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Abstract—Indoor localization based on image matching faces
the challenges of clustering large amounts of images to build a
reference database, costly query when the database is large and
indistinctive image features in buildings with unified decoration
style. We propose a novel indoor localization algorithm using
smartphones where WiFi, orientation and visual signals are
fused together to improve the localization performance. The
reference database is built as a signal tree with less computational
cost as WiFi and orientation signals pre-cluster the reference
images. During localization, WiFi and orientation signals not
only offer more context information, but also prune impossible
reference images, improving the accuracy and efficiency of image
matching. In addition, images are described by multiple-level
descriptors recording both global and local image information.
The proposed method is compared with other methods in terms
of localization accuracy, localization efficiency and time cost to
build the reference database. Experimental results on four large
university buildings show that our algorithm is efficient and
accurate for indoor localization.

I. INTRODUCTION

Indoor geo-location is an important component of smart

buildings, which can be divided into two categories: indoor

navigation and indoor localization. Indoor navigation provides

the route to the user’s destination while indoor localization

tells the user where she/he is. This paper focuses on indoor

localization because it has many daily applications in different

scenarios such as hospitals, shopping malls, museums and

office towers. In addition, indoor localization lies the basis

for further navigation. The technology of indoor localization

of human can also be applied to robots in a building.

Visual signal is intuitively useful for indoor localization

as people generally know where they are according to what

they see. A typical vision based indoor localization algorithm

consists of two stages: building a reference database and online

localization by image matching. The database is built by the

feature representation of geo-tagged images taken within a

building. When positioning, a new image around a user’s

location is taken and it is compared with the database to

estimate her/his location.

Although vision based indoor localization has been studied

for several years [1][2][3][4][7], there are still several unsolved

challenges when practical implementations are considered: (1).

In a common building, thousands of images can be recorded

as references and millions of visual features can be detected

and extracted from the images. An efficient way to build

the reference database is needed. (2). In online localization,

the query image will be compared with the whole database,

which decreases the efficiency when the database is huge.

(3). A building may have unified decoration style, so similar

scenes exist in different positions, which is hard to be visually

classified.

The pervasiveness of smartphones offers the opportunities

to assist visual indoor localization with WiFi and orientation

signals and mitigates the challenges described above. The

WiFi module collects WiFi signals and inertial sensors (e.g.,

accelerometer and magnetometer) can be used to measure

the orientation of a smartphone when its user takes photos.

In this paper we fuse the visual signal and other contextual

information offered by WiFi and inertial sensors to make

the energy-saving, efficient and accurate indoor localization

possible.

A. Previous Work

WiFi and inertial sensors can be individually applied to in-

door localization. [14] and [13] extracted sophisticated features

from the raw Received Signal Strength Indication (RSSI) of

WiFi signals to describe locations. However, it is possible that

some hotspots are shut down or the RSSI value of a specific

hotspots is changed because of the device update, which dra-

matically decreases the localization accuracy of merely WiFi-

based approaches. [15] and [16] utilized inertial sensors to

perform step detection, speed estimation and heading direction

determination and the three components can be built in the

Dead Reckoning framework to obtain the user’s trajectory. The

trajectory can then be matched with the floor plan to infer the

user’s location. Inertial sensors based approaches do not need

to collect reference data in the building except the floor plan,

but Dead Reckoning suffers from cumulative errors, making

the trajectory estimation inaccurate.

For vision-based indoor localization, in [6], local affine

invariant points were extracted from images. These points

were quantized into visual words by K-means. Each image

can be represented as a vector and each dimension of the

vector represented a count of the occurrence of a visual word.

The feature descriptor in terms of visual words was used for

image/object matching. Wang et al. [1] proposed a coarse-

to-fine localization system where several candidate images

were obtained by comparing the similarity of a query vector

with reference vectors in the database, then a keypoint voting

algorithm was adopted to determine the final matched image.

Although online localization is reliable, the database is still

computationally costly to be built. Liu et al. [4] considered

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 1724



Fig. 1. Overview of the propose indoor localization algorithm.

the global features, including a weighted gradient orientation

histogram and color histogram to localize people in indoor

environment, but merely global information can not distinguish

two different locations with similar decoration. To reduce

the cost to build database, Chiang et al. [8] improved the

traditional K-means by compressing and removing patterns at

each iteration which are unlikely to change their membership

thereafter. To improve the localization accuracy, Sadeghi et al.

[9] adopted epipolar geometry constrains to refine the location.

Previous work also investigated signal fusion methods for

indoor localization. [18] and [19] utilized WiFi signal to rectify

the trajectory obtained by inertial sensors. [20] combined

Radio Frequency and WiFi to improve the localization accu-

racy. [21] combined more signals (e.g., WiFi, sound, motion,

color) to build the localization algorithm. These signal fusion

methods just concatenate several sensors together to improve

the localization accuracy but the problems of feature selection

on signals and how to efficiently combine signals are often

overlooked.

II. PROPOSED METHOD AND ALGORITHM OVERVIEW

In this paper, we propose a novel tree-based indoor local-

ization algorithm in which the WiFi, orientation and visual

signals from smartphones are integrated into a signal tree. In

the proposed algorithm, WiFi is used for coarse positioning,

thus the problem of WiFi environment change is mitigated

since WiFi is only used for coarse localization instead of

fine localization. Inertial sensor is not used to estimate the

trajectory, but to obtain the orientation towards which the

user takes photos. The problem of image scenes caused by

unified decoration can also be alleviated because similar scenes

may have different WiFi and orientation information. This

algorithm consists of two stages: building the signal tree and

online localization (Fig.1).

Building the Signal Tree (Fig.1(a)): WiFi signals are

collected in a building, tagged with hotspots’ Received Signal

Strength Indication (RSSI) and the positions where the signals

are collected. Reference images are densely captured in a

building and labeled with the orientation and location informa-

tion. Essentially, the construction of a signal tree is the process

of clustering and describing reference images with the aid of

WiFi and orientation signals. Locations are described by WiFi

fingerprints and then all WiFi fingerprints are clustered into

branches. All reference images are partitioned into the WiFi

branches based on their spatial distance to WiFi fingerprints’

positions (purple part in Fig.1(a)). Then, images in the same

WiFi branch are further classified according to their orientation

similarity (blue part in Fig.1(a)). Images in one leaf node share

the same WiFi and orientation labels. Given a leaf node, each

image is described by multiple level descriptors (blue part in

Fig.1(a)).

Online Localization (Fig.1(b)): When a user takes a photo

to localize herself/himself, WiFi and orientation signals are

recorded automatically and synchronously. The signal tree is

then searched to find the best matched image that indicates

the user’s location. The query WiFi fingerprint coarsely de-

termines which WiFi branches the matched image belongs to.

Orientation information further rules out impossible reference

images. Then, every searched leaf node gives a candidate

image best match to the query image within a leaf node.

Finally, these candidate images are compared to decide the

final matched image. The matched image’s tagged position

indicates the user’s location.

Our proposed tree-based indoor localization algorithm does

not bring extra work to users. A user only needs to take a

photo while the WiFi and orientation signals are automatically

recorded. Then, the user can discover her/his location in the

building based on the signal tree. In addition, when building

the signal tree, images are naturally clustered into groups

sharing similar WiFi and orientation environments. Combined

with parallel computing, the time needed to build the database

can be remarkably reduced. In online localization, WiFi and

orientation can not only offer more context information to

refine the matched location, but also rule out impossible ref-

erence images, decreasing computational cost and increasing

localization accuracy.

In the rest of this paper, building the reference signal

tree is described in Section 3. Detailed search strategies for

localization are introduced in Section 4. Then, experimental

results are presented with comparisons and evaluations.
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Fig. 2. WiFi fingerprints clustering. (a) Button-Up WiFi Clustering Dendrogram; The number in the leaves are indices of WiFi fingerprints. (b) Top-Down
Cutoff Dendrogram. Leaves sharing the same color belong to the same WiFi cluster. (c) The floor plan where the WiFi fingerprints are collected. Dots indicate
where the WiFi signals are collected and surrounding numbers are the corresponding indices of WiFi fingerprints. Dots sharing the same color belong to the
same WiFi cluster corresponding to (b).

III. BUILDING THE SIGNAL TREE

This section presents the algorithm to build the signal tree.

The surrounding sensor environment (WiFi and orientation)

and image attributes of a position are fused together in the

hierarchical signal tree to describe that location.

A. Building WiFi Branches

WiFi signals are sparsely collected in a building. A location

is described by the WiFi fingerprint, which is a vector with

each dimension equaling to the processed RSSI of a certain

hotspot. To better describe the WiFi environment of a building,

all fingerprints are clustered into groups.

It is reported in [10] that WiFi signal gets less reliable

when its RSSI is lower, so we normalize the raw RSSI by

an exponential distribution

f∗
i,j = λexp[λ

fi,j − fmin

fmax − fmin

] (1)

λ =
fmax − fmin

fmean − fmin

(2)

where fi,j is the raw RSSI of WiFi hotspot j at location

i. f∗
i,j is the normalized RSSI. fmax, fmin and fmean are

the maximal, minimal and average RSSI of all fi,j . λ is the

rate parameter. Then, the WiFi fingerprint at location i, fi, is

defined as

fi = [f∗
i,1, . . . , f∗

i,j , . . . , f∗
i,Nj

] (3)

where Nj is the number of WiFi hotspots in a building.

1) WiFi Clustering: Treating WiFi fingerprints individually

is not robust to environment changes such as shutdown of

some hotspots. Thus WiFi fingerprints are clustered into

groups based on their WiFi fingerprint similarity and spatial

distance. The clustering procedure is divided into two steps

(Fig.2): Bottom-Up clustering by WiFi fingerprint similarity

and Top-Down cutoff by spatial distance.

As shown in Fig.2(a), WiFi fingerprints are firstly hier-

archically clustered from bottom to up. Initially, each WiFi

fingerprint is a cluster. Then two clusters most similar to each

other are merged into a bigger cluster. This agglomerative

mergence operation is performed iteratively and stops when

all WiFi fingerprints are in one cluster. The similarity metric

of two clusters is defined by Ward’s method [11]

S(A,B)=
∑

k∈A∪B

||fk−fA∪B||−
∑

k∈A

||fk−fA||−
∑

k∈B

||fk−fB|| (4)

where fk denotes a WiFi fingerprint. fA, fB and fA∪B are

the centroids of cluster A, B and A∪B, respectively. ‖ · ‖ is

Euclidean distance.

The WiFi hierarchical tree in Fig.2(a) only shows a multi-

branch hierarchy rather than a set of clusters. It is parti-

tioned into several groups based on WiFi fingerprints’ spatial

distances. As shown in Fig.2(b), from top to down of the

WiFi hierarchy, every node is checked if the maximal value

of spatial distance between all pairs of WiFi fingerprints

belonging to this node is less than a predefined threshold

dWiFi
thr (e.g., dWiFi

thr =20 meters). When the maximal value is

actually less than dWiFi
thr , the WiFi fingerprints belonging to

this node will be considered to be the same group.

Note that the number of WiFi clusters is automatically de-

fined by the fingerprint similarity and spatial distance instead

of presetting by human. Fig.2(c) shows the final clustering

results of WiFi fingerprints in a university building. The clus-

tering result accurately reveals the actual WiFi environment of

this building. Then, each reference image is clustered to the

nearest WiFi group based on spatial distance.

B. Building Orientation Branches

Inertial sensors, including accelerometer and magnetometer,

are equipped in most smartphones. When smartphones are sta-

ble (taking photos), accelerometer measures the gravity while

magnetometer measures the earth’s magnetic field. Gravity and

magnetic field set up a world coordinate system. Thus, every

point in the phone’s coordinate system can be converted to the

world coordinate system by a transformation matrix.

Let Qp→w denote the transformation matrix from phone

coordinate system to the world coordinate system, which can

be obtained by the algorithm described in [12]. Fig.3 shows

the scenario when a user takes a photo, the yellow vector

cp represents the orientation that the camera is towards. Note
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Fig. 3. The scenario when a user takes a photo for localization. cp is a
constant vector in photo’s coordinate system, pointing outside the back of the
phone.

that cp is a constant vector in phone’s coordinate system. cp
is transformed to the world coordinate by

cw = cp ×Qp→w (5)

Denoting cw = [cwx cwy cwz]
T , we project the orientation

to the horizontal plane in the world coordinate, i.e, vector

O = [cwx cwy]
T is the orientation on the floor plan which the

photo is taken towards.

1) Orientation Clustering: When building the visual

database, previous work [3][4][5][7] mostly took thousands of

photos manually, which is pretty time consuming. Instead, we

collect continuous videos and orientation information simul-

taneously. Every frame of these videos is a reference image.

Without loss of generality, we make the explanation with a

simple floor plan. For example, eight video clips were recorded

in a building following the eight routes defined in Fig.4(a).

Each frame in the videos is tagged with its corresponding

orientation. Each video clip was recorded following the same

direction, therefore the orientations of all frames in a video

are similar, naturally forming a cluster of orientation.

Fig. 4. Orientation clustering. (a) Floor plan of a building with 8 routes to
record videos and sensor information. (b) Orientation distributions calculated
by the data collected according to (a).

Fig.4(b) shows the distributions of eight orientation clusters

corresponding to the eight routes in Fig.4(a). The orientation

distribution of each video clip is not a constant impulse

distribution due to noise. The orientation distribution of a

video clip q is modeled by a Gaussian distribution N(µq, σq).
Suppose the entire floor plan in Fig.4(a) is in one WiFi cluster,

overlapped orientation clusters can be further merged into a

bigger cluster. The similarity of two distributions q1 and q2 is

defined as:

Sq1,q2 =
σ2

q1
+ σ2

q2

|µq1 − µq2 |
(6)

If the centroid of two distributions are close to each other

and their inter-distribution variance ar small, then they can be

merged into a bigger cluster. In Fig.4(b), the eight orientation

distributions can be clustered into four clusters. Each of the

four orientation clusters is one orientation subbranch within

the same WiFi branch.

Fig. 5. SIFT points in a user-taken image. The red points are the salient
SIFT keypoints and the blue points are the dense SIFT keypoints. The image
is equally divided into five subimages.

C. Building Image Leaf Nodes

In this paper, we propose a Multiple Level Image Descrip-

tion (MLID) method to describe images in leaf nodes of the

signal tree (Fig.1). MLID is based on Term Frequency Inverse

Document Frequency(TF-IDF) [6], but we improve it in three-

folds: (1) Dense Scale Invariant Feature Transform(SIFT)

keypoints are extracted in the low texture areas. (2) Divisive

hierarchical clustering is adopted rather than K-means. (3)

Each image is described as multiple vectors, thus both global

and local information of an image is recorded. As shown in

Fig.6, MLID consists of four steps:

1) Feature Extraction: In Fig.5, salient SIFT keypoints (red

points) are firstly extracted from an image. Dense SIFT

keypoints (blue points) are then extracted in the low

texture areas ignored by salient SIFT such as some parts

of the ceiling and walls. Features of keypoints extracted

from all reference images in a leaf node are collected

into a large feature pool (represented as purple circles

in Fig.6(a)).

2) Feature Clustering: Divisive hierarchical clustering is

applied to partition SIFT features in the feature pool.

In Fig.6(b), SIFT features are firstly clustered into t

groups (t = 2 in Fig.6(b)) at level 1 (l = 1) based on

Euclidean distance. Then each cluster in the first level

are clustered into t groups. The process is performed

repeatedly until every leaf of the feature clustering tree

has a small set of SIFT feature descriptors (e.g., less than

100 SIFT features on the leaves). The symbol around

each node represents the mean of SIFT feature vectors
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Fig. 6. Flow chart of the Multiple Level Image Descriptions (MLID) method.

in that subtree (called visual word) and the visual words

at each level forms the visual codebook for that level.

In Fig.6(b), the symbols in each dotted rectangle belong

to one visual codebook.

3) Feature Interpretation: As shown in Fig.6(c), SIFT fea-

tures in an image can be interpreted into visual words

hierarchically based on the visual codebooks at different

levels. A SIFT feature is interpreted as the visual word

which is the closest to the SIFT feature based on

Euclidean distance. For example, at level 1 of Fig.6(c),

15 SIFT descriptors are close to visual word 1 (red star)

and 10 descriptors are close to visual word 2 (green

circle). The interpreted visual words at level 1 are finely

interpreted at following levels.

4) Image Description: Based on the hierarchical feature

interpretation, an image can be described by multiple

vectors. In each level, the dimension of the vector is the

same as the number of visual words and each dimension

is the count of the occurrence for corresponding visual

word. For example, in level 1 of Fig.6(d), 15 SIFT

descriptors belong to visual word 1 (red star) and 10

descriptors belong to visual word 2 (green circle), the

description vector is [15, 10], normalized as [0.6, 0.4].
The feature descriptors are finely computed in the subse-

quent levels according to more and more detailed visual

codebooks.

Spatial information is also considered when formulating the

feature description of an image. As the yellow lines in Fig.5

illustrate, the image is first equally divided into four subimages

and the fifth subimage is in the center of the image with the

same size of other four subimages. Multi-level feature vectors

are calculated based on individual subimages and then they

are concatenated to form long vectors to describe the whole

image.

The proposed MLID algorithm keeps both global and local

information of images. At the top level, SIFT descriptors are

coarsely clustered and the dimension of feature vector is low,

so the global information of the image is reflected. As the

descriptors are finely clustered, dimension of feature vector

gets larger and more detailed information is recorded. Note

that, compared with K-means, there is no need to predefine

how many groups we should cluster the SIFT descriptors,

which is another advantage of the MLID method to handle

different unknown scenes.

IV. ONLINE LOCALIZATION

When a user takes a photo to localize herself/himself,

WiFi and orientation signals are recorded synchronously. This

section presents the search strategy to find the best matched

reference image to identify a user’s location, which consists

of three stages: coarsely WiFi positioning, orientation pruning

and fine visual localization.

A. Coarsely WiFi Positioning

Let f0 be the WiFi fingerprint submitted by the user and can

be computed by Eq.3. Assume there are NWiFi WiFi clusters

in the signal tree. The centroid of WiFi clusters are denoted

as fn(n = 1...NWiFi). The distance between f0 and any WiFi

cluster fn is computed by Euclidean distance, denoted as d0,n.

Only the top h WiFi clusters with the smallest distance will

be searched in the next level, other WiFi clusters as well as

their subbranches are skipped over. In the experiments, h is

set to 2 which works well in our campus buildings. If the WiFi

environment is complex, h can be larger such that more WiFi

branches can be searched. In the following steps, branches are

searched independently.

B. Orientation Pruning

Several hundred orientation samples can be collected when

a user is taking photo. The query orientations O0 can be

modeled as a Gaussian distribution N(µ0, σ0). The similarity

between O0 and any orientation cluster can be computed by

Eq.6. Top h orientation clusters with the smallest similarity to

O0 will be searched in the next level, other subbranches are

skipped. As shown in Fig.1(b), the black branches indicates the

search routes. Only parts of the leaf nodes need be searched,

greatly increasing the efficiency.
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C. Fine Visual Localization

Within each searched leaf node, the most similar reference

image needs to be found. Algorithm1 shows the search strategy

within a leaf node. The best reference image is searched from

top to down of multiple vectors. As the level goes deeper, the

number of reference images to be compared becomes less and

less, which decreases the computational cost. Meanwhile, the

dimension of feature vector increases as the level goes deeper,

images are compared with more and more local details.

Algorithm 1 Search Algorithm in a Leaf Node.

Notations:

• B: the totally number of reference images in a leaf node

• L: the number of clustering levels in a leaf node

Iutput:

• Multiple feature vectors of query image: V0,l(l = 1...L);
• Multiple feature vectors of reference images in a leaf

node: Vb,l(b = 1...B, l = 1...L);
• Codebooks: Ml(l = 1...L);
• A predefined threshold dthr. It is set to 3 meters in this

system;

• Comparison Pool (CP): all reference images in a leaf node;

Iteration:

for l = 1 : L do

• Compute the similarity between query image and

images in CP:

Sl
0,b =

V0,l·Vb,l

|V0,l||Vb,l|

• Compute the average similarity

Sl
0,b =

∑
b∈CP Sl

0,b∑
b∈CP

• Reference images satisfying Sl
0,b < Sl

0,b are deleted

from CP

• Compute the maximum of pairwise spatial distance of

images in CP, denoted as dmax

if dmax < dthr then

return Ml and reference images with the largest Sl
0,b

break

end if

end for

Output:

Ml and the candidate image which is the reference images

with the largest Sl
0,b in CP

If only one leaf node is searched, the candidate image

selected from that leaf node is the final matched reference

image. Otherwise, every searched leaf node gives one candi-

date image, we need to compare which candidate image is

the best match. As shown in Fig.7, without loss of generality,

only two candidate images are discussed here. A new visual

codebook is built by concatenating the codebooks from the

outputs of Algorithm1. This new codebook is specialized to

the two candidate images, therefore it is more discriminative

than either of the single codebook. Then, feature vectors of

the query image and candidate images are calculated based

on the new codebook. The candidate image that has the

largest similarity with the query image is considered as the

final matched image. The matched image’s labeled position is

reported as the user’s location.

Fig. 7. Determine final matched image from candidate images.

V. EXPERIMENTS

To validate the effectiveness of our indoor localization

algorithm, we developed an App in the platform of Android

OS to record the WiFi, inertial and visual signals. Fig.8(a) is

one screenshot of the App with a simple interface. This App is

capable of collecting reference signals as well as query signals.

Fig.8(b) shows how we collect signals. WiFi, orientation and

visual signals are collected by the smartphone. A laser distance

measurer is utilized to identify the actual location. When we

collect reference signals, WiFi signals are collected uniformly

and sparsely in the available regions of a building such as the

hallway and public lounge. The distance of two adjacent WiFi

collection positions is about 5 meters. As described in Section

3.B.1, visual signals are recorded in the format of videos. The

frame rate of each video is 30fps. We keep walking with a

constant speed when recording the videos. Thus, the position

tagged to each frame can be interpolated by the positions of

the start and end of each video recording.

Fig. 8. (a) The data collection App. (b) A laser distance measurer is used to
identify the ground truth of a user’s position.

A. Testing Environment

The proposed indoor localization algorithm is tested in 4

campus buildings whose floor plans are shown in Fig.9. Table
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I summarizes the information of signal trees of the 4 buildings

which are used in experiment evaluations.

TABLE I
INFORMATION ABOUT THE SIGNAL TREES OF 4 BUILDINGS. NWB:

NUMBER OF WIFI BRANCHES; NOB: NUMBER OF ORIENTATION

BRANCHES; NRI: NUMBER OF REFERENCE IMAGES; NQI: NUMBER OF

QUERY IMAGES

Building No. NWB NOB NRI NQI

1 9 4 10117 241

2 6 4 4335 283

3 11 4 19313 202

4 12 4 18825 278

B. Comparison

Fig.10 shows some localization samples of our approach,

which demonstrates the proposed localization algorithm is

robust to crowded people, illumination change, scene changes

and orientation shifts. Our proposed indoor localization al-

gorithm is compared with three other approaches. (1) Multi-

Level Image Description (MLID) method that only uses visual

signals in the localization. (2) WiFi-based method. (3) The

localization algorithm proposed by Wang et al. [1], which

did not consider dense SIFT keypoints and multi-level feature

vectors. The comparison is in terms of localization accuracy,

localization efficiency and time used to build the reference

database.

1) Localization Accuracy: Fig.11 summarizes the local-

ization accuracy of 4 approaches in the 4 buildings. Our

approach achieves the highest accuracy compared to the other

3 methods. The comparison of the approach described in [1]

and MLID proposed in this paper shows it is more effective to

describe images with multiple vectors, thus images’ global and

local information are both recoded and utilized for localization.

2) Localization Efficiency: Table II summarizes the com-

parison of the average time cost of online localization. During

all the experiments, we notice that all query signals can be

localized in less than 6.5 seconds with our method. The

comparison of column 2 (Our signal tree method) and column

3 (Multi-Level Image Description, image-only method) proves

that WiFi and orientation signals are capable to rule out

impossible reference images and largely speed up the online

localization.

Our method is slightly slower than Wang et al. [1]. We

analyzed the average time cost of every step in our method and

found out that computing dense SIFT keypoints which is not

required in Wangs method consumes 58.06% (about 3.35s) of

the total time while searching the signal tree only takes 7.75%

(about 0.45s) in our method. The SIFT key detection and

extraction can be speeded up with GPU parallel computing.

For example, it only needs 0.07 second to detect and extract

SIFT keypoints from a 1024×768 image by a GPU [17]. We

leave this as our future work. The WiFi-only method is the

fastest, but its localization accuracy is very low (Fig.11).

3) Time Used to Build the Database: Table III summarizes

the time cost of the 4 approaches to build the reference

database. Except WiFi-only method, The proposed signal tree

takes the least time to build the database (about one-tenth of

TABLE II
AVERAGE TIME USED FOR LOCALIZATION (SECONDS)

Building Ours MLID Wang [1] WiFi

1 5.77 10.42 5.48 0.0094

2 5.63 9.63 5.22 0.006

3 5.80 10.79 5.11 0.0050

4 6.20 11.23 4.91 0.0014

the time cost of the image-only(MLID) method). Note that

building or updating a reference database including thousands

of images for a skyscraper can be a very time-consuming

task. However, in our signal tree method, WiFi and orientation

signals pre-cluster reference images into several leaf nodes,

thus a complex problem is divided and conquered by small

problems.

TABLE III
TIME USED TO BUILD THE DATABASE (HOURS)

Building Ours MLID Wang [1] WiFi

1 1.75 15.5 12 0.000866

2 2.5 23.75 22 0.001178

3 2 28 27.75 0.000948

4 2.25 27 26 0.00145

C. Discussion

From the experimental results, our method takes more time

to build the database compared to WiFi-only method and our

method takes more time for query compared to WiFi-only and

Wang et al. [1] methods, but the accuracy of our method is

far better than the other methods. Considering the evaluation

metrics together, our proposed method is competitive and its

effectiveness is multi-folds.

For a fingerprint based algorithm, it is time-consuming

to collect a complete reference dataset to satisfy the high

accuracy requirement. In this paper, we just uniformly and

sparsely collect WiFi fingerprints in a building. We collect

reference images in the format of videos (Scetion 3.B.1),

which largely speed up the data collection and updating.

The proposed algorithm deals with the problem of WiFi

environment change in two ways. As discussed in section

3.A.1, WiFi fingerprints are clustered into groups, thus our

tolerance to WiFi environment change is getting higher. In the

scenario that WiFi environment is largely changed, we can

increase the number of search branch h described in section

4.A to allow more WiFi branches to be searched.

VI. CONCLUSION

In this paper, we propose a novel signal-tree based indoor

localization algorithm by fusing WiFi, inertial and visual

signals. Our proposed algorithm is accurate as well as efficient

because it makes full use of the advantages of three signals

and finds the matched signal in a hierarchy manner. The

proposed Multi-Level Image Description (MLID) method is

very effective to describe and compare images with coarse-to-

fine image descriptors. In our future work, we plan to provide

intelligent guidance to the user allowing a second localization

in the extremely challenging cases when the first localization

is not reliable.
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Fig. 9. Floor plans of the test buildings.

Fig. 10. Samples of our indoor localization. Top row: query images. Bottom row: matched reference images. (a). People occlusion. (b). Illumination changes.
(c). Orientation shifts. (d). Scene slightly changes. (e). Low texture scene.

Fig. 11. Accuracy comparison. Horizontal-axis is the distance between ground truth and estimated user’s position. Vertical-axis is the proportion of query
signals that have the accuracy within the distance labeled in horizontal-axis. MLID: Multi-Level Image Description method that only uses visual signals; Ours:
signal tree (MLID + WiFi + Inertial sensor)
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