
Passive Tracking of Underwater

Acoustic Sources with Sparse Innovations

Pedro A. Forero, Paul Baxley, and Logan Straatemeier

SPAWAR Systems Center Pacific, San Diego, CA 92152, United States

Email: {pedro.a.forero;paul.baxley;logan.straatemeier}@navy.mil

Abstract—Tracking acoustic sources via passive sonar is a
challenging task common to several underwater monitoring
and surveillance systems. Classical tracking approaches based
on matched-field tracking and Kalman filtering techniques are
impractical due to the their large computational and storage
requirements. This work uses sparse-signal modeling tools to
develop a computationally-affordable broadband tracking algo-
rithm for an entire source-location map (SLM). Spectral data
from multiple frequency bands are processed coherently so as to
unambiguously agree on the source locations across frequencies.
The tracking problem is cast so that the sparsity inherent in the
SLM and in the SLM-innovations can be exploited. A numerical
solver based on the proximal gradient method and the alternating
directions method of multipliers is developed for SLM estimation.
Numerical tests on real data illustrate their performance.

Index Terms—matched-field tracking, underwater acoustic
source localization, sparsity, proximal gradient methods

I. INTRODUCTION

Passive sonar enables monitoring and surveillance systems

to operate without radiating sound into the water; hence, it

is often employed in applications where concealment and

low environmental impact are desired. Acoustic data collected

over time can be used for sketching source tracks by, for

example, plotting source-location estimates over time [1], [11].

Tracking capitalizes on the temporal structure inherent to

source tracks, which are always constrained by the kinematic

features of the source, to improve source-location estimates.

However, using classical tracking methods, such as Kalman

filtering, to develop a passive acoustic tracker poses significant

computational challenges [8], [11].

Matched-field tracking (MFT) is a passive acoustic tracking

approach that builds on a generalized underwater beamforming

technique called matched-field processing (MFP) [5], [15].

MFP postulates a grid of tentative source locations and relies

on an acoustic propagation model to obtain model-predicted

acoustic pressures, hereafter referred to as replicas, at an

array of hydrophones. Replicas are “matched” to acoustic

measurements collected at the array to construct a surface

that summarizes the acoustic-power estimates across all grid

locations [1]. MFT relies on a sequence of ambiguity surfaces

obtained at consecutive time intervals for constructing tracks.

Note that these ambiguity surfaces are constructed indepen-

dently from each other without exploiting their temporal cor-

relation. Then, MFT constructs a graph connecting grid points
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on consecutive ambiguity surfaces. Each possible path over

this graph connecting the initial and final ambiguity surface

is scored based on, e.g., its average ambiguity surface value,

and the path with the largest score serves as a track estimate

[9], [14]. Unfortunately, the complexity of MFT grows quickly

with the size of the grid and the number of ambiguity surfaces

used. Constraints obtained form the source’s kinematics are

often used to limit the number of tracks to be explore.

Sparsity-driven Kalman-filter approaches can be used for

tracking acoustic sources over a grid [8]. In these approaches,

the entire grid takes the place of the state variable. It is

presumed that only a few entries of the grid, that is, those

corresponding to the locations of the sources, take nonzero

values and, thus, the state variable is considered to be sparse.

Unfortunately, the high dimensionality of the grid renders

impractical any tracker that computes the full covariance

matrix of the state variable.

Our broadband tracking approach builds on the sparsity-

driven framework outlined above. It aims to construct sparse

source location maps (SLMs), one per frequency, while ex-

ploiting their temporal dependence. Only those grid points

whose locations correspond to a source location take a nonzero

value, which represents the complex-valued acoustic signature

of the source. The tracker guarantees the support of the var-

ious grids to coincide, thereby assuring unambiguous source-

location estimates across frequencies. Different from Kalman

trackers, our tracker relies on prior SLM estimates only.

An innovation is defined as a change in the support of

consecutive SLMs. The proposed tracker controls the number

of innovations allowed to occur. It is assumed that innovations

are sparse, and thus few sources change their location between

consecutive SLMs. Our tracking framework extends that pro-

posed by Charles et al. in [6] by introducing a broadband

tracker in which source-location information is shared across

frequencies [10]. The resulting complex-valued optimization

problem features a compounded regularizer that encourages

sparse SLMs and sparse innovations. Iterative solvers based

on a combination of the proximal gradient (PG) method

and the alternating direction method of multipliers (ADMM)

are developed. Numerical tests on real data illustrate the

performance of the proposed tracking algorithm.

II. PRELIMINARIES

Consider K broadband acoustic sources radiating sound

underwater. Although all sources are presumed to be mobile,
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thus justifying the dependence of their locations {rk(τ)}Kk=1

on the time τ ∈ N, no assumptions about their kinematics are

made. Each rk(τ) ∈ R
d is given in cylindrical coordinates

comprising the source’s range, depth (with respect to the

sea surface), and azimuth, with d ∈ {1, 2, 3}. An array

with N hydrophones of known, but arbitrary, geometry is

used to collect a time series of acoustic pressure vectors

{y(τ) ∈ R
N : τ ∈ N} with entries [y(τ)]n ∈ R denoting

the acoustic pressure measured by the n-th hydrophone in

the array at time τ . Note that although our framework is

agnostic to the specific geometry of the array, its geometry

affects our definition of source location. For instance, data

gathered with an array that features horizontal aperture but

no vertical aperture provides information about the sources’

azimuth only (d = 1), whereas data gathered with an array

featuring vertical and horizontal aperture provides information

about the sources’ range, depth, and azimuth (d = 3) [11, Ch.

10].

Localization and tracking algorithms that use {y(τ)} di-

rectly are often challenged by the high sampling and com-

putational requirements necessary to reconstruct the channel

impulse responses between the source locations and the hy-

drophones [7]. Instead, this work develops a frequency-based

passive-tracking approach that does not require estimating the

channel impulse responses. To this end, {y(τ) : τ ∈ N} is

sequentially processed per hydrophone by computing short-

time Fourier transforms (STFT) of length T0. Consecutive

blocks of the acoustic-pressure time series data can overlap

and be scaled (per hydrophone) by a carefully chosen window

function so as to reduced sidelobes and decrease the variability

in the spectrum of the acoustic pressure series due to noise [11,

Ch. 10]. Fourier coefficients at F frequencies {ωf}Ff=1 across

the N hydrophones are gathered in Ym := [ym
1 , . . . ,ym

F ] ∈
C

N×F , where [Ym]n,f ∈ C denotes the Fourier coefficient

corresponding to ωf for the n-th hydrophone in the m-th STFT

block.

Each ym
f is modeled as

ym
f =

K
∑

k=1

smk,f p̄k,f + ǫmf , ∀m, f (1)

where smk,f ∈ C denotes the Fourier coefficient at ωf of the

acoustic signature of the k-th source obtained by the m-th

STFT, p̄k,f ∈ C
N the model-predicted Fourier coefficient vec-

tor at the array for the k-th source at frequency ωf normalized

so that ‖p̄k,f‖2 = 1, and ǫmf the spectral components of the

array’s measurement noise at ωf for the m-th STFT block. The

replicas p̄k,f ’s are obtained using a model that characterizes

the acoustic propagation environment and the geometry of the

array [11, Ch. 10].

Given K, the goal of the spectral passive-acoustic tracking

problem is to recursively estimate the locations {rk(τM )}Kk=1

of the acoustic sources at τM = ⌊(1 − α)T0M⌋ based

on the sequence of Fourier coefficient matrices {Ym}Mm=0,

where α ∈ [0, 1) denotes percentage of overlap between

consecutive STFT blocks. Note that here τM denotes the time

index corresponding to the beginning of the M -th temporal

acoustic-data block. Even if all smk,f ’s were known, finding

{rk(τM )}Kk=1 based on (1) is challenging due to the nonlinear

relationship between each rk(τM ) and its corresponding p̄k,f ,

∀f , which in most cases is not available in closed form.

III. BROADBAND SPARSITY-DRIVEN SOURCE TRACKING

A model for the ym
f ’s that alleviates the challenges associ-

ated with the nonlinearities inherent to (1) is proposed in this

section. Let G := {rg ∈ R
d}Gg=1, with G ≫ max{N,KF},

denote a grid of tentative source locations over the region of

interest. Each ym
f is now modeled as

ym
f =

G
∑

g=1

smg,fpg,f + ǫmf , ∀f (2)

where pg,f denotes the normalized replica, i.e., ‖pg,f‖2 = 1,

for a source located at rg ∈ G, and smg,f the unknown Fourier

coefficient associated to the acoustic signature at frequency ωf

for a source located at rg . Note that (2) tacitly assumes that

the acoustic sources are located exactly on some rg ∈ G. Since

G ≫ KF , most of the smg,f ’s are expected to be zero at any

given m. Only coefficients smg,f that correspond to the location

of the acoustic sources take nonzero values, and thus their

corresponding replicas participate in (2). All smg,f ’s associated

to locations where acoustic sources are absent are set to zero.

From the vantage point of (2), finding estimates for

{rk(τm)}Kk=1 is tantamount to identifying the locations in

G corresponding to the nonzero smg,f ’s. Let (·)′ denote the

transpose operator and smf := [sm1,f , . . . , s
m
G,f ]

′ ∀f . Once an

estimate for Sm := [sm1 , . . . , smF ] ∈ C
G×F is available, one

can construct the broadband SLM. This can be done by,

e.g., plotting the pairs (rg, ‖ςmg ‖2) for all rg ∈ G, where

ςmg := [smg,1, . . . , s
m
g,F ]

′ ∈ C
F comprises the entries of the g-th

row of Sm. Source location estimates {r̂k(τm)}k∈K indexed

by the index-set K ⊂ {1, . . . ,K} are given by the locations

that correspond to the K-largest entries in the SLM, i.e.,

K ∈ argmax|K|=K

∑

κ∈K ‖ςmκ ‖2.

A localization algorithm that exploits the inherent sparse

structure of Sm was proposed in [10]. This approach estimates

Sm using {ym
f }Ff=1 only, while enforcing a common-support

across all its columns {smf }Ff=1. The requirement on the

support of Sm is justifiable since it is assumed that the

acoustic signal radiated by each source spans all {ωf}Ff=1.

Nevertheless, such an estimator for Sm does not capture

the temporal dependencies inherent to source motion which

are due to the physical constraints on the kinematics of the

acoustic sources.

A. Sparsity-driven tracking with sparse innovations

In this section, an iterative estimator for Sm is proposed.

The distinctive feature of this estimator is that it uses the

previously estimated Sm−1 to capture the temporal evolution

of the source locations. At τm, Sm is obtained as the solution
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of the following regularized least-squares problem

min
S∈CG×F

1

2

F
∑

f=1

‖ym
f −Pfsf‖22+

G
∑

g=1

[

µ‖ςg‖2+λ‖ςg − ςm−1
g ‖2

]

(3)

where S := [s1, . . . , sF ], ς ′g the g-th row of S, Pf :=
[p1,f , . . . ,pG,f ] ∈ C

N×G the matrix of replicas for ωf , and

µ, λ > 0 tuning parameters. The regularization term in (3)

encourages both group sparsity on the rows of Sm and sparsity

in the innovations, that is, changes in the support between the

SLMs at τm−1 and τm.

The first term of the regularizer promotes our desiderata of

common support for the columns of Sm. The tuning parameter

µ controls the number of nonzero rows in Sm. The second

term of the regularizer captures temporal information related to

the previous SLM via the ςm−1
g ’s. The number of innovations

allowed to occur between τm−1 and τm is controlled via λ.

As stated in the following proposition, (3) can be written as

a real-valued convex optimization problem after representing

all complex-valued variables by the direct sum of their real

and imaginary parts. Before stating the proposition, let us

introduce the following notation y̆m
f := [Re(ym

f )′, Im(ym
f )′]′,

s̆f := [Re(sf )
′, Im(sf )

′]′, S̆ := [s̆1, . . . , s̆F ], and

P̆f :=

[

Re(Pf ) −Im(Pf )
Im(Pf ) Re(Pf )

]

(4)

where Re(·) (Im(·)) denotes the real-part (imaginary-part)

operator. Matrix S̆ can be alternatively viewed in terms of

its rows as S̆ = [ς̆1, . . . , ς̆2G]
′ where the first (last) G rows

correspond to the real (imaginary) parts of the rows of S.

Proposition 1: The minimum of (3) is equal to that of the

following convex optimization problem

S̆m = argmin
S̆∈R2G×F

1

2

F
∑

f=1

‖y̆m
f − P̆f s̆f‖22 + µ

G
∑

g=1

‖vg‖2 (5)

+ λ
G
∑

g=1

‖v̆g − v̆m−1
g ‖2

where v̆g := [ς̆ ′g, ς̆
′
g+G]

′ ∈ R
2F (v̆m−1

g ) corresponds to the

direct sum of the real and imaginary parts of ςg (ςm−1
g ).

Moreover, the minimizer Sm of (3) is given in terms of

S̆m as Sm = S̆m
1:G + jS̆m

G+1:2G, where j :=
√
−1 and

S̆m
g1:g2

= [ς̆g1 , . . . , ς̆g2 ]
′, for all g1 ≤ g2, g1, g2 ∈ {1, . . . , G}.

Although (5) is a convex optimization problem that can be

solved via, e.g., interior point methods, such solver entails high

computational complexity due to the large dimensionality of

S̆ and fails to exploit the sparse structure of S̆. The ensuing

section presents a PG solver for (5) that exploits its sparse

structure.

IV. SPARSE TRACKING VIA PG

In this section a PG algorithm for solving (5) while ex-

ploiting its sparse structure is developed. Problem (5) can be

written as min
S̆

h(S̆)+ θ(S̆), where h(S̆) := 1

2

∑F

f=1
‖y̆m

f −

P̆f s̆f‖22 denotes the continuously differentiable portion of the

cost, and θ(S̆) := µ
∑G

g=1
‖v̆g‖2 + λ

∑G

g=1
‖v̆g − v̆m−1

g ‖2
the nondifferentiable portion of the cost. Note that the gradi-

ent of h(S̆) is Lipschitz continuous with Lipschitz constant

Lh := maxf=1,...,F σmax(P
′
fPf ), where σmax(P

′
fPf ) de-

notes the largest singular value of P′
fPf . That is, ‖∇h(S̆1)−

∇h(S̆2)‖2 ≤ Lh‖S̆1 − S̆2‖F , where ∇h(S̆l) denotes the

gradient of h with respect to S̆ evaluated at S̆l.

The PG method can be interpreted as a majorization-

minimization method relying on a majorizer H(S̆;Z) for h,

where Z := [z1, . . . , zF ] ∈ R
2G×F is an auxiliary matrix.

The majorizer H satisfies: (i) H(S̆;Z) ≥ h(S̆), ∀S̆; and, (ii)

H(S̆;Z) = h(S̆) for Z = S̆. The specific H used is

H(S̆;Z) :=h(Z)+

F
∑

f=1

∇hf (zf )
′(s̆f − zf )+

Lh

2
‖S̆−Z‖2F (6)

where hf (s̆f ) := 1/2‖y̆m
f − P̆f s̆f‖22, and ∇hf (zf ) denotes

the gradient of hf with respect to s̆f evaluated at zf . That (6)

satisfies conditions (i) follows from the fact that the gradient of

h is Lipschitz continuous [3, Prop. A.24], and that it satisfies

(ii) follows after setting Z = S̆ in (6). With j denoting the

iteration index, the PG algorithm iteratively solves

S̆m[j] = argmin
S̆

[

H(S̆; S̆m[j − 1]) + θ(S̆)
]

. (7)

From an algorithmic point of view, it is convenient to write

H as a function of the v̆g’s. After performing some algebraic

manipulations on H and dropping al terms independent of S̆,

(7) can be written as

S̆m[j] = argmin
S̆

[

G
∑

g=1

Lh

2

∥

∥v̆g −wm
g [j − 1]

∥

∥

2

2
+ θ(S̆)

]

(8)

where

wm
g [j − 1] := v̆m

g [j − 1]− (1/Lh)d
m
g [j − 1] (9)

is a gradient-descent step, with step-size 1/Lh, for the g-th

row of S̆, and the entries of dm
g [j − 1], which correspond to

those of the gradient of hf with respect to v̆g , are

[dm
g [j−1]]f =

{−p̆′
g,fr

m
f [j−1], f = 1, . . . , F

−p̆′
g+G,fr

m
f [j−1], f = F+1, . . . , 2F

(10a)

where rmf [j − 1] := y̆f − P̆f s̆
m
f [j − 1]. Problem (8) is often

called the proximal operator of θ with parameter 1/Lh.

Problem (8) is decomposable across v̆g’s. Thus, per iteration

j, the PG update in (7) can be performed in parallel for every

pair of rows of S̆ comprised in each v̆g via

v̆m
g [j] = argmin

v̆g

[

Lh

2

∥

∥v̆g −wm
g [j − 1]

∥

∥

2

2
(11)

+µ‖v̆g‖2 + λ‖v̆g − v̆m−1
g ‖2

]

The cost in (11) is convex; however, it is non-differentiable

due to the compounded regularization term. This regularizer

is such that a closed-form update for v̆m
g [j] in general is not
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Algorithm 1 ADMM algorithm for solving (11).

Require: Parameters Lh, µ, λ, η > 0, wm
g [j − 1], and v̆m−1

g .

1: Randomly initialize ζg[0] and γg[0].
2: for i = 1, . . . , imax do

3: Compute v̆g[i] via (17a).

4: Compute ζg[i] via (17b).

5: Compute γg[i] via (16c).

6: end for

available. Thus, (11) must be solved numerically while bearing

in mind that the computational cost associated to each PG

iteration hinges on that of solving (11). Note that (11) can be

solved in closed form for the special case where v̆m−1
g = 02F ,

where 02F is a 2F ×1 vector of zeros, and its solution in this

case is

v̆m
g [j] = wm

g [j − 1]

(

1− λ+ µ

Lh‖wm
g [j − 1]‖2

)

+

(12)

where (·)+ = max{0, ·}.

In order to gain further insight into the solution of (11)

when v̆m−1
g 6= 02F , one can use the Karush-Kuhn-Tucker

(KKT) conditions combined with the notion of subdifferential

to characterize v̆m
g [j] [3]. With V m(v̆g) denoting the cost in

(11) and since (11) is an unconstrained optimization problem,

the KKT optimality conditions state that 02F ∈ ∂V m(v̆m
g [j]),

where ∂V m(v̆g) denotes the subdifferential of V m evaluated

at v̆g . The following necessary and sufficient conditions for

v̆m
g [j] follow readily from the optimality condition.

Proposition 2: When v̆m−1
g 6= 02F , the following mutually-

exclusive conditions about (11) hold

v̆m
g [j]=02F ⇔

∥

∥wm
g [j − 1]+αm−1

g v̆m−1
g

∥

∥

2
≤ λ

Lh

(13a)

v̆m
g [j]= v̆m−1

g ⇔
∥

∥wm
g [j − 1]−βm−1

g v̆m−1
g

∥

∥

2
≤ µ

Lh

(13b)

where αm−1
g = µ/(Lh‖v̆m−1

g ‖2) and βm−1
g = 1 +

λ/(Lh‖v̆m−1
g ‖2).

Prop. 2 can be used to quickly screen whether v̆m[j] equals

02F or v̆m−1. If neither of these conditions is satisfied, then

v̆m[j] must be obtained by solving (11) numerically.

A. An ADMM-based solver

An efficient iterative solver for (11) based on ADMM is

developed in this section. To this end, consider the following

optimization problem, which is equivalent to (11),

min
v̆g,ζg

Lh

2

∥

∥v̆g −wm
g [j − 1]

∥

∥

2

2
+ µ‖v̆g‖2 + λ‖ζg‖2 (14)

Subj. to ζg = v̆g − v̆m−1
g

The ADMM solver for (14) relies on the augmented La-

grangian given by

L(v̆g, ζg,γg) =
Lh

2

∥

∥v̆g −wm
g [j − 1]

∥

∥

2

2
+ µ‖v̆g‖2 + λ‖ζg‖2

+ γ′
g(ζg − v̆g + v̆m−1

g ) +
η

2
‖ζg − v̆g + v̆m−1

g ‖22 (15)

Algorithm 2 PG algorithm for solving (5).

Require: Tuning parameters µ, λ > 0 and S̆m−1.

1: for j = 1, 2, . . . , jmax do

2: {These updates can be parallelized}
3: for g = 1, . . . , G do

4: Compute wm
g [j − 1] via (9).

5: if v̆m−1
g = 02F then

6: Update v̆m
g [j] via (12).

7: else if Condition (13a) is true then

8: Set v̆m
g [j] = 02F .

9: else if Condition (13b) is true then

10: Set v̆m
g [j] = v̆m−1

g .

11: else

12: Update v̆m[j] via Algorithm 1.

13: end if

14: end for

15: end for

where η > 0 is a tuning parameter, and γg the Lagrange

multiplier associated to the equality constraint in (14). With i
denoting an iteration index, the ADMM iterations are

v̆g[i] = argmin
v̆g

L(v̆g, ζg[i− 1],γg[i− 1]) (16a)

ζg[i] = argmin
ζg

L(v̆g[i], ζg,γg[i− 1]) (16b)

γ′
g[i] = γ′

g[i− 1] + η
(

ζg[i]− v̆g[i] + v̆m−1
g

)

(16c)

The following proposition shows that updates (16a) and (16b)

can be obtained in closed form via soft-thresholding.

Proposition 3: Updates (16a) and (16b) can be performed

in closed form as

v̆g[i] =
ρm−1
g [i− 1]

Lh + η

(

1− µ

‖ρm−1
g [i− 1]‖2

)

+

(17a)

ζg[i] =
χm−1

g [i− 1]

η

(

1− λ

‖χm−1
g [i− 1]‖2

)

+

(17b)

where ρm−1
g [i−1] := η(ζg[i−1]+ v̆m−1

g )+Lh ·wm
g [j−1]+

γg[i− 1] and χm−1
g [i− 1] := η(v̆g[i]− v̆m−1

g )− γg[i− 1].
The resulting ADMM algorithm is summarized as Algo-

rithm 1. Per iteration, its computational complexity is domi-

nated by the evaluation of the Euclidean norms in (17) and it is,

thus, O(F ). With respect to the convergence of Algorithm 1,

note that the sequence {v̆g[i]}i>0 does not need to converge

to the optimal value of v̆g . Nevertheless, the results in [4,

Ch. 3 Prop.4.2] can be used to show that every limit point of

{v̆g[i]}i>0 corresponds to an optimal solution of (14), and that

the sequence {‖ζg[i]− v̆g[i]− v̆m−1
g ‖2}i>0 converges to zero,

i.e, iterates v̆g[i] and ζg[i] approach feasibility as i → ∞.

B. The sparse PG tracker

The resulting tracking PG algorithm is summarized as

Algorithm 2. In general, its per-iteration computational com-

plexity is dominated by the execution time of Algorithm

1 (line 12). Note, however, that Algorithm 1 is used only
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Figure 1. Schematic of the underwater acoustic environmental model used for
SWElleX-3. This model is characterized by the compressional sound speeds
{vi}

9

i=1
, bottom attenuation coefficients {αbi

}3
i=1

, and bottom densities

{ρbi}
3

i=1
(shear waves are neglected) [11].

when vm
g [j] 6∈ {02F ,v

m−1
g } and vm−1

g 6= 02F . Due to

the high sparsity regime in which Algorithm 2 operates, few

executions of Algorithm 1 are required. When Algorithm 1 is

not executed, its computational complexity is dominated by

the update in (9) which entails O(NG) operations.

Algorithm 2 can be shown to converge to the solution of (5)

while featuring a worst-case convergence rate of O(1/j) [2].

Thus its convergence may be slow in practice, requiring up

to several hundreds of iterations to achieve a highly accurate

solution. Recent works have shown that it is possible to

improve the suboptimal convergence rate of the PG method

while maintaining its computational simplicity [2], [12]. These

works propose to develop accelerated PG algorithms that

feature worst-case convergence rate of O(1/j2), see [2] and

references therein. These algorithmic extensions are not pur-

sued in this paper due to space limitations.

V. NUMERICAL EXAMPLES

In this section the performance of the proposed broadband

tracking algorithm is illustrated on the third Shallow-Water

Evaluation Cell Experiment (SWellEX-3) dataset (see [10] and

reference therein for a detailed description of SWellEX-3). In

SWellEX-3, a towed source transmitting at frequencies {53+
16k}9k=0 Hertz and a vertical line array collecting acoustic

data were used. In this analysis, only 9 hydrophones, out of

64 hydrophones available, were used. These hydrophones were

11.25 m apart, having a total aperture of 90 m with the bottom

element 6 m above the seafloor (water depth was 198 m). A

grid with G = 20, 000 locations spanning radial distances 0-

10 km and depths 0-198 m was used. The grid’s radial and

vertical spacing were 50 m and 2 m, respectively. All replicas

were computed with the KRAKEN normal-mode propagation

model [13] using the environmental model shown in Fig. 1.

Sample parameter values used in the model are: v1 = 1, 520
m/s, v2 = 1, 498 m/s, v3 = 1, 490 m/s, v4 = 1, 490 m/s, v5 =

(a) Sample evolution of the cost in (14) when using Algorithm 1 (ADMM).
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(b) Sample evolution of the cost in (5) when using Algorithm 2 (PG).

Figure 2. Illustration of the cost evolution of the ADMM and PG algorithms.

1, 572 m/s, v6 = 1, 593 m/s, v7 = 1, 881 m/s, v8 = 3, 246 m/s,

v9 = 5, 200 m/s, αb1 = 0.2 dB/m/kHz, αb2 = 0.06 dB/m/kHz,

αb3 = 0.02 dB/m/kHz, ρb1 = 1.76 g/cm3, ρb2 = 2.06 g/cm3,

and ρb3 = 2.66 g/cm3.

Fig. 2 illustrates the evolution of the cost of both the ADMM

and PG algorithms. Note that ADMM takes few iterations to

converge to an acceptable precision. Since ADMM is only

used to update few of the vg’s (in the order of the sparsity

of the SLM) per PG iteration, its computational complexity

does not significantly affect that of Algorithm 2. On the other

hand, the PG algorithm takes a few hundreds of iterations to

converge to an acceptable precision as defined by the quality of

the source tracks. This motivates future work exploring both

predictor screening rules and accelerated PG methods as a

mean to reduce the computational complexity of Algorithm 2

both by reducing G and the number of PG iterations required.

Fig. 3 shows the tracks obtained by MFT and Algorithm

2. Despite its high computational complexity, MFT was used

as a baseline for constructing the source tracks. A total of
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(a) Depth track obtained by MFT. (b) Range track obtained by MFT.

(c) Depth track obtained by Algorithm 2. (d) Range Track obtained by Algorithm 2.

Figure 3. Tracks obtained by MFT and Algorithm 2. MFT used a square search window of 22 grid points in range and 5 grid points in depth. The MFT
tracks are formed by the short tracks that yielded the largest MFT score. The tracks corresponding to Algorithm 2 show the range and depth of the 10-largest
nonzero entries in each SLM. Per SLM, the magnitude of all nonzero entries is normalized with respect to the magnitude of the largest coefficient present.The
number of nonzero rows of S, denoted S0, obtained for each SLM is shown above the tracks.

8 ambiguity surfaces obtained via Bartlett MFP [1], corre-

sponding to 109 seconds of recorded data, were used. Each

ambiguity surface accounts for 13.65 seconds of recorded data.

MFT tracks were incoherently averaged over frequency. For

Algorithm 2, λ and µ were kept fixed for the entire execution

of the tracking algorithm. Thus, control on the sparsity of

the tracks and the innovations was not exercised. Per time

instant, the tracks were constructed by plotting the range

and depth of the largest 10 coefficients in the corresponding

SLMs. With our selection of tuning parameters, each SLM

had 40 nonzero entries on average. When all peaks were

plotted to construct the tracks, some artifacts (horizontal lines)

appeared in the tracks. These artifacts corresponded to source

locations being maintained as part of the track and can be

removed by using a dynamic selection scheme for λ and µ.

By plotting only the largest 10 coefficients per SLM most

of these artifacts are removed. Note that after time index

70, the source reaches an area with significantly different

bathymetry. Thus, the difficulty that both MFT and our method

have to track the source in the last leg of the track is due to

the mismatch between the environment and the model used

to construct the replicas. Note that the robust localization

framework proposed in [10] can be used within our framework

to mitigate the deleterious effect of model mismatch on the

source-track estimates.

VI. CONCLUSIONS

This work proposed an underwater tracking algorithm using

passive sonar that exploits sparsity as a mean to obtain high

resolution tracks. Two types of sparsity were exploited, namely

sparsity in the support of the SLMs and sparsity in the

innovations across consecutive SLMs. The first type of sparsity

was motivated by the desideratum of SLMs whose nonzero

entries corresponded only to locations where sources were

present. The second type of sparsity was motivated by the

few changes that occur in the support of consecutive SLMs.

Per time instant, an SLM was obtained as the solution of

a regularized least-squares problem, where the regularization

terms were chosen to encourage the desired sparse structures
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in each SLM and the innovations. Each SLM is obtained via

a computationally efficient proximal gradient algorithm that

was tailored to exploit the structure inherent to the problem.

Numerical test illustrating the performance of the proposed

method on data from SWellEX-3 were presented. From the

numerical tests, it was observed that a proper selection of

tuning parameters is fundamental to avoid artifacts on the

source tracks. Defining a systematic approach for the selection

of these parameters was left as an open research direction.
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