
 

  
Abstract – The Bayes posterior probability distribution 

of many multitarget tracking filters can be written in 

terms of the mixed derivatives of an appropriately 

defined generating function. Using the Cauchy Residue 

Theorem for several complex variables, it is shown that 

these derivatives can be approximated using the saddle 

point method, a classical technique in analytic 

combinatorics. The method gives approximate weights 

for the particles of sequential Monte Carlo filter 

implementations. For JPDA the approximate particle 

weights are seen to be accurate to within one or two 

percent of the exact weights, after a global scaling factor 

is applied. The saddle point method has polynomial 

computational complexity in the number of targets and 

measurements, assuming that a bounded number of 

iterations are needed to find the saddle point.  

 

Keywords: JPDA, particle filter, analytic combinatorics, 

saddle point method, Cauchy residue theorem.  

 

1 Introduction 

The purpose of this paper is to show that NP-hard 

measurement-to-target assignment problems that arise in 

many multitarget tracking filters can be circumvented by 

using a classical approximation technique called the 

saddle point method.  It is applicable to filters whose 

Bayes posterior probability distribution can be written in 

terms of the mixed first-order derivatives of a generating 

function. The main focus of the paper is the joint 

probabilistic data association (JPDA) filter, especially 

sequential Monte Carlo (SMC) particle implementations. 

For discussion of particle JPDA implementation, see [6].   

It is demonstrated that particle weights for the JPDA 

filter can be computed to within one or two percent of the 

exact particle weights, after a global scaling factor is 

applied. The scale factor is irrelevant to the SMC 

implementations of the JPDA filter.   

The computational complexity of exact JPDA is known 

to be NP-hard.  This is true even if clutter is not present.  

For detailed discussions, see [7, 8, 9].   

It is shown here that the saddle point method for particle 

weight calculation is polynomial in the numbers of targets 

and measurements.  Thus, for sufficiently large problems, 

it will be faster than exact methods.  

1.1 Organization of the paper 

Section 2 introduces the generating functional for the 

JPDA approach to multitarget tracking.  Superposition of 

clutter and target-originated measurements is the main 

theoretical model.  An important feature that distinguishes 

it from some other multitarget filters is that the target-

originated measurements are superposed, not the targets 

themselves.  Thus each target retains its own state space 

and has its own test function.  

Section 3 exploits the fact that the probability generating 

functional (PGFL) is an analytic function of linear 

functionals.  Functionals in this class can be reduced to 

multivariate analytic functions via Dirac delta function 

trains [10]. Particle weights are the mixed ordinary 

derivatives of the analytic function.   

Section 4 formulates the mixed derivatives in terms of 

the Cauchy Residue Theorem of several complex 

variables.  (This theorem is best known for the special 

case of one complex variable.)  The Cauchy integrals, and 

hence the particle weights, are approximated by the saddle 

point method – a method often used in asymptotic 

analysis.  The text [1] contains a wide-ranging discussion 

of analytic combinatorics and the saddle point method.  

The didactic discussion in Section 5 entitled “Why 

Saddle Points?” provides an intuitive picture of why and 

how the saddle point method works.  

Section 6 gives examples with Monte Carlo simulated 

data to study the accuracy of the approximate saddle point 

weights for JPDA.   

Section 7 discusses the computational complexity of the 

saddle point method for particle JPDA.   

Section 8 discusses the utility of the saddle point method 

for other multitarget tracking filters.  

Section 9 gives concluding remarks, including 

comments on MCMC methods for approximate JPDA.  

The Appendix gives a succinct derivation of the matrix 

permanent by the Cauchy Residue Theorem.  The 

permanent arises in particle weight calculations for the 

special case of JPDA in the absence of clutter [9]. 

 

2 Analytic Combinatorics for JPDA 

The JPDA approach to multitarget tracking maintains a 

different state space for different targets. These spaces are 
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commonly taken to be copies of the same space, but this is 

unnecessary.  The target motion models and measurement 

likelihood functions can also be different for different 

targets. JPDA assumes that the number of targets, � , is 

known and fixed.  Measurements, in contrast, are assumed 

to be taken by the same sensor and, thus, to lie in the same 

measurement space.   

Here, to simplify notation, the usual scan time index is 

suppressed.  Since JPDA is so well understood, this should 

not cause confusion.  For simplicity, target state spaces are 

taken to be copies of the same state space, ���� ��� � � .  

The measurement space is denoted by ���� ��� � � .  

The PGFL for the PDA filter is discussed in [11]. 

2.1 PGFL of the JPDA Filter 

Because of these modeling choices, the PGFL for JPDA 

has �� �  test functions, one for each target and one for 

measurements.  Test functions for targets and 

measurements are denoted by 
�
� �� � � �

�
� � � ��  and � �� � , 

respectively.  The PGFL of the target-originated 

measurement process for target �  is denoted by 

�	A� �
� � �

� �
� �� .  The PGFL of the clutter process is 

denoted by � �
	

�� .  JPDA  assumes all �� �  processes 

to be mutually independent, and that all measurements are 

superposed in the measurement space.  Hence, the PGFL 

of JPDA is the product of the PGFLs of the superposed 

processes: 

BCAD � E �	A� ��
� � � � � � � � � �

�

� � ��
� � � � � �

�
� � � ��� .  (1) 

Specific forms for each term are derived from the 

additional JPDA assumptions. In tracking problems the 

PGFLs of the superposed processes are time dependent.  

2.2 Clutter Model 

Clutter points are assumed independent and identically 

distributed.  Let � �A �
�

 denote the probability density 

function (PDF), and let �  be the expected number of 

clutter points in the sensor region of regard.  With the 

Poisson modeling assumption [13] that is typically used in 

JPDA, the clutter PGFL is  

� �E
� � F�� � � � �

�
� � � A � B�

�
� � 	�� � A .    (2) 

Non-Poisson clutter models are easily used instead. As a 

check, note that 
E
��� �� � .   

2.3 Target-Originated Measurement Model 

The predicted target PDF for target �  is  

� � � � � � �
� � �

�
� A � � A � B�� 	B B B� A ,      (3) 

where � �
�

A	 C  is the PDF of target state at the previous scan 

that has been information updated with all measurements 

up to that time, and � � �
�

A � C  is the Markov transition 

function (i.e., target motion model) from the previous scan 

to the current scan.  

Let � �C

�
D �  denote the probability of detection (at the 

current scan) for target �  when it is in state � , and let  

� � � � �C C

� �
E � D �� 	  and � � � �C C

� �
F � D �� . The probability 

generating function (PGF) of the number of target-

originated measurements is  

� � � � � � �
� � �

� � � E � F � �� � .      (4) 

The PGF is linear in the dummy variable �  because it 

incorporates the “at most one measurement per target” 

rule.  It follows (see [11]) that  

� �
� �

�	A� �
� � �

� � � � � � � � �

� � � � � � � � � � � � � �

� �

� � � �
� �

C C

� � � � �
� �

� �

� � � � � � A � � B� B�

� � � E � F � � � A � � B� B�

�

�

�

�

� �

A A
A A

(5) 

is the joint PGFL of the target and the target-originated 

measurement process for target � . As a check, note that 

�	A� �
����� �

�
� � . Since 

�	A� ��
�  is linear in 

�
� , it is 

referred to simply as the PGFL of the target-originated 

measurement model.   

The PGFL for JPDA is found by substituting the clutter 

PGFL (2) and the PGFLs for the target-originated 

measurement processes (5) into the joint expression (1).   

2.4 JPDA Marginal Target 

JPDA works not in the full multitarget state space ��  

but in the �  marginal distributions.  To close the Bayesian 

recursion, it approximates each of the marginal 

distributions in some fashion.  This same marginalization 

approach is used here using an SMC particle 

implementation.   

The marginal distribution for target �  is the integral of 

the joint JPDA distribution over all target states except for 

target � .  The PGFL of the marginal distribution is found 

by setting � � �
�

� C � , � �D , in the joint PGFL (1), that is, 

BCAD� �

E �	A� � �	A� �
��

� � �

� � � � � ��� ��

� �

�

� � �
� � �

� �

� � � �
� D

�

� � � ��   (6) 

The PGFL for the correlated version of JPDA for, say two 

targets, is found by setting all but two of the �
�

�  to one. 

The topic of central interest in this paper is evaluating the 

weight of an individual particle at state � �E  using (6).   

Given a set of measurements 
�

� ����� �
�

� � �� , the 

weight of a particle is the sum of the likelihoods of the 

feasible measurement to target assignments, as seen 

through the marginal JPDA distribution. As is well known, 

this is an NP-hard calculation because the number of 
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feasible assignments grows rapidly in the number of targets 

and measurements.  

3 Analytic Function for JPDA 

The first step in the reduction (projection) a PGFL to a 

form suited to analysis and numerical calculation is to “kill 

the functionals” by substituting weighted sum of Dirac 

delta functions.  A more general discussion and detailed 

methods can be found in [8].     

The reduction cannot be performed on all functionals 

but it can be done here.  By inspection the PGFLs (2) and 

(5) are analytic functions of linear functionals.  In other 

words, test functions enter the PGFL as weighted integrals 

of the form � � � �� � � � B�A  and not, e.g., as ��  or �� .  The 

nonlinearities arise from the analytic functions involved.  

In the case of JPDA, these are exponentials and products 

of linear functions.  The arguments of these analytic 

functions are linear functionals.   

It follows that analytic functions of linear functionals 

can be evaluated at weighted sums of Dirac delta 

functions.  This reduction can be proved by taking the 

limit of the PGFL acting on an appropriately defined 

sequence of test functions. It is important to take the limit 

after evaluating the integrals of the test sequence – this 

avoids the error of moving the limit inside the integral.  

3.1 Delta Function Trains 

Let the measurements � � �� � �
�

� � �� �  be given. 

For ease of exposition, discussion of the special case 

�� �  is omitted.  For later use, define the positive 

constants and functions  

�

� �

� �

��

� � � � � �

� � � � � �

� �

� � � � � � � � �

� � � � � � � � � �

C

� � � � � � �

C

� � � �
� �

� �

C

�� �� � � � � � � � �

C

�� � � � � ��
� �

E

F F � � E �

� � E � B� F � B�

E A �

F F � � F � A � �

� � F � A � � B� F � B�

�

�

�

�

�

� 	�

F �

� �

� �

F �

� �

A A

A A

  (7) 

Let 
�

� ����� � �

�
� � �� E � . Define the weighted Dirac 

delta function train (or equivalently, a test sequence for it) 

�
� � � �

�

� ��
� � � �� �

�
� 	� .       (8) 

Substituting  (8) into the clutter PGFL (2) gives 

� �
� �
� �

E �

�

� �

� �

F�� � �

F�� �

�

� ��

�

� ��

�

� ��

� �

A �

E E

� �

�

�

�

��

�

� 	

� 	�� �

� �

�
�
�

    (9) 

Note that 
E
� ���  is an analytic function of the �  

complex variables � .   

The PGFL (5) for target �  is linear in � �
�

� C , hence the 

Dirac delta function train has only one term    

� � � ��
� � � �

� � � �� � �� 	 E � .        (10) 

Substituting (10) and (8) into (5) gives  

� �
� �

� �

�	A� � �

�

� �

� �� � �

� � � � � � � � �

�

�

� � � � ��

�C C

� � � � � � � � � � ��

�

� � �� ��

� � � �

� E � F � A � �

F F

� � � �

� � �

� �

�

�

�

� 	 	

� �

� �

�
�

�

(11) 

The PGFL of the marginal distribution of target �  is  

� �
� �

�	A� � �

�

� �

�� � �

� � � � � � � � �

�

�

� � ��

�C C

� � � � � ���

�

� �� ��

� �

� E � F � A � � B�

� �

� �

� �

�

�

�

�

� 	

� �

� �

�
�A

�
(12) 

Substituting (9), (11), and (12) into (6) gives  

BCAD� � BCAD� �
� � � � ��

� � � �
� � � �� F �       (13) 

where  

� �
� � � �

BCAD� � � �

� �� �
��

� � F��
�

� � ��

�
� �

� �� � � �� �� �
� � �

E E

F F � �

� �

� �

�

� �
� D

� F �

� � �

�

� ��
(14) 

is an analytic function of �  complex variables � .  

The marginal of the Bayes posterior PDF for target �  at 

� �E  is proportional to the cross-derivative of (13)  

evaluated at zero, that is, to the mixed derivative of order 

one with respect to each of the �� �  variables 

(evaluated at zero).  Only the derivative of (13) with 

respect to 
�
�  is trivial – it is the coefficient given by (14).   

3.2 Particle Weights as Derivatives 

The mixed first order derivative of (14) with respect to 

�  at � �� � E �  is proportional to the marginal of the 

Bayes posterior PDF for target �  at � �E .  Its numerical 

value at �  is therefore proportional to the weight of a 

particle at � . The dependence of these derivatives on �  is 

due to the coefficients 
�
� �

�
F �  and � �

��
F �  in (7).   

Expression (14) drives the computational complexity of 

JPDA through the complexity of its cross-derivative.  The 

derivative can be found symbolically, and evaluated to 

find the numerical value of a particle at � .  Alternatively, 

automatic differentiation (AD) can be employed to find 

the exact weight (via the chain rule) without first finding 

the symbolic derivative [12, 15].  However, both methods 

are exact, hence their computational complexity is 

exponential in problem size.    

The root of the difficulty is that there is a one to one 

correspondence between the terms in the cross-derivative 

and the feasible measurement-to-target assignments.  It 

therefore follows that approximation is the only way to 

upper bound the computational complexity of JPDA.  
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The analytic function (14) is closely related to matrix 

permanents.  The connection was first noted in [9].  The 

Appendix gives a simple derivation using the Cauchy 

Residue Theorem.   

 

4 Saddle Point Approximation 

The proposed method has two essential elements.  The 

first is to replace the cross-derivative of the analytic 

function 
BCAD� �

� �
�
��  by an exactly equivalent integral 

expression.  This integral is the Cauchy Residue Theorem 

in several complex variables.  It is reviewed in the first 

subsection below.   

The Cauchy integral is then approximated using another 

classical tool called the saddle point method (sometimes 

called the method of stationary phase).  The saddle point 

approximation requires finding the saddle point of the 

integrand.  It is derived in the second subsection. 

Readers are referred to Section 5 for insight into why it 

is important to find the saddle point is important.  It also 

shows that the saddle point approximation is a quadratic 

fit to the integrand at the saddle point.  

The discussion and derivation are presented in a form 

tailored to the needs of JPDA, but the saddle point method 

is not limited to JPDA.  For discussion of the method, see 

the texts [1, 3, 5] and the introductory paper [16].  

4.1 Multivariate Cauchy Residue Theorem 

The classic form of Cauchy’s theorem for one complex 

variable (see, e.g., [4]) is (in a traditional notation) 

� � �
� �

� 	

�
� � B

� �

�
�

� �
�

	A� ,       (15) 

where �� �� �  is analytic inside and on a simple 

closed contour 	  that contains the point � E �  in its 

interior.    For functions � �� �� �  of several complex 

variables, (15) generalizes to the multiple integral [2] 

�

�

�

�
� �

� ����� �

� � � ��
�

� � � ��� �
�

�

	 	

�

��
� �

� � �

�
B B

� ��

� �
� �

� ��

�
�

	 	A A� �
�

� �
(16) 

where 
�

� E �  is interior to contour 
�

	 .   

The integrals in (16) can be done in any order, a result 

that follows from the Fubini-Tonelli theorem for real 

variables, together with the surprising fact (Hartog’s 

Theorem) that a (complex) function analytic in each 

variable is analytic in all variables jointly [2].  

Because �  is analytic, derivatives can be found by 

differentiating under the integral.  Thus, the derivative of 

(16) of order 
�
� ����

�
� �  with respect to 

�
� ����

�
� �  is  

�

�

�

� � �
�

�
�� �

� �

� � � �
� ����� �

�� �
� � � �

�
� � � �

�
	 	

�

�

�
� �

�
�� �

� �

� � � �
� � �

�

�
B B

� �

�

� �
� �

� �
� �

�

�
�

	 	
A A

� �

� �

�
� �

(17) 

See [1, 2] for further discussion of the general topic.   

4.2 Derivation of the Approximation 

The weight of a particle at �  for target �  is 

proportional to the cross-derivative: 

�

BCAD� �

� �

� � � �

�

�

� �

�

B
� � �

B B
� �

�
� �

� � �

F � �
�

�
. (18) 

Using the Cauchy integral (17) with 
�

�
�

� �� � �� ,  

�
�

�
E E� � � E� � , and circular contours � �

�
	 �  

centered at zero with radii �
�

� �  gives  

�� � � �

�
�

�

�
� � � �

�� �
�

	 � 	 �

�
��

�

B B
�

�

� �
� �

� ��
� �A A

�
� �

�
� � , (19) 

where �� � � � � �
�

� � �� F � �  is  

BCAD� � �

�

� � � �
� � �

� �

�

� �
�

� �

�
� �

�

�
       (20) 

The integral (19) evaluates to the same number for all 

choices of radii �
�

� � .  The saddle point approximation 

is a shrewd way to choose these radii.   

Note that 
BCAD� �

� �
�
��  is an entire function in each 

variable 
�
� , and its Taylor series has only nonnegative 

coefficients when expanded about the origin.  This 

property characterizes an important subclass of analytic 

functions in complex analysis.  Generating functions (GFs) 

fall into this class.  As discussed in [1], Pringsheim’s 

Theorem enables the search for dominant singularities to 

be restricted to the positive real line, a fact that is used 

here to determine the radii of the contours.   

Using a Taylor series about a point �� ��D E �  gives 

�
�

� �

� � � � � �� � � �� � � � � �� � � � �

� �

�
� � � �  

�

� �

� �

� � � � � � � � � � �

�

�� 	 � 	 	 �

� �

�
   (21) 

where � � �� �   stands for “higher order terms” and �� �� �  is 

the � ��  hessian matrix of � ,  

�

� �� � � � � ��
�� ��

� �
� � � � �

�
� � � � .      (22) 

Choose ��  so that  

�
� � �

� � �
� �

�
� � .          (23) 

Such a point is called a saddle point of � .  

Let � ���  be the restriction of � �� C  to the positive real 

line.  The saddle point is a positive vector that satisfies  
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� �

� �� � ����
� � �� ����� � ����� � ����� �

� �

�� �
� � � � �

� �
� � � ,    (24) 

To see this, a coordinate relaxation procedure is used.  Fix 

the value of all variables except one, say �
�

� �
� �

�
� � ,  to 

find a single-variable function, denoted � �
�

� �� .  It has 

nonnegative coefficients when expanded about zero (cf. 

(7)), from which it follows, as shown in [1], that on the 

real line � �
�

���  is a convex function and the equation 

� � �
�

� �
��� ��  has at most one positive root.  In this case 

the function 
BCAD� ��
�  is entire but not a polynomial, from 

which it follows from the proof in [1] that � �
�

���  has 

exactly one positive root.  This result holds for all 

(feasible) values of the other variables.  Let an initial 

feasible point ��� ��� ���

� �
� ����� � �

�
� � �

�
� E �  be specified.  

Note that ���� ��� �� .  Proceed by minimizing the 

convex function � �
�

���  with respect to 
�

� , keeping the 

other variables fixed.  Applying this procedure to all �  

variables one at a time, in turn, and cycling through all of 

them repeatedly, yields a sequence of points with 

decreasing values of �  which converges to the saddle 

point satisfying (24).   

Choose the contours � �
�

	 �  in (19) to have radii equal to 

the components saddle point vector.  Let � �
�

� �
� �

�
� � . Then 

� �
�

� � �
B �� � B

�
� ��  and the integral (19) becomes 

�

�
�� �

�� �

�

��
� �� B B

� �

�

� �

� �
� 	 	

� �A A� � ,     (25) 

where �

�
� � �� � � ��

� ��

�
�� �� � �

� ��� � � � .  Substituting �  into 

(21) and dropping the higher order terms gives the first 

approximation 

� ��
�

� � � � �� � � � F�� ! � ��" � �! � ��"� � � ��� � � � � � � �� � �� � � 	 	 . (26) 

By Taylor series, ��
�

��� �� � �	 � 	 �� .  Retaining only 

the linear term and substituting it into (26) gives a second 

approximation  

� ��
�

� � � � �� � � � F�� � � � �� �� ��� � � � � �� � �� � � 	 .    (27) 

Substituting (27) into (25) and extending the integrals to 

all �
�  gives a third (final) approximation 

�
�
� � �� � � �� �

�

�� �

�� �

�� � � �

��

�
� � B B

� �
� �

�

� �
	

	� 	�

�
� A A� � . (28) 

The hessian matrix �� �� �  is positive definite at the saddle 

point because � ���  is a minimum there, i.e., ��  satisfies 

(24).     The integrand in (28) is therefore proportional to a 

multivariate Gaussian distribution and is straightforward 

to evaluate:   

#�

�

�� � �� �

�� � � � �� � �F$ � �

�

�

�

�
�

� � � �

�

�

�
�

�

.       (29) 

Substituting from (20) and simplifying gives (29) as   

BCAD� �

�

�
#�

�� ��

� �� ���� � �F$ � �

�

�

�

�
�

� �� ��

�
�

�
,     (30) 

where, using the first equation in (21),  

� �BCAD� � �

� �

� BCAD� �

�

�

� � � �� � %&� � � � � %&�

� � � �A���! � � " %&� � � � ��

�

� ��

� �

�� �

�� �

� � � � �

� � � �

�
� � � 	

� �� �

��

� �

(31) 

The expressions (24) and (30)-(31) comprise the saddle 

point approximation to the JPDA weight of a particle at �  

for target � .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Why Saddle Points? 

The role that saddle points play is illustrated in Figure 1 

for one variable.  It plots the real and imaginary parts of 

the function ' (� � �� �� ��� � � � �	� �  for �� �� ��  for three 

different choices of the radius �  of a circular contour 

centered at zero.  (The power (�	  was chosen to enhance 

the visual effectiveness of the example.  Similar but less 

vivid behavior is exhibited for ��	 .)  All plots range from 

�	  to � .  The middle plots correspond to � ���)� � , the 

saddle point in this example.  The upper plots correspond 

to radius equal to ����� �� �  and the lower one to radius 

�(�*� �� � .  In all three case, the imaginary parts 

integrate to zero and the real parts have the same integral.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.  At the saddle point, the real part (left) 

of � �� �  is concentrated around zero and does not 

oscillate, while the imaginary part (right) is flat.  
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These three specific choices for �  pose no problem for 

numerical integration purposes (although the oscillations 

become very severe for sufficiently small and large radii).  

The purpose here, however, is to approximate the 

integrand and avoid numerical integration altogether.  It is 

evident that the saddle point is the best choice.  

Another example, this time in two real dimensions, is 

related to the JPDA expression (14) for �� �  

measurements and '� �  targets. In a real JPDA 

problem these coefficients would be evaluated at a 

particular particle. Here, the constant terms were taken to 

be 
�

�E � , 
� �

�
� �

F �� �  and the remaining coefficients 

were chosen uniformly at random between !���" . The 

solid contour lines are for the real part of the exact 

integrand at the saddle point (25), and the dashed contours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are of the saddle point approximating integrand (28).  

Both are plots from �	  to �  of the two angles 
�
�  and 

�
� .  The density plot corresponds to the exact integrand.  

The quadratic form character of the approximation is 

evident from Figure 2.  The exact integrand is slightly 

negative in the outermost band between the contour lines 

for level zero.  The saddle point approximation is never 

negative and extends to the entire plane.    

 

6 Examples  

The potential value of the saddle point method for 

JPDA was explored by evaluating the accuracy of the 

approximation on randomly generated JPDA style 

problems.  The numerical evidence gathered is presented 

here.  Further work using embedded code must await 

further investigation.  

Particle weight calculations of the form (14) were 

generated for *� +� � ��,� �  targets and for 

+� ��� � ���+� �  measurements.  As in the second 

example of the previous section, the leading constants 

were taken to be either zero or one, while the coefficients 

of the �  variables were uniformly randomly generated on 

the interval !���" .  The number of trials was set to 1000.   

For each combination of targets and measurements, the 

exact derivative was evaluated by using Mathematica
®
 to 

find the symbolic derivative.  This will give the exact 

particle weight – if the coefficients actually correspond to 

a real tracking problem.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the same coefficients, the saddle point was found by 

minimizing the function (24) using Mathematica
®
 (the  

FindMinimum routine).  The numerical saddle point was 

used to evaluate the approximation (30).   

In each trial, the ratio of the approximate to the exact 

weight was computed.  The exact weight was calculated 

by evaluating the symbolic derivative.  The histogram of 

the ratio is presented in Figure 3 for 7 targets and 5 

measurements.  Ideally, the mean will be exactly one.  In 

this case the mean was about 1.46, that is, the 

approximation was 46% too large.  However, the standard 

deviation about this mean was 0.011, that is, about 1.1%.   

The factor of 1.47 implies that the particle weights are 

globally scaled too high by 47%.  As is well known, such a 

global rescaling has no effect whatever on an SMC 

particle implementation.  Indeed it is one of the most 

important properties of SMC methods.   

The variation in the scale factor of 1.1% is a different 

matter. These errors are small compared to the other 

modeling errors that are inevitable in tracking problems.   

The exact derivatives, i.e., the putative particle weights, 

span a wide range of values.  Figure 4 gives a histogram 

for this case.  The derivative ranges numerically from near 

zero to over 400.   

 
Figure 2.  Contours of the exact integrand (solid) 

and approximate saddle point integrand (dashed).  

(Contours = 39, 35, 30, 26, 21, 17, 13, 8, 4, 0) 

 
 

Figure 3.  Ratio of saddle point approximation to 

exact derivative for 7 targets and 5 measurements. 
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Similar simulations were performed for the other 

combinations of number of targets and measurements.  

Table 1 tabulates the mean and standard deviations of the 

ratio of the saddle point approximation to the exact value.  

It is apparent from Table 1 that the change in the global 

scale factor is weakly dependent on the number of targets 

and moderately dependent on the number of 

measurements.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The scale does not affect SMC filters for JPDA, but the 

particle weight errors do.  The standard deviations 

reported in Table 1 are, with one exception, less than 1%.   

The question naturally arises as to whether or not small 

errors in the particle weights – before resampling – 

adversely affect JPDA tracking capability.  A first study 

[14] of this question suggests that with particle weights 

perturbed by as much as 10% (uniformly distributed from 

0% to 10%), the effect over many Monte Carlo trials is 

often not significant.   

7 Computational Complexity 

Saddle points can be found by solving the necessary 

conditions (23) directly, or by minimizing (24) via, e.g., 

relaxation, gradient descent, or even Nelder-Mead.  

Whatever method is chosen, it must be fast since the 

saddle point ��  depends on � , and SMC filters must find 

as many saddle points as there are particles.  

The effort of finding the coefficients of the analytic 

function (14) is an overhead cost that is proportional to the 

product of the numbers of targets and measurements, 

��! , where !  is the number of particles per target.  

This assumes the required integrals are evaluated 

(approximated) using the particle sets of each target.   

Careful numerical analysis is needed to find the saddle 

point.  Assuming a gradient descent method is used, and 

that the number of steps until convergence is bounded, the 

computational effort is proportional to a constant times the 

size of the gradient vector, � .  This is needed for each 

particle and for each target, so the total effort of the saddle 

point calculations is � �" ��! . 

Computing a determinant using Gaussian elimination 

requires  *� �" �  effort.  One determinant is needed for 

each particle, so the total effort is *� �" !�� .  

The total computational effort is the sum of the efforts 

of each part.  This sum is dominated by *� �" !��  for 

serial computers.  The constant hidden in the “big O” 

notation can vary widely in practice, depending on the 

implementation details, so it is hard to estimate how large 

a JPDA problem has to be for the saddle point 

approximation to be faster than an exact method, such as 

AD.  (Also, for multicore or parallel computer 

architectures, the complexity bound can be reduced.)     

For small problems the overhead of calculating the 

many coefficients (14) involved in JPDA may be a greater 

computational burden than the “pure” combinatorial costs 

of enumeration.  The analytic function formulation can be 

used to quantify how much of the total effort is overhead 

and how much is combinatorial.   

8 Generality of Saddle Point Method 

The saddle point method can be applied to many 

generating functions � �� C , not just JPDA.  Indeed, the 

argument of Section 3.2 carries through in the general 

case, so that the saddle point approximation (30) holds, 

but with � �� C  replacing the JPDA generating function.   

However, the presence of the global scale factor that is 

evident in Table 1 limits this particular version of the 

saddle point method to SMC filters that approximate 

Bayes posterior probability density functions. This  class 

of filters includes many classic filters, such as standard 

Bayes-Markov, PDA, JPDA, PMHT, IPDA, and JIPDA, 

as well as their multi-sensor and multi-scan (or, 

accumulated state density (ASD)) versions.  

The saddle point method can be applied to SMC 

implementations of multitarget tracking filters that 

superpose targets in a common state space (and require a 

separate track extractor) provided the global scale factor is 

known or approximated.  The global scale factor affects 

the estimated intensity function, i.e., the expected number 

of targets per unit state space.  These filters are outside the 

scope of the present paper.  

 
Figure 4.  Histogram of exact derivatives for 7 

targets and 5 measurements 

+ �� �+
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� � �

 
 

Table 1.  Ratio of saddle point approximation to 

the exact derivative:   Mean and standard deviation   
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9 Concluding Remarks 

Other methods for approximate JPDA with polynomial 

computational complexity have been proposed. The 

MCMC (Markov Chain Monte Carlo) method of [7] is 

especially interesting.  The method can be extended to 

tracking filters other than JPDA. Other approximate 

methods are also discussed in [7].  

The saddle point method differs from the randomized 

MCMC approximation method.  It is a non-random direct 

numerical approach to the problem of computational 

complexity that arises in JPDA and a large number of 

multitarget tracking filters.  

The Gaussian behavior of � �� C  at a saddle point is 

remarkable.  This is due in large part to the way the Taylor 

series is manipulated, but the quality of the Gaussian fit is 

reminiscent of Central Limit Theorem behavior.  
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Appendix.  Derivation of the Matrix 

Permanent by Cauchy’s Theorem 

Let ! "
��

$ E�  be an � ��  matrix (real or complex).  

The GF of the matrix permanent, denoted by CF��� �$ , is  

� ���
� �

� �

�� ���
E� �

��
� � �� . 

The form of this function is a special case of the JPDA 

expression (14).  Let 	  be a circle centered at 0 with 

positive radius.  Denote the cross-derivative of �  with 

respect to �  at �  by � .  Using the multivariate version of 

Cauchy’s Integral Theorem, �  can be written (cf. (18))  

� �
�

�

�

��

�
� �

�
� �
�

�� �
�

�� �

��

�

�

� ��

�� ���

	 	

� �
� �

� ��
� � 	 	

�

�

�
�

B B
� � E

E E B B

� �
� �

� �

� �
� �

� �

��

� �

�

�

��A A

� � A A

�
�

�

�

� � � �
�

� �

� �

 

The ��  multiple integrals are non-zero if and only if the 

indices are distinct, i.e., they are a permutation of 

��������� �� .  For these indices the multiple integral in the 

last expression is equal to �� ���� .  Thus, 

�
�

./�� �

CF��! "
�

�
�

� E E $
	 	

	E

� F� � , 

where 
�

� ����� � ./�� �
�

�	 	 	� E , where ./�� ��  is the 

set of all permutations on the first �  positive integers. 
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