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Abstract—In the field of target tracking, it is often assumed
that as long as a target is present and detectable, it should
be “trackable.” Any failure to track a target that is generating
detectable measurements is assumed to be due to a sub-optimal
tracking algorithm or perhaps an algorithm that is not properly
“tuned.” There seems to exist the idea that “if this knob is
turned slightly, or this parameter is adjusted a little, our tracker
should be able to follow the target . . . ” This work shows that,
as should really be expected, there are times when, even though
there is a target present that is producing measurements, the
output statistical distribution produced by these measurements
cannot be differentiated from the output statistical distribution
of the too-numerous clutter-generated measurements, and the
target simply cannot be tracked.

This degree of “trackability” is demonstrated by employing
the Maximum Likelihood Probabilistic Multi-Hypothesis Tracker
(ML-PMHT), which is a powerful non-Bayesian algorithm that
uses a generalized likelihood ratio test (GLRT) to check for a
target in the presence of clutter. For various combinations of
measurement dimensionality, amplitude features, and classifica-
tion features, we treat the ML-PMHT log-likelihood ratio (LLR)
as a random variable (RV) transformation and then use extreme-
value theory to calculate the probability density function (PDF)
for the peak point in the LLR due to clutter as well as the
PDF of the peak point in the LLR due to a target. In doing so,
the tracking problem is reduced to a simple detection problem,
making it possible to answer the question, “Can this target be
tracked?”

Keywords: Tracking, trackability, ML-PMHT, maximum

likelihood, extreme value theory

I. INTRODUCTION

The Maximum Likelihood Probabilistic Multi-Hypothesis

Tracker (ML-PMHT) is a non-Bayesian algorithm that can

be implemented as a powerful multitarget, multistatic active

tracker. The ideas behind it were first introduced in [4],

[23], [24], and [25]. ML-PMHT was first implemented as a

multistatic tracker in [26] and [27], with more recent work

done in [17].

At its core, ML-PMHT is a fundamentally simple algorithm.

Assumptions are made about a target1 and the environment in
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1ML-PMHT is easily extensible to multiple targets, but for this work on

trackability, it will suffice to consider just a single target.

which the target is present. The assumptions for ML-PMHT

are [5]

• A single target is present in each frame with known de-

tection probability Pd. Detections are independent across

frames.

• Any number of measurements per frame can originate

from the target.

• The kinematics of the target are deterministic. The motion

is usually parameterized as a straight line, although any

other parameterization is valid.

• False detections (clutter) are uniformly distributed in the

search volume.

• Target measurements are corrupted with zero-mean Gaus-

sian noise with known variance.

• Measurements at different times, conditioned on the pa-

rameterized state, are independent.

With these assumptions, the ML-PMHT log-likelihood ratio

can be constructed. It is written as [16]

Λ(x, Z) =

Nw
∑

i=1

mi
∑

j=1

ln

{

1 +
π1

π0
V ρaρcp[zj(i)|x]

}

(1)

Here, π1 is the prior probability that a given measurement

originates from the target, π0 is the prior probability that a

given measurement originates from clutter, V is the measure-

ment search volume, p[zj(i)|x] is a target-centered Gaussian
distribution, ρa is the amplitude likelihood ratio, ρc is the clas-

sification feature likelihood ratio, Nw is the number of scans

processed by the tracker,mi is the number of measurements in

the ith scan, Z is the entire batched set of measurements, and

x is the target parameter vector (a target state vector sometimes

augmented by other estimated parameters).

Running the tracker is done as follows: Once a batch of

data is available, the expression in (1) is optimized over x.

If the LLR value for the optimal x is greater than a certain

threshold, a target track is declared; if the LLR value at the

optimal x is less than the threshold, the point is deemed to

have been caused by clutter and is ignored.

Of the assumptions listed above, the second — that more

than one measurement can originate from a target in a single

scan — sometimes raises objections. The “typical” target-

measurement generation model used in target tracking is that
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only zero or one measurement can originate from a target

in a single scan. If this assumption is followed, the LLR in

(1) would instead take the form of the Maximum Likelihood

Probabilistic Data Association (ML-PDA) tracker [11], [12].

However, such concerns about the target-measurement gen-

eration model should be alleviated by previous work [16],

[20] that shows that when there is at most one hit per scan,

the ML-PMHT LLR converges to the ML-PDA LLR and

there is virtually no performance difference between the two

algorithms.

It is possible to create a framework that determines the

trackability of a target with the ML-PMHT LLR. This is

done by statistically quantifying the peak of the ML-PMHT

LLR that is caused just by clutter, and then quantifying

the peak of the ML-PMHT LLR that is caused just by a

target. With this, the tracking problem is reduced to a simple

detection problem — the peak in the ML-PMHT LLR due

to clutter becomes the H0 distribution, and the peak in the

LLR due to the target becomes the H1 distribution (here, the

H0 and the H1 distributions are the distributions under the H0
and H1 hypotheses, respectively). By applying the Neyman-

Pearson Lemma [14], a probability of false track acceptance

(PFT ) is set. From this, a threshold can be computed; the H1
distribution integrated to the right of this threshold determines

the detection probability of target track (PDT ).

Finally, if the assumptions listed above about the target

and the environment are correct, then ML-PMHT is an op-

timal algorithm in the sense that it uses all the available

data, and it does not require any simplifying assumptions to

work. Additionally, the ML-PMHT algorithm is a generalized

likelihood ratio test (GLRT), which (at least asymptotically)

is the optimal test according to classical detection theory [13],

[14], [28]. Thus, trackability results obtained from an analysis

of the ML-PMHT LLR can be generalized; if the framework

here determines that ML-PMHT cannot track the target, then

it is highly unlikely that any algorithm can track the target.

This work is meant to describe at a high level the entire

trackability framework for all cases considered thus far, as

well as introduce the latest addition to the framework. (Without

this brief description of the entire framework, any discussion

of new results would make little sense.) Previous works have

examined different individual portions of this framework in

much more detail. In [19], we derived the peak clutter ML-

PMHT LLR PDF for all possible closed-form cases (these

cases will be discussed shortly), and [22] derived the peak

target LLR for the same closed-form cases. Next, [21] re-

derived the peak clutter PDF when the clutter amplitudes were

K-distributed. After this, [18] derived trackability for cases

where the clutter amplitudes were K-distributed. Finally, here

we present for the first time the initial theory and results

from introducing a classification feature into the trackability

framework.

II. ML-PMHT LLR PEAK DUE TO CLUTTER

The PDF of the peak in the ML-PMHT LLR due to clutter

is calculated by starting with the assumption that clutter

measurements are uniformly distributed in the search volume.

Now consider the ML-PMHT LLR for a single measurement,

in a slightly different form from (1) for the case of two-

dimensional measurements (i.e. azimuth and time-delay). This

is written as

Λ1(z) = ln

{

1 + Kdρcρa exp
−

1
2

»

(z1−µ1)2

σ
2
1

+
(z2−µ2)2

σ
2
2

–
}

(2)

Here, z1 and z2 are the individual clutter-generated measure-

ments (in the case of 2-D tracking, these would be in azimuth

and time-delay space), µ1 and µ2 are the target locations in the

two measurement space directions (what the actual values of

µ1 and µ2 are turns out not to matter), and σ1 and σ2 are the

individual standard deviation components of the measurement

covariance matrix. Finally, the constantKd for d measurement
dimensions (in (2) d = 2) is

Kd =
π1

π0

Vd
√

|2πRd|
(3)

where Vd is the d-dimensional search volume and Rd is the

measurement covariance matrix.

The key first step in determining the PDF of the peak

point in the ML-PMHT LLR due to clutter is treating (2)

as simply a transformation of a uniform random variable,

which from the ML-PMHT assumptions, is the distribution for

clutter measurements. For certain limited cases, it is possible to

compute this transformation analytically. However, it is usually

necessary to compute some or all of the (multiple step) random

variable transformation numerically.

A. Clutter cases with closed-form results

It is possible to analytically compute the RV transformation

for one-dimensional (azimuth-only or time-delay-only), two-

dimensional (azimuth and time-delay), and three-dimensional

(azimuth, time-delay, and Doppler) measurements where no

amplitude data or classification feature data is present (i.e.

ρa = ρc = 1). The work for these analytical cases was
performed in detail in [19]; the results are just presented here.

The one-dimensional case is somewhat of a “toy” problem

and is ignored. The PDF of the transformed RV in the case of

two-dimensional clutter is given by

pw2(w2) =

{

Cδ(w2) w2 = 0

2π σ1σ2

V1V2

exp(w2)
exp(w2)−1 0 < w2 ≤ ln(1 + K2)

(4)

In this equation, C is a normalization constant to ensure the

PDF integrates to one, and the “2” subscripts denote the result

is for the two-dimensional measurement case.
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The transformation result for three-dimensional clutter mea-

surements, which would be time-delay, azimuth and range rate,

is given by

pw3(w3) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Cδ(w3) w3 = 0

4π
√

2σ1σ2σ3

V1V2V3

exp(w3)
exp(w3)−1

√

ln
(

K3

exp(w3)−1

)

0 < w3 ≤ ln(1 + K3)

(5)

Finally, it is possible to analytically calculate the expression

for 2-D measurements with Rayleigh distributed target and

clutter amplitudes. In this case, the PDF is given by

pw2a
(w2a) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Cδ(w2a) w2a = 0

2πσ1σ2

V1V2

[

1 − eτ

(

ew2a−1
K′

2

)
1

Kσ

]

exp(w2a)
exp(w2a)−1

0 < w2a ≤ ln
(

1 + K ′

2e
−Kστ

)

(6)

where

K ′

2 =
K2

σ2
eKστ (7)

and

Kσ =
1 − σ2

σ2
(8)

where σ2 is the expected target amplitude intensity and τ is

the value of the detector threshold.

B. Numerical clutter cases

Adding amplitude (other than for the single Rayleigh case

described above) or classification feature data to the tracker

measurements makes the single-variable transformation de-

scribed by (2) more difficult. For amplitude data, we will

consider cases where the clutter amplitudes are Rayleigh

distributed as well as K-distributed. The former is the “tra-

ditional” treatment in target tracking [8], [12], while the latter

has recently been posited to more accurately describe clutter

amplitudes [1], [2], and [3]. (The target amplitudes will still

have a Rayleigh distribution in both cases.) In general, when

using these amplitude distributions, the transformation of a

uniform random variable with the single-measurement ML-

PMHT LLR (2) does not have a closed-form solution; the

transformation must be done numerically [21].

After this, the effect of classification feature data will be

examined (for simplicity, the amplitude LR ρa will again be

set to one, although this does not have to be the case). Here,

there is some “generic” classification feature data present; it

is assumed that both the clutter classification feature PDF and

the target classification feature PDF have Gaussian distribu-

tions. (Future work will examine distributions that are more

heavy-tailed than a Gaussian.) Again, as in the case of K-

distributed clutter amplitudes, the single-measurement ML-

PMHT transformation described by (2) does not have a closed

form solution but rather must be done numerically.

In general, the numerical single-measurement transforma-

tion (for both amplitude and classification feature data) is done

in the following manner. The single-measurement LLR has the

form

W = ln(1 + XY ) (9)

where W , X and Y are all random variables. The RV Y rep-

resents the 2-D or 3-D target-centered Gaussian distribution;

the RV X represents the amplitude LR or the classification

LR. In general, it is preferable, if possible, to calculate the

PDFs of X and Y analytically; this will lead to more accurate

results. However, the product of X and Y , and by extension,
the expression for W (with the exception of the cases listed

above) must be done numerically.

C. Single-measurement PDF to batch and peak clutter PDFs

Examples of four different single-measurement transforma-

tions are shown in Figure 1. This figure has 2-D and 3-D

plots with no amplitude, a 2-D case with K-distributed clutter

amplitudes, and a 2-D case with classification features. For the

2-D case with the amplitude LR, the clutter amplitude is K-

distributed; the K-distribution parameter α that describes the

heaviness of the tail of the distribution is set to α = 1. For
the 2-D case with the classification feature, the classification

feature LR is calculated with a target feature PDF ∼ N (2, 1),
and a clutter feature PDF ∼ N (1, 1). Notice that for both the
K-distributed case and the classification feature case, some of

the mass of the PDF is shifted to the right (as compared to the

no-amplitude 2-D PDF); the support for the single transformed

clutter measurement has increased.

The ML-PMHT tracker is a batch algorithm; once the PDF

for the single-measurement transformation is obtained, it is

necessary to calculate the PDF of the batch of data that

is processed by the tracker. Fortunately, one of the other

assumptions of ML-PMHT is that the individual measurements

are independent, so the transformed single-measurement PDFs

will be independent as well. Thus, the PDF of a batch of Nc

measurements (where the ‘c’ subscript denotes clutter mea-
surements) is obtained by convolving the single-measurement

PDF with itself Nc − 1 times. (It is actually more accurate
and efficient to calculate the characteristic function of the

single-measurement PDF, exponentiate it by Nc, and then

take the inverse characteristic function of the product.) The

batch PDF that results represents the distribution of LLR

values that would be output if the ML-PMHT algorithm was

randomly sampled throughout parameter space. This is exactly

what is seen in Figure 2; the theoretical plot is the result of

the theoretical single-measurement PDF convolved with itself

Nc − 1 times, whereas the empirical plot is the result from
sampling the output of the ML-PMHT tracker with only clutter

measurements fed to it.

It necessary to characterize the statistics of the peak point

of the clutter-only LLR; the batch PDF shown in Figure

2 describes the statistics of the LLR everywhere in target

parameter vector space. To go from the batch PDF to the
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Figure 1. Single clutter measurement transformed to LLR for 2-D, 3-D, 2-D
with K-distributed amplitudes, and 2-D with classification feature.
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Figure 2. Batch clutter PDF for 2-D measurement with classification feature.

“peak” PDF, we turn to extreme-value theory [7], [9], [10].

In an “actual” ML-PMHT implementation, the batch of ML-

PMHT data is optimized with some numerical optimization

scheme that hopefully finds the global maximum of the LLR.

If we know how accurately the optimizer finds this global

maximum, then we can calculate how many times we would

have to sample the LLR so that the maximum sample has

the same statistics as the actual peak point found by the

optimizer. From extreme value theory, this peak point is well-

approximated by a Gumbel distribution [6], which has the form

of

f(x) =
1

β
exp

[

−
(

x − ν

β

)

− exp

(

−
x − ν

β

)]

(10)

Given the number of samples Ns required to get the same

accuracy as the optimizer output, as well as the batch PDF, it
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Figure 3. Empirical and theoretical EV mixtures for peak clutter PDF.

is possible to calculate the Gumbel distribution that represents

the peak PDF (for a much more detailed description of this

process, see [19]).

It turns out that the actual optimizer used for ML-PMHT

(in this case taken from Matlab’s optimization toolbox) outputs

with a range of accuracies, so the resultant peak clutter PDF is

a mixture of Gumbel distributions. An example of an empirical

peak PDF for 2-D measurements with K-distributed clutter

(α = 0.1), as well as the theoretical EV mixture PDF, is shown
in Figure 3. It should be noted that the empirical PDF was

obtained via repeatedly simulating a 2-D clutter-only set of

measurements, and then running the tracker on it to find the

global peak. This took on the order of 10 hours to complete.

In contrast, calculating the theoretical peak clutter PDF took

only on the order of seconds.

III. ML-PMHT LLR PEAK DUE TO THE TARGET

It is now necessary to calculate the PDF of the peak in the

ML-PMHT LLR due to target measurements. This process

is very similar to the procedure in the clutter case, but even

simpler. Whereas in the case of clutter, a measurement was as-

sumed to have a uniform distribution in measurement space, a

target measurement is assumed to have a normal distribution in

measurement space, centered around the actual target location.

As a result, the transformed single-measurement LLR is just

a Gaussian RV transformed by (2).

A. Closed-form and numerical single-measurement target

cases

The resultant PDF for 1-D, 2-D and 3-D target measure-

ments with no amplitude can be compactly expressed as [22]

ptd
(td) =

exp(t)

KdΓ(d/2)

{

ln

[

Kd

exp(t) − 1

]}d/2−1

0 ≤ td ≤ ln(1 + Kd) (11)
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Figure 4. Single target measurement transformed to LLR for 2-D, 3-D, 2-D
with K-distribution, and 2-D with classification feature.

Again, d ∈ {1, 2, 3} is the number of measurement dimen-
sions. As with the clutter case, it is also possible to obtain an

analytic expression for the 2-D single measurement PDF when

the clutter and target amplitudes have a Rayleigh distribution.

In this case, the expression is

pt2a
(t2a) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
|Kσ|σ2+1e−|Kσ|τ exp(t2a)

K′

2
t2a < ln(1 + K ′

2e
|Kσ|τ )

e
τ

σ
2 1
|Kσ|σ2+1

(

K′

2

exp(t2a)−1

)
1

|Kσ |σ2 exp(t2a)
exp(t2a)−1

t2a > ln(1 + K ′

2e
|Kσ|τ )

(12)

However, when other amplitude and/or classification feature

data is added, in general, the single-measurement transformed

target PDF must be calculated numerically. The process is

the same as described in section II-B. Examples of this

transformation are shown in Figure 4, again for 2-D, 3-D, 2-D

with K-distributed amplitudes, and 2-D measurements with a

classification feature.

B. Target batch/peak PDFs

As with the clutter case, now that the single-measurement

transformed PDF is available, it is necessary to calculate the

batch PDF. This is done by again using the assumption that

the individual measurements are independent; if Nt is the total

number of target measurements, then the single measurement

transformed PDF is convolved with itself Nt −1 times, which
will produce the target batch PDF.

In reality, the number of target measurements Nt is not

fixed, but is actually a random variable itself. If the probability

of target detection in a scan is Pd, then the number of target

detections in a batch will be a binomial random variable with

mean PdNw (which completely describes the distribution).
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Figure 5. Empirical and theoretical batch/peak PDF for 2-D target measure-
ments with classification feature data.

Thus, if Nw = 11 (the batch size typically used in the

ML-PMHT tracker implementation), we can use the binomial

distribution to calculate P{Nt = 0}, P{Nt = 1}, P{Nt = 2},
. . . , P{Nt = 11} (where P denotes probability). Then, each

individual probability is used to weight the individual target

batch PDFs (i.e. the batch PDF for Nt = 1, 2, . . . , etc.) to
create a mixture batch target PDF.

At this point, everything done for calculating the target

batch PDF was the same as was done for the clutter batch PDF,

with the exception that the initial RV was a uniform RV in the

clutter case, and a Gaussian RV in the target case. In the clutter

case, it was necessary to use extreme value theory to calculate

the peak PDF from the batch. This is because the clutter batch

PDF represents the statistical distribution of ML-PMHT LLR

values caused by all the points in parameter space. In contrast,

the target batch PDF represents the statistical distribution of

the ML-PMHT LLR caused by target measurements at just

one point — the true target location. Thus, in the target case,

the batch PDF is the peak PDF. There is no reason to use

extreme-value theory for target-generated measurements.

An example of a target batch/peak PDF is shown in Figure

5. Again, the empirically-determined curve matches extremely

well with the theoretically determined curve.

IV. TRACKABILITY RESULTS

At this point, we have the PDF that statistically describes

the maximum point in the ML-PMHT LLR caused by clutter,

and we have the PDF that statistically describes the maximum

point in the ML-PMHT LLR caused by the target. This reduces

the tracking problem to a simple detection problem. The peak

clutter distribution is the H0 distribution, and the peak target

distribution is the H1 distribution. By using the Neyman-

Pearson lemma [15], we can pick an acceptable probability of

false track PFT (the typical value selected was PFT = 0.01)
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and use the H0 distribution to calculate a tracking threshold.

Any optimized ML-PMHT LLR outputs above this value will

be deemed to be from the target; any optimized ML-PMHT

LLR outputs below this will be ignored as they are assumed

to be from clutter.

This rapid and accurate determination of the ML-PMHT

tracking threshold is a powerful result by itself. Prior to this,

the best way to calculate this threshold was to empirically

estimate the Gumbel distribution of the clutter peak in the

manner described by [6]. While this method is accurate, it

is slow, making real-time implementation of the ML-PMHT

tracker with the most accurate threshold impossible. (The

threshold will change as environmental conditions change,

and it is necessary to have an algorithm that can update the

threshold in real-time to account for this.)

More importantly, beyond the tracking threshold determina-

tion, it is now possible to make statements about trackability

for a given target in a given environment. From classical

detection theory, we can compute receiver operating charac-

teristic curves (ROC), or perhaps more appropriately, tracker

operating characteristic curves (TOC). Or, we can “measure”

in a binary sense, if a given target is trackable in a given

environment. As described above, the PFT value applied to

the H0 curve determines the tracking threshold. When the right

side of the H1 curve is integrated starting at this threshold, it

produces a value for PDT . If the resultant PDT value is greater

than 0.5, we declare the target to be trackable. Of course, the

selected values of PFT and PDT to determine trackability are

arbitrary — different ones can certainly be selected, but the

methodology to determine trackability is the same.

With this in place, trackability for a given target in a given

environment can be computed. Results are presented for three

different cases in Figures 6, 7, and 8. The inputs for these runs

are given in Table II. For the figures, trackability boundaries

are shown as a function of probability of target detect in a

scan (Pd) vs. clutter density (λ). As is noted in each figure,

above the curves is the “trackable” region; below the curves

is the “non-trackable” region.

Figure 6 shows the effect of processing Doppler data. It

shows trackability for 2-D measurements (azimuth and time-

delay) versus several 3-D measurement cases (azimuth, time-

delay and Doppler/range-rate). In general, processing Doppler

increases trackability; however, an interesting effect is seen as

the Doppler error increases. The 3-D curves approach and then

actually cross over the 2-D curves — for σd = 5 units/sec,
the 2-D case is better than the 3-D case — i.e. it is better

to ignore the Doppler entirely. This is counterintuitive at first

— it would seem that if more information is processed by

any algorithm, it should perform better. However, what is

happening here is driven by the ratio of the Doppler error

to the Doppler volume (from Table II, the Doppler volume is

10 units/sec). With a (normally distributed) Doppler error of 5

units/sec, there is a non-insignificant chance that valid target

measurements will have a Doppler component that is outside

of the window being processed and thus will be effectively

thrown away. (Measurements do not actually get thrown away

by the trackability framework, but mathematically, this is

exactly the effect.) However, if the Doppler were ignored,

these valid target-generated measurements would be used,

which increases trackability.

Figure 7 shows the effect of processing an amplitude

feature. (Note that all the curves for this plot are 2-D mea-

surements, and ρc = 1.) First, there is the 2-D curve with no
amplitude that serves as a baseline. Now consider the case of

both the target and the clutter amplitudes having a Rayleigh

distribution. This is the “typical” amplitude likelihood ratio

that is present in much of the literature [8], [12]. The ampli-

tudes are normalized so that the clutter measurements have an

expected intensity (amplitude squared) of one, and the target

measurements have some expected intensity σ2. An issue with

this model is that the Rayleigh distribution is very light-

tailed, which causes the amplitude LR ρa to get very large

as received amplitude increases — essentially the algorithm

is “deciding” that received high amplitude measurements are

almost certainly from the target and cannot be from clutter.

This has the result of increasing predicted trackability. This is

why the Rayleigh curve in Figure 7 shows the best trackability

performance.

Recent work on received acoustic clutter has posited that the

clutter amplitude distribution, instead of being described by a

Rayleigh distribution, is better described by a K-distribution

[1], [2], and [3]. This is a heavier tailed distribution; its PDF

has a parameter α that controls the heaviness of the PDF’s tail.

Typical values for α range between 0.1 and 50; the smaller

the value of α, the heavier the tail of the distribution.

This heavy tail for the clutter PDF has the effect of

(probably realistically) deweighting high-amplitude measure-

ments, and thus reducing their effect on the ML-PMHT LLR.

This is exactly what is seen in Figure 7. For light-tailed

K-distributions — large values of α (i.e. α ∼ 50) — the

K-distributed clutter curve is close to that of the Rayleigh

distributed clutter curve. As the value of α gets smaller and the

clutter amplitude tail gets heavier, trackability decreases. At

the heaviest-tailed level analyzed, α = 0.1, the K-distributed
curve is practically on top of the 2-D curve using no amplitude

information at all. This shows that processing the amplitude

likelihood ratio when the clutter amplitude has a very heavy-

tailed distribution does not add much to a tracker’s perfor-

mance.

Finally, the effect of a classification feature is shown in

Figure 8. Three 2-D cases are examined and compared to

the “clean” 2-D case: Case 1, where the clutter classification

distribution has a higher variance than the target classification

distribution; Case 2, where the clutter and the target classifi-

cation distributions have equal variances; and finally, Case 3,

where the target classification distribution has a larger variance

than the clutter classification distribution. The exact mean and

variance values of the classification feature distributions for
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Figure 6. 2-D vs. 3-D trackability as a function of λ vs. Pd.

Table I
VALUES USED FOR THREE CLASSIFICATION CASES

Case µc σc µt σt

1 1 3 2 1

2 1 1 2 1

3 1 1 3 2

the three cases are provided in Table I.

It does not appear as if there is a single factor that drives

trackability as a function of classification feature parameters.

Intuitively, it would seem that the normalized distance between

the clutter and target clutter features (the difference in means

divided by the sum total of the variances) would be a large

factor in trackability performance. However, Case 1 and Case

2 have a fairly large difference in this metric but have

similar trackability curves. Interestingly, what drives the big

increase in trackability for Case 3 is the target classification

feature variance. As this target classification feature variance

increases, the support for the transformed single target mea-

surement PDF increases, which in turn spreads the mass of the

target batch/peak PDF to the right as well. In contrast, for all

three cases, the peak clutter PDFs were fairly similar. Further

work will be done to see if the target classification feature

variance always has the same effect. Additionally, note that to

this point, the classification feature was limited to Gaussian

distributions for the target and clutter with known variances.

Upcoming work will examine trackability in cases when some

or all of the parameters in those distributions are not exactly

known.

V. CONCLUSIONS

In this work we have presented a framework that is used

to determine the trackability of a given target in a given

environment for various combinations of measurement dimen-

sionality, amplitude features, and classification features. It uses
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Figure 7. Trackability plot for various amplitude features as a function of λ

vs. Pd.
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Figure 8. Trackability plot for various classification features as a function of
λ vs. Pd. Cases defined in Table I.

Table II
VALUES USED FOR FIGURES 6-8.

2-D and 3-D tracking parameters

Angular volume 360◦

Angular error 5◦

Time delay volume 60 sec

Time delay error 0.1 sec

Range-rate volume 10 units per sec

Range-rate error 1 units per sec

Amplitude threshold (K-dist cases) 7 dB

Expected target amplitude (K-dist cases) 10 dB

Nw 11

π1 0.1512

π0 0.8488
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the assumptions of the ML-PMHT algorithm and extreme-

value theory to calculate a PDF that describes the statistics

of the peak point in the tracker LLR caused by clutter as

well as the PDF that describes the peak point in the tracker

LLR caused by the target. With the clutter peak distribution,

it is possible to rapidly and accurately determine tracking

thresholds for the ML-PMHT algorithm. When the target-due

LLR peak distribution is added, it becomes possible, for some

desired PFT value, to determine if the target has a PDT level

that is greater than some desired level and is thus able to be

tracked.

The ML-PMHT algorithm is an optimal algorithm under

the assumptions given: the measurement-to-target association

model and the parametric trajectory sought. Empirically, the

former makes little difference when an ML method is used,

and the latter is a good approximation to any trajectory over

data batches of reasonable size. Given this, and in light of

the fact that it uses all the data available (unlike a “hard

association” algorithm such as the MHT) and it needs no

simplifying assumptions to work (as opposed to a scan-by-

scan tracker such as the JPDAF), it seems reasonable to claim

that statements made for the limits of ML-PMHT performance

apply to all trackers. That is, it places a rough upper bound

on any other tracking algorithm; the framework presented

here provides the answer to the question, “Can this target be

tracked?”
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