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Abstract—Space-based radar (SBR) systems have received a
great deal of attention, since they can provide all-weather, day-
night, and continuous world-wide surveillance and tracking of
ground, air, and sea-surface targets. The ground moving target
indicator (GMTI) mode is an important operating mode for
such systems. GMTI radar measurements are the range, azimuth
and range-rate, which are nonlinear functions of the target
state. We consider the extended Kalman filter (EKF), unscented
Kalman filter (UKF), and particle filter (PF) for the SBR GMTI
nonlinear filtering problem and present a new track initiation
algorithm. We compare the mean square errors (MSEs) and
computational times using simulated data generated by Monte
Carlo simulations. Although the cross-range errors are large, our
results show that the MSEs of the filters are nearly the same.
Our results show that the EKF performs the best for the scenario
considered based on the MSE and computational time.

Keywords: Space-based Radar, Ground Target Track-

ing, Nonlinear Filtering, GMTI Filtering.

I. INTRODUCTION

A radar-based surveillance system offers all-weather and

day-night surveillance which is not possible for an optical or

infrared (IR) based surveillance system. Moreover, a space-

based radar (SBR) system has significant advantages over a

ground-based or airborne radar system for providing continu-

ous and world-wide observation, surveillance, and tracking of

ground, air, and sea-surface targets. Therefore, SBR systems

have drawn a great deal of interest in recent years [4]–[6],

[18], [20]. A snapshot of the orbit of a space-based sensor is

shown in Figure 1.

Typical SBR systems consist of a constellation of radar

satellites in low- or medium-altitude Earth orbits and asso-

ciated ground-based support systems. Such systems have a

number of operating modes which include the ground moving

target indicator (GMTI) for land, littoral and maritime targets,

open ocean surveillance (OOS), medium and high-resolution

synthetic aperture radar (SAR), high resolution terrain infor-

mation (HRTI), and advanced geospatial intelligence (AGI).

An important area of research is that of designing effective

strategies for switching between operating modes in order to

best achieve the mission objectives [6], [20].

A key prerequisite for optimal mode switching is that

the system operates efficiently in each individual mode. In

Figure 1. STK screenshot of orbit with 45 degree FOV conical sensor ground
projection.

this paper, we concentrate on ground target tracking using

measurements from a SBR in the GMTI mode. In this mode,

the radar uses the range-rate or Doppler measurements to

distinguish moving target returns from clutter.

Published work in open literature on SBR filtering or

tracking is limited. In [21], the authors address filtering using

the interacting multiple model (IMM) estimator [3], where

each single-mode filter is an extended Kalman filter (EKF)

[1], [3], [8]. The Earth relative spherical polar coordinates

and their first time derivative are used to define as the state

in [21]. In this paper, we focus on selecting an appropriate

filtering algorithm for a target moving on the plane tangent

to the WGS 84 reference ellipsoid [14] using space-based

GMTI radar measurements. The filtering problem is nonlinear

due to the nonlinear measurement model. We consider the

commonly used approximate nonlinear filtering algorithms;

the EKF [1], [3], [8], unscented Kalman filter (UKF) [10],

[22], and particle filter (PF) [2], [7], [9], [19]. Previous studies

have shown that the widely used EKF performs poorly for

certain nonlinear filtering problems and the UKF and PF

perform better than the EKF [19]. Therefore, the UKF and

PF have drawn a great deal of interest in recent years for

solving nonlinear filtering problems. The UKF and PF use
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the deterministic sampling (quasi-Monte Carlo) and random

(Monte Carlo) sampling, respectively. The computational time

of the UKF is comparable to that of the EKF. However, the

computational time of the PF is significantly higher due to

the use of Monte Carlo sampling. The UKF and PF do not

necessarily provide more accurate solutions than the EKF for

all nonlinear filtering problems. For example, for the bearing-

only filtering problem [19], the EKF diverges in certain cases

and the PF works robustly in all scenarios and provides better

tracking accuracy than the EKF [19]. On the contrary, the

performance of the EKF, UKF, and PF for the ground moving

target filtering problem using an airborne standoff GMTI radar

sensor are comparable to each other [12].

The standard deviations for range, azimuth, and range-rate

of a GMTI radar sensor are a few meters, milli-radians, and

meters per second respectively. Therefore, a SBR GMTI radar

provides good localization along the range direction. However,

since the distance between the target and GMTI sensor can be

hundreds to thousands of kilometers, the cross-range error is

large. Thus, the EKF may perform poorly due to linearization

used in the nonlinear measurement model. In contrast, as the

UKF and PF do not use linearization in the measurement

model, they may prove to be more robust. In this paper, we

test these hypotheses by considering the filtering problem of a

single ground moving target using a space-based GMTI radar

in a low-earth orbit.

The outline of the paper is as follows. In Section II we

describe various coordinate frames and define conventions

used. Sections III and IV present the target dynamic model

and measurement model for the SBR GMTI sensor. Section V

describes a new track initiation algorithm using the first GMTI

measurement while Section VI summarizes the EKF, UKF,

and transition density-based PF (TD-PF) filtering algorithms.

Finally, Sections VII and VIII present numerical results and

conclusions.

II. COORDINATE FRAMES AND CONVENTIONS

We use the symbol ”:=” to define a quantity and A′ denotes

the transpose of the vector or matrix A. The measurement

model and track initiation use a number of coordinate frames

and transformations of physical 3-vectors among coordinate

frames. We assume that all coordinate frames are right-handed

and orthogonal. An uppercase roman letter (e.g. A) is used

to denote the coordinate frame A. We use b ∈ ℝ
3 and

bA ∈ ℝ
3 to represent a physical 3-vector in a coordinate-

free representation and in the A frame, respectively, where

(�A� , �
A
� , �

A
� ) represent the Cartesian components of bA along

the �,�, and � axes of the A frame. Let bB represent b

in the B frame. Then the transformation of bA to bB is

described by bB = TB
A
bA, where TB

A
is a 3 × 3 rotational

transformation matrix representing the passive rotation from

the A frame to the B frame. Note, TB
A

is orthogonal, i.e.

(TB
A
)−1 = (TB

A
)′ = TA

B
.

Next, we describe the coordinate frames.

1) WGS 84 Earth-centered Earth-fixed coordinate frame (E

frame) – The origin of the E frame is at the center of

mass of the Earth. The � axis is along the Earth’s axis

of rotation. The � axis is directed from the center of

the Earth to the intersection of the Greenwich meridian

and the equator. The � axis completes the right-handed

coordinate frame.

2) Tracker coordinate frame (T frame) – Let �0, �0, and

ℎ0 = 0 denote the geodetic longitude, latitude, and

height of the T frame origin. The T frame is a topo-

graphic coordinate frame at (�0, �0, 0) for which the

�,�, and � axes are along the local East, North, and

upward direction, respectively.

3) Sensor local coordinate frame (L frame) – Let �s,

�s, and ℎs denote the geodetic longitude, latitude, and

height of the sensor. The origin of the L frame is at

(�s, �s, 0). The L frame is a topographic coordinate

frame at (�s, �s, 0) for which the �,�, and � axes

are along the local East, North, and upward direction,

respectively.

The relationship between the T frame and the E frame is

illustrated in Figure 2.
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Figure 2. Topographic coordinate frame (T frame) and Earth-centered Earth-
fixed WGS 84 (E frame) coordinate frames.

III. TARGET DYNAMIC MODEL

We assume that the target moves in the �� plane of the

T frame with the nearly constant velocity (NCV) motion [3].

Let (��, ��) and (�̇�, �̇�) denote the position and velocity of

the target at time ��. Then the target state x� ∈ ℝ
� at time ��

is defined by

x� :=
[

�� �� �̇� �̇�
]′
. (1)

The dynamic model is given by

x� = F�,�−1x�−1 +w�,�−1, (2)

where F�,�−1 is the state transition matrix [3], [8] and w�,�−1

is a zero-mean white Gaussian integrated process noise [3],
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[8] with covariance Q�,�−1. For the NCV motion, F�,�−1 and

Q�,�−1 are given by [3]

F�,�−1 :=

⎡

⎢

⎢

⎣

1 0 Δ� 0
0 1 0 Δ�

0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

, (3)

Q�,�−1 :=

⎡

⎢

⎢

⎣

�1Δ
3

�/3 0 �1Δ
2

�/2 0
0 �2Δ

3

�/3 0 �2Δ
2

�/2
�1Δ

2

�/2 0 �1Δ� 0
0 �2Δ

2

�/2 0 �2Δ�

⎤

⎥

⎥

⎦

,

(4)

where Δ� := �� − ��−1 and �1 and �2 are the power spectral

densities of the white noise acceleration process noise along

the � and � axes respectively.

IV. SPACE-BASED RADAR GMTI MEASUREMENT MODEL

A. Measurement Model

Define

∙ pT ∈ ℝ
3 : Cartesian components of the target 3D position

vector from the T frame origin expressed in the T frame,
∙ vT ∈ ℝ

3 : Cartesian components of the target 3D velocity

relative to the T frame expressed in the T frame,
∙ pT

s ∈ ℝ
3 : Cartesian components of the sensor 3D

position vector from the T frame origin expressed in the

T frame,
∙ vT

s ∈ ℝ
3 : Cartesian components of the sensor 3D

velocity relative to the T frame expressed in the T frame.

Let

pT :=
[

� � �
]′
=

[

� � 0
]′
, (5)

vT :=
[

�̇ �̇ �̇
]′
=

[

�̇ �̇ 0
]′
, (6)

pT

s :=
[

�s �s �s
]′
, (7)

vT

s :=
[

�̇s �̇s �̇s
]′
. (8)

The state of the sensor is defined by

xs :=
[

(pT
s )

′ (vT
s )

′
]′
. (9)

Let rT ∈ ℝ
3 denote the range vector from the sensor to the

target expressed in the T frame,

rT := pT − pT

s . (10)

Dropping the time index for clarity, the nonlinear GMTI

measurement model is given by

z = h(x,xs) + n, (11)

where z is the GMTI measurement with components range,

azimuth, and range-rate and h is the nonlinear measurement

function. We assume that the measurement noise n is zero-

mean white and Gaussian with a diagonal covariance R

R := diag
(

�2

� , �
2

�, �
2

�̇

)

, (12)

where �2
� , �

2
�, and �2

�̇ are the measurement error variances for

range, azimuth, and range-rate, respectively. The measurement

function for range is

ℎ�(⋅, ⋅) = � := [(rT)′rT]1/2. (13)

The measurement function for the azimuth angle is defined in

the L frame and is given by [14]

ℎ�(⋅, ⋅) = � :=

{

tan−1(�L� , �
L
� ), if tan−1(�L� , �

L
� ) > 0,

tan−1(�L� , �
L
� ) + 2�, otherwise,

(14)

where rL = TL
T
rT. We calculate TL

T
by

TL

T = TL

E(�s, �s)[T
T

E(�0, �0)]
′, (15)

where

TT

E(�0, �0) = G(�0, �0), (16)

TL

E(�s, �s) = G(�s, �s), (17)

G(�, �) :=

⎡

⎣

− sin� cos� 0
− sin����� − sin� sin� cos�
cos����� cos����� sin�

⎤

⎦ . (18)

The measurement function for range-rate is

ℎ�̇(⋅, ⋅) = �̇ :=
(

ṙT
)′
uT, (19)

where

ṙT := vT − vT

s =
[

�̇T� �̇T� �̇T�
]′
, (20)

and uT is a unit vector in the direction of rT,

uT :=
rT

�
=

[

�T� �T� �T�
]′
. (21)

B. Jacobian Matrix

Let H denote the derivative of the measurement function h

with respect to the target state

H(x,xs) :=
∂h(x,xs)

∂x
. (22)

It can be shown that the only non-zero elements of H are

given by

�11 = �T� , �1,2 = �T� , (23)

�21 =
1

�

(

TL

T(1, 1)�
L

� − TL

T(2, 1)�
L

�

)

, (24)

�22 =
1

�

(

TL

T(1, 2)�
L

� − TL

T(2, 2)�
L

�

)

, (25)

�31 =
1

�

(

�̇T� − �̇�T�
)

, (26)

�32 =
1

�

(

�̇T� − �̇�T�
)

, (27)

�33 = �T� , �34 = �T� , (28)

where � =
(

�L�
)2

+
(

�L�
)2

.

V. TRACK INITIATION ALGORITHM

Tracking is done in the T frame, whereas the azimuth

angle is defined in the L frame for a GMTI radar [14].

Most published papers consider these two frames as the same

[16]. When this is the case, track initiation is straightforward.

However, when the distance between the target and the sensor

is large, as in the case of a stand-off GMTI radar or space-

based GMTI radar, then the difference between these two

frames can have significant effect on the angle measurement
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model (azimuth, elevation) and track initiation. Here we

present a new track initiation algorithm using the SBR GMTI

measurement.

First we assume that we have error-free range � and azimuth

� GMTI measurements. Let � denote the depression angle of

the range-vector r. The depression angle is the angle between

the range vector and a plane parallel to the horizontal plane

at the sensor location and is unknown. Next we present an

algorithm for determining �. Since �, �, and � define r in the

L frame, we have

rL = �
[

cos � sin� cos � cos� − sin �
]′
, (29)

where � > 0 and

rT = TT

Lr
L. (30)

Using the above equation for rT and (10), we get

pT = pT

s +TT

Lr
L. (31)

The � component of (31) gives

� = �s +TT

L (3, 1)�
L

� +TT

L (3, 2)�
L

� +TT

L (3, 3)�
L

� . (32)

Since by definition (5), � = 0, we have

�s +TT

L (3, 1)�
L

� +TT

L (3, 2)�
L

� +TT

L (3, 3)�
L

� = 0. (33)

Use of (29) in (33) and rearrangement of terms yield

�s + � cos �
[

TT

L (3, 1) sin�+TT

L (3, 2) cos�
]

(34)

= �TT

L (3, 3) sin �.

Define

�1 := −�s, (35)

�2 := �TT

L (3, 3), (36)

�3 := �[TT

L (3, 1) sin�+TT

L (3, 2) cos�]. (37)

Then we can write (34) as

�1 + �2 sin � = �3 cos �. (38)

Squaring both sides of (38) and simplifying, we get

sin2 � + �1 sin � + �2 = 0, (39)

where

�1 :=
2�1�2

(�2
2
− �2

3
)
, �2 :=

(�2
1 − �2

3)

(�2
2
− �2

3
)
. (40)

Two solutions exist for sin �. However, since � > 0, the only

acceptable solution is

� = sin−1[−�1 + (�21 − 4�2)
1/2], � > 0. (41)

Now, suppose we have GMTI measurements (��, ��, ��̇).
We assume that the sensor position is error-free1. Then the

� and � components of target position estimates in the T

frame are calculated using (31) and (29) by setting � = ��

1We shall consider errors in sensor position and velocity in our future work.

and � = ��. The initial 3D position estimate of the target in

the T frame is given by

p̂T = pT

s +TT

L r̂
L. (42)

Let x̂1∣1 denote the initial state estimate by using the first

GMTI range and azimuth measurements. The � and �
velocity components of x̂1∣1 are set to zero. Then

x̂1∣1 =
[

�̂T� �̂T� 0 0
]′
. (43)

The error in the estimated target position p̂T is given by

p̃T = pT

s +TT

L r̃
L, (44)

where

r̃L = TT

LA
[

�̃ �̃
]′
, (45)

and

A :=

⎡

⎣

cos � sin� � cos � cos�
cos � cos� −� cos � sin�
− sin � 0

⎤

⎦ . (46)

In deriving (45), we have neglected the error in �. Let PT
p̃

denote the covariance associated with p̃T. Then

PT

p̃
:= E

[

p̃T(p̃T)′
]

= TT

LAR��A
′(TT

L )
′, (47)

where R�� := diag
(

�2
� , �

2
�

)

. Let PT
0 denote the 2 × 2

matrix corresponding to the �� components of PT
p̃

. Then

the covariance matrix corresponding to x̂1∣1 is given by

P1∣1 =

[

PT
0 02×2

02×2

(

�2

max

3

)

I2

]

, (48)

where �max is the maximum possible speed of a ground target.

Now, x̂1∣1 and P1∣1 are based on the first range and azimuth

measurements and associated variances. Next, x̂1∣1 and P1∣1

are updated by processing the first range-rate measurement

with an EKF.

VI. SBR GMTI NONLINEAR FILTERING ALGORITHMS

The dynamic and measurement models for the SBR GMTI

filtering problem are linear (2) and nonlinear (11), respectively.

The prediction and update steps for the EKF, UKF, and PF are

described next.

A. Extended Kalman Filter

The extended Kalman filter is an extension of the Kalman

filter to a nonlinear filtering problem. For the current scenario,

the nonlinear measurement model is linearized about the

predicted state estimate and then the Kalman filter algorithm

is applied [3], [8]. It generally works well provided the degree

of nonlinearity (DoN) [15] of the measurement function is not

high and the error in the initial state estimate is sufficiently

small [11]. If these conditions are not satisfied then the filter

will diverge.

The predicted state estimate, x̂�∣�−1, and the corresponding

error covariance matrix, P�∣�−1, are given by the prediction

step [1], [3]

x̂�∣�−1 = F�,�−1x̂�−1∣�−1, (49)
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P�∣�−1 = F�,�−1P�−1∣�−1F
′
�,�−1 +Q�,�−1. (50)

The predicted measurement is [3], [8]

ẑ�∣�−1 = h�(x̂�∣�−1). (51)

The measurement updated state estimate, x̂�∣�, and the corre-

sponding error covariance, P�∣�, are given by the update step

[1], [3]

x̂�∣� = x̂�∣�−1 +K�(z� − ẑ�∣�−1), (52)

P�∣� = P�∣�−1 −K�S�K
′
�, (53)

where the Kalman gain is

K� = P�∣�−1H
′
�S

−1

� , (54)

and the innovation covariance is

S� = H�P�∣�−1H
′
� +R�. (55)

B. Unscented Kalman Filter

Unlike the EKF, the unscented Kalman filter [10], [22] does

not approximate the nonlinearities in the system. Instead, it

approximates the posterior density of the state estimates using

a Gaussian distribution. For this system, as the state dynam-

ics are linear, the predicted state estimate x̂�∣�−1, predicted

error covariance P�∣�−1, updated state estimate x̂�∣�, and the

updated error covariance, P�∣� are still given by (49), (50),

(52), and (53), respectively. However, the predicted measure-

ment, gain matrix, and innovation covariance are computed

differently.

The UKF of [22] uses different weights for the mean

{��
m}

2�
�=0

and covariance {��
c}

2�
�=0

which are given by

�0

m =
�

(�+ �)
, (56)

�0

c =
�

(�+ �) + (1− �2 + �)
, (57)

and

��
c = ��

c =
1

2(�+ �)
, (58)

for � = 1, . . . , 2�, where � = �2(� + �) − � is a scaling

parameter. The parameter � determines the spread of the sigma

points around the conditional mean x̂�∣� and is set to a small

positive value (e.g. 1e-3). The parameter � is a secondary

scaling parameter and is usually set to zero and � used to

incorporate prior knowledge of the distribution of x and for

Gaussian distributions the optimal value of � is two. The

weights are constant for all measurement times.

Given x̂�−1∣�−1 and P�−1∣�−1, the UKF calculates the sigma

points {x̂�
�∣�}

2�
�=0

x̂0

�−1∣�−1 = x̂�−1∣�−1, (59)

x̂
�
�−1∣�−1 = x̂�−1∣�−1 +

(
√

(�+ �)P�−1∣�−1

)

�
, (60)

for � = 1, . . . , � and

x̂
�
�−1∣�−1 = x̂�−1∣�−1 −

(
√

(�+ �)P�−1∣�−1

)

�
, (61)

for � = �+ 1, . . . , 2�, where (
√

(�+ �)P�−1∣�−1)� is the �th

column of the matrix square root.

The predicted measurement is given by

ẑ�∣�−1 ≈

2�
∑

�=0

��
mz

�
�∣�−1, (62)

where

z
�
�∣�−1 := h(x�

�∣�−1,x
s

�). (63)

The gain K� and innovation covariance S� are given by

K� := Ψ�S
−1

� , (64)

S� ≈ R� +

2�
∑

�=0

��
c(z

�
�∣�−1 − ẑ�∣�−1)(z

�
�∣�−1 − ẑ�∣�−1)

′, (65)

Ψ� ≈
2�
∑

�=0

��
c(x

�
�∣�−1 − x̂�∣�−1)(z

�
�∣�−1 − ẑ�∣�−1)

′. (66)

C. Particle Filter

In contrast to the unscented Kalman filter, particle filter

based approaches do not make any assumptions about the

distribution of the state. Instead, they seek a set of particles

{x�
�} and weights {��

�} such that

�(x�∣Z
�) ≈

�
∑

�=1

��
�x

�
�, (67)

where � is the number of particles and Z� represents all the

measurements up to and including time ��. Good overview of

the use of particle filters for target tracking can be found in

[7], [19].

In this paper we use a variant of the particle filter approach

known as the transition density based particle filter (TD-PF)

[2], [17], [19]. Given a prior density for the initial state �0(x1),
the filter is initialized by generating � particles {x�

1} from this

density. Equal weights are used, ��
1 = 1/�, � = 1, 2, ..., �.

At each time ��, the algorithm then operates as follows:

1) Prediction Step

∙ Draw � samples {x�
�} from �(x�∣x

�
�−1).

∙ Update the weights using

��
� =

1

�
��

�−1�(z�∣x
�
�),

where � =
∑�

�=1
��

� is a normalization constant.

2) Update Step

Compute the updated state estimate and corresponding

error covariance matrix using

x̂�∣� =

�
∑

�=1

��
�x

�
�, (68)

P�∣� =
�
∑

�=1

��
�(x

�
� − x̂�∣�)(x

�
� − x̂�∣�)

′. (69)
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3) Resampling Step

∙ Compute the effective sample size

�eff =
1

∑�
�=1

(��
�)

2
.

∙ If �eff ≤ ��ℎ��� then generate a new set of �
particles by resampling, with replacement, from

{x�
�}. Reset the weights to ��

� = 1/� .

The final resampling step, and its associated threshold �thres,

is required to prevent the filter from degenerating [19].

VII. NUMERICAL SIMULATION AND RESULTS

The goal of this paper is to investigate the robustness,

accuracy, and computational times of three common nonlinear

filtering algorithms; the EKF, UKF, and PF for ground target

tracking using a space-based GMTI radar. A significant source

of error in this problem is the large cross-range measurement

error and this is the issue we will focus on here. In order to

do this, we examine the problem of tracking a single target

moving in a plane tangent to the WGS 84 reference ellipsoid

with NCV motion. The power spectral densities of the acceler-

ation process noise [3] along the � and � axes are chosen as

equal with a value of 0.5m2/s3. The satellite carrying the SBR

GMTI sensor moves in a non-precessing circular orbit with a

given inclination. Three sets of simulations were carried out

using azimuth measurement error standard deviations of 1.0,

2.0, and 3.0 milli-radians. The measurement error standard

deviations for range and range-rate were held fixed at 20m

and 0.5 m/s, respectively. A sample truth target trajectory and

calculated sensor measurement positions with 0.99 probability

error ellipses from a single Monte Carlo run are shown in

Figure 3. We observe in Figure 3 that the ellipses are long

and narrow due to the large cross-range error and small range

error. For this scenario, the range is minimum at the midpoint

of the trajectory and gradually increases towards the beginning

and end of the trajectory. Therefore, the major axes of the error

ellipses increase as we move from the midpoint towards the

beginning and end of the trajectory. Given the large distance
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Figure 3. A sample target trajectory in the �� plane and GMTI report
locations with 0.99 probability error ellipses. The measurement noise standard
deviation for azimuth is 2.0 milli-rad.

from the sensor to the target, these azimuth standard deviations

induce significant cross-range errors.

The EKF, UKF, and PF were run on 200 Monte Carlo

simulations for each case. We used 1k, 2k, 4k, 6k, 7k, 8k,

10k, and 15k particles for the TD-PF to determine the number

of particles that would yield state estimation accuracies that

are comparable or better than that of the EKF or UKF. We

found that the TD-PF with 10k particles had state estimation

accuracy comparable to that of the EKF or UKF. A higher

number of particles such as 15k didn’t produce a noticeable

improvement. The average computational times relative to the

EKF are presented in Table I. For each filtering algorithm, the

sample trajectory estimates from a single Monte Carlo run are

shown in Figure 4, where the TD-PF used 10k particles.

Table I
AVERAGE COMPUTATIONAL TIMES RELATIVE TO THE EKF.

EKF UFK TD-PF, 4k TD-PF, 7k TD-PF, 10k TD-PF, 15k

1.0 1.3 36.7 61.4 82.9 136.8
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Figure 4. Sample trajectory estimates in the �� plane. The TD-PF used
10k particles. The measurement noise standard deviation for azimuth is 2.0
milli-rad.

Let x�,� and x̂�∣�,� be the true state and estimated state

from the �-th Monte Carlo run respectively and let P�∣�,� be

the corresponding error covariance matrix. The following per-

formance metrics were computed to evaluate the performance

of each filter,

∙ bias error,

ē� :=
1

�

�
∑

�=1

e�,�,

where � is the number of Monte Carlo runs and e�,�
is the estimation error, e�,� := x�,� − x̂�∣�,�,

∙ the mean square error matrix (MSEM)

MSEM� :=
1

�

�
∑

�=1

e�,�e′�,�,

1677



∙ the normalized estimation error squared (NEES) [3]

NESS� :=
1

��

�
∑

�=1

e′�,�P−1

�∣�,�e�,�,

where � is the dimension of the target state defined in (1). The

NEES is a measure of the consistency of the filter calculated

covariance. Assuming the errors are normally distributed,

the NEES has a Chi-square distribution with one degree of

freedom [3]. If the filter calculated covariance is consistent

with the estimation error, then NEES would lie within the

two-sided 95% confidence bounds most of the time.

The log of the trace of the MSEM for all three filters

for the scenario with azimuth standard deviation of 2 milli-

radians is shown in Figure 5. Figure 6 shows the variation of

the the log of the trace of the MSEM with 4k, 7k, and 10k

particles. The bias errors in the position and velocity estimates

are shown in Figure 7 and Figure 8, respectively. These

figures shows that all three filters provide nearly the same

tracking accuracy. Similar pattern is observed for other two

scenarios. Based on the tracking accuracy and computational

time, we conclude that the EKF is the best candidate for

the SBR GMTI filtering scenario considered. These results

were contrary to our prior expectation that the EKF may yield

poor performance due to the large cross-range error and may

diverge in certain cases. Note, all three filters have significant

bias due to transients induced by large cross-range errors in

the initial track estimates.

0 200 400 600 800 1000
4

4.5

5

5.5

6

6.5

7

7.5

Time (s)

lo
g

1
0

 (
T

ra
c
e

(M
S

E
)

 

 

EKF

UKF

PF

Figure 5. log(tr(MSEM)) for the EKF, UKF and PF using the azimuth
measurement error standard deviation of 2.0 milli-rad.

Examination of the NEES in Figure 9 indicates the filter-

calculated covariance and estimation errors are not consistent

at a number of observation times. All three filters suffer from

significant track initiation transients. Even after the transient

has passed, the UKF and in particular the PF still exceed the

limits of the two-sided 95% confidence interval at a number

of observation times. The NEES for the PF improves by using

15k particles as shown in Figure 10, but still is not as good as
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Figure 6. log(tr(MSEM)) for the PF with 4k, 7k, and 10k particles using
the azimuth measurement error standard deviation of 2.0 milli-rad.
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Figure 7. Bias in the position estimates for the EKF, UKF and PF when the
azimuth measurement error standard deviation is 2.0 milli-rad.

the NEES from the EKF. Although the log of the trace of the

MSEM for the PF with 4k, 7k, and 10k particles in Figure 6

are close to each other, the NEES for the PF with 4k and 7k

particles are poor.

VIII. CONCLUSIONS

In this paper we compared the EKF, UKF, and PF for

the space-based GMTI nonlinear filtering problem in terms

of tracking accuracy, estimation bias, covariance consistency

using the NEES and computational time. We used simulated

data with Monte Carlo simulations. We presented a new track

initiation algorithm using space-based GMTI range, azimuth,

and range-rate measurements. This algorithm can be easily

extended to a realistic ground target tracking scenario with

terrain elevation data.

Our numerical results show that the tracking accuracies of

the three nonlinear filters are nearly the same. It is surprising

that the EKF performs well in spite of large cross-range
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Figure 9. Normalized estimation error squared for all three filters when the
azimuth measurement error standard deviation is 2.0 milli-rad.

errors and does not diverge. Our results show that the EKF

has the best NEES values among the three filters. Therefore,

the EKF is the best candidate algorithm for the space based

GMTI filtering scenario considered based on all four metrics.

Our future work will focus on improving the track initiation

algorithm by using unbiased converted measurements and

covariance consistency.
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