2, the true targets are T1 and T2. In this case,
there are two possible correspondences—{(A, T1), (B, T2)}
and {(A, T2), (B, T1)}. Here, {(A, T1), (B, T2)} means that
target A corresponds to T1 and target B corresponds to
T2. Represent {(A, T1), (B, T2)} and {(A, T2), (B, T1)} by
permutations π1

22 and π2
22, respectively. Then under H2, Π22 =

{π1
22, π

2
22}.

3) Under H3, the true targets are T1, T2, and T3.
In this case, there are six possible correspondences—
{(A, T1), (B, T2)}, {(A, T1), (B, T3)}, {(A, T2), (B, T3)},
{(A, T2), (B, T1)}, {(A, T3), (B, T1)}, {(A, T3), (B, T2)}.
For example, {(A, T3), (B, T2)} means that target A and
target B corresponds to T3 and T2, respectively. Finally,
Π23 = {π1

23, π
2
23, · · · , π6

23} under H3.

Given Di, Hi, and a permutation πij , according to the

CJDE method, we can get the CJDE cost Cij
C (z) = αij |i−j|+

βijE[C(X, X̌)|Di, Hj, z], where βijE[C(X, X̌)|Di, Hj , z]
is the tracking error and αij |i− j| is the detection error. This

is similar to the OSPA metric (9). Note that C(X, X̌) is a

function of πij , which is similar to d(c)(·)p in (9). For example,
given D = D2 and H = H3 in the above example, there are
totally 6 permutations, each leading to a different C23

C (z).

In the JDE framework, given Di, we need to consider each
Hj(j = 1, · · · , N). As explained above, to use the CJDE
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method, we need to calculate Cij
C (z) for j = 1, · · · , N . Thus

we consider a collection of permutations {πij}
N
j=1. Given Di,

there are totally Ni = ni1 × ni2 · · · × niN such {πij}
N
j=1.

For example, given D = D2, {π2j}
3
j=1 means choosing

one permutation from each of Π21, Π22, and Π23. Then all
the selected permutations over Hj(j = 1, · · · , N) form a
permutation collection. Suppose {π2j}

3
j=1 =

〈

π1
21, π

2
22, π

4
23

〉

,
this means that the 1st permutation in Π21, the 2nd in Π22,
and the 4th in Π23 are chosen.

According to OSPA [26], to obtain the OSPA distance,
we need to find the optimal permutation that minimizes (9).
Similarly, in the CJDE risk, given Di, we need to find the
optimal permutation collection, i.e., the one under which
the CJDE cost Ci

C(z) is smaller than that under any other
permutation collection.

2) CJDE risk with OSPA-like cost: Based on the above,
we propose the following CJDE risk

Ro(z) =

M
∑

i=1

min
{πij}N

j=1

(

N
∑

j=1

(β′
ijE[

min(i,j)
∑

l=1

[dl(X, X̌)]p|Di, Hj, z]

+ γij |i − j|) × P{Di, Hj |z}) (10)

where the estimation error [dl(X, X̌)]p is defined as follows:

[dl(X, X̌)]p =

{

d(xl, x̌l
{πij}N

j=1

)p, j ≤ i

d(xl
{πij}N

j=1

, x̌l)p, j > i

where the superscript l denotes the lth element and the
subscript {πij}

N
j=1 means that this state set is under the

permutation collection {πij}
N
j=1. Two parameters γij and β′

ij

=
βij

max(i,j) are nonnegtive relative weights for decision and

estimation costs, respectively. Given Di, min{πij}N
j=1

denotes

the optimal permutation collection that minimize the posterior
CJDE cost Ci

C(z)(4). Note that [dl(X, X̌)]p in (10) is not cut

off while d(c)(·)p in (9) is. Other symbols are presented in the
previous part.

3) Properties:

a) Relationship with OSPA and CJDE: In (10), given
Di and Hj , we have

Ro(z) = min
πij∈Πij

(β′
ijE[

min(i,j)
∑

l=1

[dl(X, X̌)]p|z] + γij |i − j|)

(11)
which can be considered as a variant of the OSPA (9).
Specifically, if γij/βij in (11) is replaced by cp (note that

β′
ij = βij/ max(i, j)), and the estimation error dl(X, X̌)p is

cut off at c, then (R̄o(z))1/p is exactly the OSPA (9).

In (10), if the operator for seeking the optimal permutation
collection (i.e., min{πij}N

j=1

) is taken out, then Ro(z) =

M
∑

i=1

N
∑

j=1

(β′
ijE[

∑

l

[dl(X, X̌)]p|Di, Hj , z]+γij |i−j|)P{Di, Hj |z}

which is just the CJDE risk (2) with estimation cost C(x, x̂) ,
∑

l[dl(X, X̌)]p.

b) Rationality and Tractability: The proposed Ro(z)
(10) integrates the OSPA metric and the CJDE risk, and takes
advantage of both. Ro(z) combines the decision cost and
the estimation cost into a unified framework. Besides, Ro(z)
is also tractable and is easy to optimize. Tractability is an
important property for an objective function.

4) Optimal Solution: We get the optimal JDE (D, X̌) for
Ro(z) following the CJDE [22], as follows.

a) Estimation: Denote by X̂j = {x̂1
j , x̂

2
j , · · · , x̂j

j}

the state estimate conditioned on Hj and by X̌ i =
{x̌1

i , x̌
2
i , · · · , x̌i

i} the CJDE estimate under Di. For conve-
nience, we define an i × j matrix mij to represent the
permutation πij . Given Di and Hj , all the possible matrices
form a set Mij . Then the permutation collection {πij}

N
j=1 is

replaced by the matrix collection {mij}
N
j=1, and they have a

one-to-one correspondence.

Given Di and Hj , all entries mij(s, q) of mij are binary
numbers, defined as

{

mij(s, q) = 1, if x̌s
i ↔ x̂q

j in πij

mij(s, q) = 0, else

where x̌s
i is the sth (s = 1, · · · , i) element in X̌ i; x̂q

j is the

qth (q = 1, · · · , j) element in X̂j . Here, “x̌s
i ↔ x̂q

j” means
that in permutation πij , there is a correspondence between
x̂q

j and x̌s
i . Following the CJDE estimator (5), each element

in X̌ i is a weighted sum of elements in different X̂j(j =
1, 2, · · · , N). Then if x̂q

j corresponds to x̌s
i , mij(s, q) = 1,

otherwise mij(s, q) = 0.

In (10), p can be any value p > 1. For simplicity, we
consider p = 2 in the following. With p = 2, we have
d(x, x̌)p = x̃′x̃. This leads to the most widely used Bayes
estimation cost E[x̃′x̃], that is, the mean square error. It is
well known that the posterior mean x̂ = E[x|z] is the optimal
estimator for this cost.

For convenience of description, under decision Di, we
define a vector e , [e1, e2, · · · , eN ]′, where ej denotes the
order index of mij in the matrix set Mij , that is, the ej th
matrix mij is chosen. For example, given Di, e = [2, 3, 1]′

means that the 2nd element in Mi1, the 3rd element in Mi2,
and the 1st element in Mi3 are chosen.

Based on the above, given Di and e, the CJDE estimate
X̌ i = {x̌t

i}
i
t=1 is

x̌t
i = Ē[x|z] =

N
∑

j=1

j
∑

r=1

x̂r
j P̄

t,r,ej

i

{

Hj|z
}

(12)

where

P̄
t,r,ej

i

{

Hj |z
}

=
m

ej

ij (t, r)β ′
ijP{Hj|z}

∑

j m
ej

ij (t, r)β′
ijP{Hj|z}

is the generalized posterior probability of Hj . Here, x̂r
j de-

notes the rth component of X̂j . Given e, all values of ej

(j = 1, · · · , N) are available, and the specific matrix m
ej

ij is

also known correspondingly. In the matrix m
ej

ij , the element

m
ej

ij (t, r) is 1 if x̂r
j corresponds to x̌t

i , and 0 otherwise.
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b) Decision: Following CJDE, the optimal decision for
Ro(z) (10) is

D = Di, if Ci(z) 6 Cl(z), ∀l (13)

where the posterior cost Ci(z) for decision Di is

Ci(z) =
∑

j
βijE[Cij(X, X̌)|Di, Hj , z]P{Hj|z}

Here

Cij(X, X̌) = min
{πij}N

j=1

{
N

∑

j=1

(β′
ijE[

min(i,j)
∑

l=1

[dl(X, X̌)]p|Di, Hj , z]

+ γij |i − j|)}P{Hj|z}

Note that under each Di, the posterior cost Ci(z) is
calculated based on the optimal permutation collection

{πopt
ij }N

j=1 =

argmin{πij}N
j=1

{
N

∑

j=1

(β′
ijE[

min(i,j)
∑

l=1

[dl(X, X̌)]p|Di, Hj, z]

+ γij |i − j|)}P{Hj|z} (14)

Optimal CJDE Algorithm

a) Given hypothesis set {H1, · · · , HN} and decision set
{D1, · · · , DM}, get the collection matrix M.

b) Given each decision candidate Di (i = 1, · · · , M ),
under each matrix collection {mij}

N
j=1 (the total number

Ni = ni1×ni2 · · ·×niN ), calculate the optimal CJDE estimate
X̌ i by (12).

c) For each candidate Di, based on X̌ i, obtain the optimal
matrix collection {mopt

ij }N
j=1 by (14) and the corresponding

posterior decision cost Ci(z). Then obtain the optimal CJDE
decision Di by (13).

d) Based Di and {mopt
ij }N

j=1, output the optimal CJDE

estimate X̌ i, as calculated in step b).

Remark 3: With this algorithm, the number of targets
and their states are inferred jointly. In the above algorithm,

however, the conditional estimate X̂j and its MSE P j are
assumed to be already obtained, and only the final CJDE
decision and estimation results are addressed. Actually, under

each hypothesis Hj , calculation of X̂j and P j is an MTT
problem with a known number of targets, which can be solved
by many algorithms, such as the MHT and JPDA filters.

IV. SIMULATION AND ANALYSIS

A. Basic Assumptions

To illustrate our proposed method, we apply it to a sim-
ple yet representative joint multitarget detection and tracking
problem. For simplicity, we have the following assumptions
[21]:

(a) The number of targets mt
k 6 N is unknown but constant

over time k (N is known).

(b) A target can generate at most one measurement—no
multipath; a measurement can have originated from at most
one target—no unresolved measurements.

(c) The number mf of false measurements is Poisson
distributed. The false measurements are i.i.d and uniformly
distributed in the surveillance region of a volume V .

(d) All targets follow CV models with a linear measurement
equation. To save space, the dynamic and measurement models
are omitted.

To obtain the conditional estimate X̂j
k and its MSE P j

k ,
the JPDA filter is adopted due to its popularity and simplicity.
The fundamental idea of JPDA is to compute the probabilities
of all feasible measurement-to-target association events θi

k
jointly. Then the marginal (individual measurement-to-target)
association probabilities are obtained from the joint associa-
tion probabilities. The target states are estimated by separate
PDA (probability data association) filters using these marginal
probabilities.

In the JDE framework, the posterior probability P{Hj|z}
is needed. It can be calculated by the JPDA filter without
difficulty. At each time k, it is updated by

P{Hj|Zk} =
1

c
f(zk|H

j , Zk−1)P{Hj |Zk−1}

where

f(zk|H
j, Zk−1) =

∑

l

f(zk|H
j , θl

k, Zk−1)P{θl
k|H

j}

is the likelihood of Hj , and the summation is over all possible

θl
k, which denotes the lth measurement-to-target association

event. f(zk|H
j , θl

k, Zk−1) and P{θl
k|H

j} are obtained by
JPDA. More details can be found in [21].

In our simulation, our proposed method is compared with
DTE and RJDE in terms of OSPA and the incorrect decision
rate. In DTE, first the optimal Bayes decision is made on
the number of targets, which minimizes the Bayes decision
risk. Then target state are estimated based on this decision.
Also presented is the ideal case with a known number of
targets, which sets a lower bound on the OSPA metric for
all algorithms.

To jointly evaluate the performance of MTT, the OSPA
metric is used since it has been widely used for MTT perfor-
mance evaluation [24] [25]. Although our proposed CJDE risk
uses an OSPA-like estimation cost, this risk is different from
OSPA, as analyzed in Section IIIB, and the decision parameter
γij in our CJDE risk differs from the cut off value c in the
OSPA metric.

The maximum number of targets is N = 2, and
on each run, the number of targets is uniformly sam-
pled from 1 to N and then remains constant over time.
The surveillance region is [2000 2000]′m × [2000 2000]′m.
For simplicity, the target under H1 has the same ini-
tial true state as the first target under H2, which are
set as [−100m, 1m/s,−100m, 1m/s]′, and the second tar-
get under H2 is [−150m, 1.5m/s,−150m, 1.5m/s]′. The
covariances of the process noise and measurement noise
are Q = diag[m2, 0.01(m/s)2, m2, 0.01(m/s)2] and R =
diag[100m2, 100m2], respectively. In this simulation, the de-
tection probability Pd = 0.75 and there is at least one clutter
measurement in the surveillance region.
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Fig. 1. Example 1: cij = 150|i − j|, γij = 400

The parameters in RJDE were chosen as αij = βij =
1, cij = 150|i − j| (Example 1), cij = 10000|i− j| (Example
2), and in our proposed CJDE β′

ij = 1, γij = 400 (Example
1), γij = 10000 (Example 2). The decision costs cij in DTE
are the same as those in RJDE. In the OSPA metric, we chose
p = 2 and the cut-off value c = 600. All results were obtained
from 2000 Monte Carlo (MC) runs.

B. Simulation Results

In Example 1, the decision cost is cij = 150|i− j|, which
is the same as in [21]. Fig. 1 shows that both RJDE and the
proposed CJDE outperform the traditional DTE method in the
decision error rate. In terms of OSPA, both RJDE and CJDE
beat DTE, and CJDE outperforms RJDE.

In Example 2 cij = 10000|i− j| and γij = 10000 are both
large. Fig.2 shows that the proposed CJDE still outperforms
RJDE and DTE methods in terms of OSPA. Note that with
large cij and γij , the difference between the JDE methods
(RJDE and CJDE) and DTE becomes smaller because the total
cost is somewhat dominated by the decision cost and thus the
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Fig. 2. Example 2:cij = 10000|i − j|, γij = 10000

outperformance of the JDE methods over the DTE method
decreases.

Remark 4: This example verifies the effectiveness of the
proposed CJDE for the MTT problem. This approach utilizes
the coupling between detection and tracking, and beats the
traditional DTE method in joint performance. By taking ad-
vantage of OSPA and CJDE, the proposed CJDE outperforms
the existing RJDE.

It is known that for Bayes decision, if the correct decision
cost is 0 and incorrect decision cost is 1 (i.e., cii = 0, cij =
1, i 6= j), the decision will become the Bayes optimal decision
in the MAP (maximum a posteriori) sense, and it coincides
with the minimum error rate decision. In this example, since
JPDA is used for data association, approximations are made
in calculating the posterior probability of each hypothesis. As
a result, the decision in DTE method cannot be guaranteed to
have the minimum decision error rate. This simulation verifies
that in JDE methods, estimation helps decision and thus leads
to a better decision performance.
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V. CONCLUSIONS

This paper proposes a CJDE method with an OSPA-like
cost for joint multitarget detection and tracking problems. For
such a JDE problem, the recently proposed conditional JDE
(CJDE) provides an integrated solution, which is superior in
performance and simple in calculation. However, the original
CJDE method cannot be applied to MTT directly since the
estimation cost for the multi-target case in general is not well
defined. In this paper, we propose a reasonable and tractable
estimation cost, which is the key to applying CJDE to MTT.

As a widely used performance metric for MTT, OSPA
considers both the localization error for tracking and the
cardinality error for detection. We propose a new CJDE risk
with an OSPA-like cost for MTT problems by using the
similarity between the OSPA metric and the CJDE risk. The
proposed risk is not only reasonable but also tractable. It takes
advantage of both OSPA and CJDE. To minimize this CJDE
risk, we derived the joint decision and estimation.

The effectiveness of the proposed CJDE method is demon-
strated by its application to an illustrative MTT problem.
Simulation results show that it outperforms the traditional
DTE method in terms of OSPA and is better than a version
of the recursive JDE in many cases. This illustration also
demonstrates the power, the flexibility, and the simplicity of
CJDE. More difficult MTT scenarios (e.g., tracking with a
varying number of targets, heavy clutter density, etc.) are also
under investigation.

REFERENCES

[1] Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor Tracking: Princi-

ples and Techniques. CT:YBS, 1995.

[2] R. Mahler, “Multi-target Bayes filtering via first-order multi-target
moments,” IEEE Transactions on Aerospace and Electronic System,
vol. 39, no. 4, pp. 1152–1178, 2003.

[3] R. Mahler, “PHD filters of higher order in target number,” IEEE

Transactions on Aerospace and Electronic System, vol. 43, no. 4,
pp. 1523–1543, 2007.

[4] R. Mahler, Statistical Multisource-Multitarget Information Fusion. Nor-
wood, MA, USA: Artech House, 2007.

[5] B.-T. Vo, B.-N. Vo, and A. Cantoni, “The cardinality balanced multi-
target multi-bernoulli filter and its implementations,” IEEE Transactions

on Signal Processing, vol. 57, no. 2, pp. 409–423, 2009.

[6] B.-N. Vo, S. Singh, and A. Doucet, “Sequential monte carlo methods
for multi-target filtering with random finite sets,” IEEE Transactions on
Aerospace, and Electronic System, vol. 41, no. 4, pp. 1224–1245, 2005.

[7] B.-N. Vo and W.-K. Ma, “The Gaussian mixture probability hypoth-
esis density filter,” IEEE Transactions on Signal Processing, vol. 54,
pp. 4091–4104, November 2006.

[8] S. Blackman, “Multiple hypothesis tracking for multiple target track-
ing,” IEEE Aerospace and Electronic Systems Magazine, vol. 19, pp. 5–
18, June 2004.

[9] B. N. G. Eason and I. N. Sneddon, “Track-before detect methods
in tracking low-observable:survey,” Sensors & Transducers Magazine,
Special Issue, pp. 374–380, 2005.

[10] X. R. Li, “Optimal Bayes joint decision and estimation,” in International

Conference on Information Fusion, (Quebec City, Canada), pp. 1316–
1323, July 2007.

[11] Y. Liu and X. R. Li, “Recursive joint decision and estimation based on
generalized Bayes risk,” in 14th Internatinal Conference on Information
Fusion, (Chicago, USA), pp. 2066–2073, 2011.

[12] T. Kurien, “Framework for integrated tracking and identification of
multiple targets,” in Proceedings of digital avionics system conference,
(Burlington, MA, US), pp. 362–366, 1991.

[13] K. C. Chang and R. Fung, “Target idetification with Bayesian networks
in multiple hypothesis tracking system,” Optics Engineering, vol. 36,
pp. 684–691, 1997.

[14] Y. Bar-Shalom, T. Kirubarajan, and C. Gokberk, “Tracking with
classification-aided multiframe data association,” IEEE Transanctions

on Aerospace and Electronic Systems, vol. 41(3), pp. 868–878, 2005.

[15] H. Lang, C. Shan, M. T. Pronobis, and S. Scott, “Wavelets feature aided
tracking (WFAT) using GMTI/HRR data,” Signal Processing, vol. 83,
no. 12, pp. 2683–2690, 2003.

[16] B. Ristic, N. Gordon, and A. Bessell, “On target classification using
kinematic data,” Information Fusion, vol. 5, pp. 15–21, 2004.

[17] D. Angelova and L. Mihaylova, “Sequential Monte Carlo algorithms for
joint target tracking and classification using kinematic radar informa-
tion,” in Proceedings of the 7th International Conference on Information
Fusion, (Stockolm, Sweden), June 28-July 1, 2004.

[18] X. R. Li, M. Yang, and J. Ru, “Joint tracking and classification based
on Bayes joint decision and estimation,” in Proceedings of International
Conference on Information Fusion, (Quebec City, Canada), pp. 1421–
1428, July 2007.

[19] W. Cao, J. Lan, and X. R. Li, “Extended object tracking and clas-
sification based on recursive joint decision and estimation,” in 16th

Internatinal Conference on Information Fusion, (Istanbul, Turkey),
pp. 1670–1677, July 2013.

[20] W. Cao, J. Lan, and X. R. Li, “Joint tracking and classification based
on recursive joint decision and estimation using multi-sensor data,”
in 17th Internatinal Conference on Information Fusion, (Salamanca,
Spain), pp. 1–8, July 2014.

[21] Y. Liu, Estimation, Decision and Applications to Target Tracking. PhD
thesis, University of New Orleans, December 2013.

[22] W. Cao, J. Lan, and X. R. Li, “Conditional joint decision and estimation
with application to joint tracking and classification,” to appear in IEEE
Trans. Systems, Man, and Cybernetics: Systems, 2015.

[23] W. Cao, J. Lan, and X. R. Li, “Joint tracking and classification based
on conditional joint decision and es,” in 18th Internatinal Conference
on Information Fusion, (Wanshington DC, USA), July 2015.

[24] B. Ristic, B.-N. Vo, D. Clark, and B.-T. Vo, “A metric for performance
evaluation of multi-target tracking algorithms,” IEEE Transactions
Signal Processing, vol. 59, no. 7, pp. 3452–3457, 2011.

[25] D. Svensson, J. Wintenby, and L. Svensson, “Performance evaluation
of MHT and GM-CPHD in a ground target tracking scenario,” in 12th

International Conference on Information Fusion, (Seattle, WA, USA),
pp. 300–307, July 6-9 2009.

[26] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Transactions on

Signal Processing, vol. 56, pp. 3447 – 3457, Aug. 2008.

[27] X. R. Li and Z. Zhao, “Evaluation of estimation algorithms part I:
Incomprehensive measures of performance,” IEEE Transanctions on

Aerospace and Electronic Systems, vol. 42, pp. 1340–1358, October
2006.

[28] J. R. Hoffman and R. P. S. Mahler, “Multitarget miss distance via opti-
mal assignment,” IEEE Transactions on Systems, Man and Cybernetics
- Part A, vol. 34, pp. 327–336, May 2004.

1747


