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Abstract—GNSS based localization in the context of Advanced
Driver Assistance Systems and autonomous driving raises its
attention regarding positioning performance not only related to
accuracy but integrity as well. Especially, for safety relevant
applications the proper computation of confidence levels under
degraded environmental conditions is of major importance. Low
cost solutions that integrate GNSS and additional in-vehicle
sensor information are able to bridge short periods of time
with limited GNSS accessibility and can therefore improve avail-
ability and accuracy. Additionally, non-line-of-sight (NLOS) and
multipath effects in urban areas need special attention as these
error influences violate the estimated confidence and introduce
unobservable offsets to the position solution. The mitigation of
local influences in urban areas increases the demands for the
integration of proper error models for NLOS and multipath
errors. The algorithmic detection of these effects and the proper
propagation of all uncertainties within a Bayes framework is
one of the key technologies towards the adoption of GNSS for
safety critical applications. This paper proposes a probabilistic
NLOS detection algorithm that is able to improve both - accuracy
and integrity of the position estimate in urban areas. As an
extension of a previous implementation by the authors based on
an unscented Kalman Filter the proposed system is implemented
as a particle filter in order to meet automotive requirements in
terms of real time and scalability. Both approaches are compared
by an evaluation of a data set from an urban test drive in terms
of accuracy and integrity.

I. INTRODUCTION

Reliably knowing the precise position of the ego vehicle

is required for a large number of advanced driver assistance

systems (ADASs). Low-cost off-the-shelf GPS receivers are

getting integrated into most standard commercial vehicles

making satellite-based localization one of the most promis-

ing candidates for this task. Although these GNSS receivers

deliver a suitable performance under good geometric constella-

tions and free signal reception conditions that offers street level

precision for low-demanding applications this cannot always

be guaranteed. However, besides the accuracy of the position

solution, this guaranteed reliability and availability are two

key aspects for many intelligent transportation systems (ITSs).

More challenging conditions like signal blockage or disturbed

signal reception cause the positioning performance to degrade.

This can often be observed in dense urban environments

where close buildings or the foliage of an avenue cause those

non-line-of-sight (NLOS) or multipath effects. Detecting and

handling blocked signals is hereby the easier task, this can

be directly observed as the expected GNSS measurements

are not available anymore. Reliably doing so for reflected

and otherwise disturbed GNSS signals is more difficult. The

measurements are still available, but using them during the

localization process leads on one hand to an unmodelled bias

in the resulting position estimate and to the violation of the

then underestimated confidence interval of the positioning

solution. As those effects are a rapidly changing phenomenon

in an urban environment it is hard to detect and predict it[1].

Given those limitations for classical GNSS-only localiza-

tion, it can be summarized that reliable positioning is still

a challenging task. For ITS applications like tolling, green

driving assistants for efficient path planning and even upcom-

ing safety applications like intersection assistants a reliable

positioning is required, showing that further work on this area

is still needed. The aim of this paper is to propose a generic

online GNSS positioning algorithm for vehicular applications

with integrated probabilistic NLOS mitigation using a particle

filter. The algorithm can be used to autonomously increase

localization accuracy and integrity without additional hardware

sensors. Even if the algorithm is not restricted to urban areas,

its biggest impact can be expected in strong multipath-affected

situations.

The paper is structured as follows: In the first section, an

overview of related work and state-of-the-art technologies for

GNSS localization and NLOS mitigation is given. Afterwards,

the fundamentals of satellite navigation and Bayesian filtering

are briefly introduced. The next section contains a description

of the probabilistic NLOS mitigation and its proposed adaption

to a particle filter. In the following section, the implementation

of the presented system is given. In the subsequent section

the generated results are presented and discussed. The paper

concludes with a summary and an outlook of future research.

II. RELATED WORK

An overview of so called Multipath Mitigation algorithms

is given in [2]. A straightforward approach is identifying

multipath by considering digital maps with modeled 3D build-

ings in order to validate the direct line-of-sight (LOS) to

each satellite. In the Bayesian framework this approach is

used to predict multipath affected GNSS observations [3].

Another algorithm for determining NLOS with the help of

environmental knowledge is described in [4][5]. A NLOS

signal detection respecting the satellite shadows in an urban

scenario is presented in [6].
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Fig. 1. Overview of the used test track. Starting at the left with initially
free line-of-sight conditions the reception conditions get worse. Especially
the left turn under heave non-line-of-sight conditions and the two railway
underbridges are challenging for GNSS only solutions.

Another group is based on additional hardware like a multi-

antenna approach in [7] for checking the consistency of the

GNSS signal reception. An infrared camera to identify NLOS

measurements is proposed in [8]. A similar approach using a

laser scanner to create a 3D model of the surroundings from

point cloud data was shown in [9]. As these approaches cause

additional costs to implement and do not rigorously implement

the Bayesian framework (which is assumed to be required for

safety relevant applications) the next group is of significant

interest.

This group uses statistic tests and probabilistic filtering

for the identification and mitigation of multipath. A known

representative in this category is Receiver Autonomous In-

tegrity Monitoring algorithm (RAIM) and its extensions [10].

However, classical RAIM is limited to handle a single outlier

within the measurement set, it is therefore not fully appropriate

for urban multipath situations as proven in [11]. This limitation

is not shared by a fully probabilistic alternative given in [12].

In [13] an approach based on robust pose graph optimization

for offline processing for multipath mitigation is introduced.

III. FUNDAMENTALS

A. Satellite Navigation

The core working principle of GNSS positioning is based

on simultaneously measuring the distance between the receiver

antenna and multiple satellites at one epoch. To compute a

position from those measurements usually four unknowns need

to be resolved:

xreceiver =
(

x y z dt
)T

(1)

Three unknowns belong to the three dimensional position

coordinate on earth and an additional one is required to ac-

count for the clock bias dt of the GNSS receiver relative to the

GNSS system time. Therefore, to process this using a standard

least-squares estimator, at least four ranging measurements are

required. As those time of flight observations are impaired

by multiple additional error sources they are often called

pseudoranges and modeled[14] as:

ρ = r + c(dt− dT ) + dion + dtrop + deph (2)

In the given equation, ρ denotes the observed pseudorange

and r the true geometric distance between the receiver and

the satellite. The other terms account for various error sources

that disturb this relation. In this example c(dt− dT ) denotes

the ranging error duo to the satellite clock error dT and the

user clock error dt relative to the common GNSS time base;

with the speed of light c. Furthermore, the signal is subject

to propagation delays caused along its signal path through

the ionosphere dion and through the troposphere dtrop. For the

receivers position calculation the satellites position must also

be known. Those are usually computed from the broadcasted

ephemerides, which are only accurate to around one meter and

represent by the last error term deph.

B. Non-Line-of-Sight Error

Other errors are not accounted for by this model, which

will normally lead to a bias in the final position estimate.

Most of them have a negligible influence on the positioning

performance, like the measurement noise of the receiver which

translates to an additional noise of the final position. However,

this is not the case for non-line-of-sight effects which can

frequently be observed in an urban setting. In such an envi-

ronment corrupted NLOS measurements - also often called

multipath - can typically disturb the measured pseudorange

length by up to 150 m and therefore significantly impair the

systems performance. To cope with this problem an additional

error term dmul can be introduced into (2):

ρ = r + c(dt− dT ) + dion + dtrop + deph + dmul (3)

However, in contrast to the slowly changing global effects

like the ionospheric or tropospheric delay, modeling dmul is

an extremely challenging task. It heavily depends on the local

environment around the receiver and changes rapidly as the

receiver is moved through it.

C. Particle Filter

The particle filter belongs to the group of sequential Monte

Carlo methods. In contrast to a Kalman filter the probability

density function (PDF) of a system’s nx-dimensional state

vector xk ∈ R
nx is not described in a parametric way like

a Gaussian but uses statistically drawn samples instead to

approximate the PDF. These samples can then be transformed

even using non-linear functions and thereby overcome a

Kalman filters limitations like the requirement of a Gaussian

PDF, linear state transition and observation functions or a

continuous state space.

A simple particle filter is the implementation of the often

called Sampling-Importance-Resampling (SIR) schema, which

is the combination of sequential importance sampling with

an importance resampling. The first allows the recursive state

estimation update only requiring a state transition function and

its likelihood as well as the previous sample weights. However,

this algorithm suffers from a degeneracy problem which causes

most samples weights to get close to zero leaving only a

few samples with a representative weight impairing their
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probability density representation. The importance resampling

counters this problem by creating equally weighted particles

from weighted ones. To achieve this, samples with a low or

close to zero weight are deleted while samples with high

weights are duplicated[15].

IV. PROBABILISTIC NON-LINE-OF-SIGHT DETECTION

Instead of such an explicit modeling of the NLOS error,

the authors previously introduced concept of a probabilistic

multipath detection and mitigation in [12] and [16] for use in

an Unscented Kalman Filter (UKF) is adapted and applied to

a particle filter.

The main idea of the algorithm is similar to generalized

probabilistic data association (GPDA) used in vehicle tracking.

The GNSS receivers’ pseudorange measurements z1, . . . , znz

make up the measurement set {z}. This set is divided into the

two subsets {z}valid and {z}invalid which contains the valid and

the invalid NLOS affected measurements, respectively.

However, this assignment is not known a priori. To solve

this, the algorithm defines the set of all possible association

hypotheses. From a probabilistic point of view, these hypoth-

esiss represent discrete association events Am
j ∈ Am ⊂ A.

The subsets Am contain all association events Am
i which are

based on the assumption that exactly m measurements are

received under LOS conditions. The cardinality of Am is given

by
(

nz

m

)

, where nz denotes the cardinality of {z}. Therefore,

the maximum number of assumed LOS measurements is given

by nz and the minimum number is zero.

The complete set of association events is given by
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...

...

Anz =
n

Anz

1 if {z} = {z}LOS

(4)

Although integrating this into an UKF with the goal to con-

dition the posterior state PDF on the association events showed

a significant improvement of the positioning performance[16],

several drawbacks of it are addressed by this papers approach:

• The performance heavily depends on the number of

visible satellites.

• At every time step all hypothesis are evaluated.

• Problematic weight normalization between hypothesiss

with a different number of valid measurements.

As the UKF implementation needs to test and asses each

hypothesis, the algorithms run time depends exponentially

on the number of observed GNSS satellites giving a time

complexity of O(2nz ). At the moment, a GPS only system

usually observes around 7 satellites at a time with a possible

maximum of 12. However, more and more GNSS receivers are

nowadays multi-constellation enabled. Besides the American

GPS, they also process the signals of other satellite systems

like the Russian GLONASS, the Chinese BeiDou or the

upcoming European Galileo which increasing the number of

visible satellites considerably. This would require a pruning

strategy to maintain an except-able performance for such

an algorithm. In contrast, the proposed particle filter uses

a constant number of particles to estimate the system state

yielding a stable run time. For this papers evaluation 5000

particles are used, although preliminary tests indicated that

around 1000 to 2000 seemed to be sufficient. This suggest a

break-even point of ca. 11 observed satellites.

This is enabled by making the binary LOS/NLOS state

of each satellite part of the systems state space, estimating

it over time. The assumption that those flags are short-time

constant also models the real world expectation better and

allows the exploitation of the temporal coherence of the NLOS

effect. Although this effect quite rapidly changes, it is usually

caused by the local environment the vehicle passes through.

For example, a satellites signal is freely received until the

vehicle passes a nearby building which obscures the signal

path and causes the NLOS state while passing it.

Another problem of the previous implementation lies in

the computation of the weights the filter needs to assign to

each hypothesis. This is computed as the product of the so

called validity and spatial likelihood. The former expresses

how likely a LOS/NLOS hypothesis appears to be while the

last expresses the likelihood that the hypothesis produces the

observed measurements. For this, the valid LOS measurements

are used to evaluate an m-variate Gaussian obtained from the

Kalman filters predicted PDF of the pseudoranges. However,

as we are unable to predict NLOS measurements, a uniform

distribution with a adjustable gate width was used instead.

Although sound, further analysis showed that this exponential

term mainly adjusts for the different magnitudes the m-

variate Gaussian evaluates to. Its biggest effect is on the null

hypothesis that assumes all measurements are unusable NLOS

measurements, balancing it to the other hypothesiss.

V. IMPLEMENTATION

A. Vehicular Motion Model

To model the vehicles motion a Constant Turn Rate and

Velocity (CTRV) model as described in [17] was chosen. The

system state space of this model can be described as

CTRVx =
(

x y θ ω v
)T

(5)

where x, y and z describe the position of the vehicle within

a cartesian coordinate system (e.g. UTM). θ represents the

heading direction the vehicle is driving into, ω its change rate
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(the yaw-rate) and v the vehicles velocity. The CTRV models

state transition equation is

xk+1 =

0

B

B

B

B

@

xk + 1

ωk

(vk(sin(ωkT + θk)− sin(θk)))

yk + 1

ωk

(vk(−cos(ωkT + θk) + cos(θk)))

θk + ωkT

ωk

vk

1

C

C

C

C

A

. (6)

It describes how the system state evolves from one time step

k to k+1 where T = tk+1− tk is the time span between both

steps.

B. GNSS Tightly Coupling

Instead of computing a position solution using the GNSS

receivers pseudorange measurements and using this as the

input for the positioning filter a so called tightly coupling

is used. With this approach the pseudorange observations

are directly used as the input for the filter which has two

advantages:

1) No information loss or reduction at the least squares

stage.

2) It allows for a position update with less than four

satellite measurements.

To allow this, the particle filter must be able to predict

pseudorange measurements for a given system state space in

order to update the weight of the samples by comparing them

to the real observations. From equation 2 is clear that the true

geometric distance r is required. For a satellite i at time step

k this is given by

rik =
q

(xi
k − xk)2 + (yik − yk)2 + (zik − zk)2. (7)

The ith satellites position (xi
k, y

i
k, z

i
k) for the time step can

be obtained from the broadcasted ephemerides. However,

the CTRV system state space needs to be expanded from

its two dimensional receiver position to three dimensions.

Furthermore, the receivers’ clock bias dt is necessary to

predict the clock error term; the satellites clock error dT

can again be computed from the broadcasted ephemerides.

In addition, to improve the modeling of the receiver clock its

clock drift dtdrift relative to the GNSS time is included too. The

GPSs Klobuchar model [18] used to model the ionospheric

delay dion and the Saastamoinen model used to model the

tropospheric delay dtrop do not require any additional data

and deph is neglected. To integrate the probabilistic NLOS

mitigation into the filter, a binary flag identifying the assumed

LOS or NLOS state is added to the space as well. Thus, the

fully extended CTRV system state space CTRV,GNSSx to directly

process pseudorange observations is defined by

CTRV,GNSSx =
(

x y z θ ω v vz dt dtdrift los0...ni

)T
. (8)

As required by this change, the state transition equation 6 has

been adopted to

xk+1 =

0

B

B

B

B

B
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B

B

B

B

B
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B

B

@

xk + 1

ωk

(vk(sin(ωkT + θk)− sin(θk)))

yk + 1

ωk

(vk(−cos(ωkT + θk) + cos(θk)))

zk + vzkT

θk + ωkT

ωk

vk
vzk

dtk + dtdriftkT

dtdriftk

los1...nz

k

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(9)

which models the receivers altitude z with a constant climb

rate vz , its clock bias dt with a constant clock drift dtdrift and

the line-of-sight classification of each satellite as constant.

C. Empirical Sensor Model

Although the proposed algorithm can work without addi-

tional knowledge for the LOS/NLOS distribution, incorporat-

ing such is possible and further benefits its precision. Instead

of fusing information of additional costly sensors into the

positioning filter, a byproduct of the GNSS receiver itself is

incorporated. The used u-blox LEA4T GNSS receiver, like

most GNSS receivers, also outputs the information about the

signal-to-noise ratio (SNR) of its satellite measurements.

In the authors previous work [12] an empirical likelihood

model for LOS and NLOS assessment is derived. To create

the free LOS model the same low-cost GPS receiver as

used for the later evaluation was installed at a fixed roof

mounted position which ensured free LOS visibility. The

pseudoranges, the SNR values as well as the satellite ele-

vation angles were collected during a continuous long-term

measurement campaign of nine days in Chemnitz, Germany

with an update rate of 1 Hz. As can be expected, the SNR

values depend on the satellites elevation angle. Therefore, the

empirical statistical properties assuming a normal distribution

are calculated for each discrete elevation angle in the range

of 0◦ to 90◦ separately. With this knowledge, the free LOS

likelihood p(SNR = s|LOS) can be calculated by evaluating

the normal distribution corresponding to the measurements

elevation angle for a given SNR observation.

In contrast to the given previous work, to create a likelihood

model for p(SNR = s|NLOS) several hours of various

recorded test drives of the professorship have been evaluated.

Hereby it was exploited that the test vehicles centimeter

level reference ground truth system consisting of a Novatel

SPAN system with RTK and IMU support omits largely

inconsistent satellite observations. In addition, the ground

truth systems pseudorange measurements were compared to

the expected pseudorange measurement for the given receiver

position and the satellite position computed using precise

SP3 orbit products[19]. The u-blox measurements of times

where the ground truth omitted a satellites measurements or

the difference between the ground truth measurement and the

expectation exceeded a threshold of 20 m were then used to
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derive the NLOS model. The satellites elevation again proved

to be a key influence, but as a normal distribution was a

bad match to the classified SNR measurements a uniform

distribution was chosen instead to reflect the relative low

information content.

D. Particle Filter

The implementation of the particle filter follows the schema

described in section III-C. At each measurement epoch, which

usually contains several pseudorange observations, the follow-

ing steps are performed:

1) Filter pseudorange observations.

2) Perform low variance resampling.

3) Predict particle states.

4) Update particle probabilities.

At the first step all observations that are deemed unusable

are removed from the observation set. This is only the case for

observations whose satellite position cannot be computed yet

due to insufficient received ephemeris data and for satellites

below the elevation mask angle of 15◦.

In the following step the low variance resampling – adopted

from [15] – is performed to prevent the weight degradation

keeping the particles a good representation of the estimated

system state probability density.

At step three the state transition function is applied to

each particle predicting its state to the measurement epoch.

In table I the standard deviation of the used process noise

parameters is given. While applying the additive zero-mean

noise is straight forward for most state space values, special

care must be taken of the LOS flag due to its binary nature.

A new hypothesis combination of the LOS flags is uniformly

drawn from all available possible permutations if one of the

following conditions is met:

• A previously observed satellite is not available anymore.

• A new satellite is observed.

• The value drawn from the uniform distribution U(0, 1) is

less than the process hypothesis noise parameter σhyp.

The first two conditions ensure that obsolete information is

discarded and that each available satellite is classified. The

third is a tuning parameter that adjusts how constant the

expected line-of-sight conditions are expected to be. At the

extreme case of σhyp = 0% the system model assumes that

the LOS conditions are truly constant and never change while

σhyp = 100% assumes this to be extremely volatile so that the

entire particle mass is used to constantly test all LOS/NLOS

hypothesis.

The final step is the sequential importance samplings update

of each particles probability weight. For this, each samples

probability weight is multiplied by its new states likelihood

Pk+1,m, where m identifies the sample. This is the combi-

nation of two likelihoods, the validity likelihood and spatial

likelihood. The validity likelihood defines the probability that

the samples LOS/NLOS hypothesis is correct, if such an

assessment is possible. At this paper, the empirical sensor

TABLE I
PROCESS NOISE PARAMETERS USED BY THE CTRV MODEL BASED

FILTERS

Parameter TC UKF Particle

Acceleration 18.95 m/s2 5.12 m/s2 15.08 m/s2

Altitude acceleration 2.49 m/s2 5.91 m/s2 2.40 m/s2

Angular acceleration 2.50 rad/s 2.56 rad/s 2.24 rad/s

Clock drift acceleration 18.36 m/s2 59.77 m/s2 8.53 m/s2

Gate Width - 4.01 -
Hypothesis Noise - - 45,39 %

TABLE II
PARAMETERS FOR THE EMPIRICALLY DERIVED RESIDUAL

DISTRIBUTIONS.

Parameter Value

LOS normal distribution - µ 0.67 m

LOS normal distribution - σ2 5.11 m2

NLOS Laplace distribution - µ 0.52 m
NLOS Laplace distribution - b 9.60 m

model described in section V-C is used. The validity likelihood

of satellite i is hereby

P (zisnr|x
i
los,m, z

i
el) =

(

flos(z
i
snr, z

i
el) if xi

los,m is true

fnlos(z
i
snr, z

i
el) if xi

los,m is false
(10)

where flos evaluates the LOS models normal distribution and

fnlos the NLOS models uniform distribution for the satellites

elevation angle ziel at the measured SNR zisnr. As the local

conditions are unknown the satellites validity likelihoods are

assumed to be independent giving the samples overall validity

likelihood as

Pm,validity =

nz
Y

j=1

P (zjsnr|x
j
los,m, z

j
el). (11)

To assess the spatial likelihood the difference between the

measured pseudorange and the predicted pseudorange is used

to evaluate empirical residual distributions that have been

created alongside the SNR sensor model using the same

data but without the elevation based separation (see section

V-C). For the LOS case a normal distribution has been fitted

while the NLOS residuals follow a Laplace distribution. Their

parameters are listed in table II. This yields, equivalent to

equations 10 and 11,

P (ziρ|x
i
los,m) =

(

flos(z
i
ρ) if xi

los,m is true

fnlos(z
i
ρ) if xi

los,m is false
(12)

Pm,spatial =

nz
Y

j=1

P (zjρ|x
j
los,m) (13)

and updates the mth particles weight ωm to

ωm,k+1 = ωm,k ∗ Pm,validity ∗ Pm,spatial. (14)
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TABLE III
ACCURACY AND PERCENTAGE OF FIXES WITHIN THE ESTIMATED

CONFIDENCE INTERVAL

Algorithm RMSE 3σ σ 2σ 3σ

Least Squares 8.4 m 14.7 m 66.4 % 92.1 % 97.2 %
Tightly Coupled 7.7 m 7.9 m 16.7 % 68.8 % 80.4 %
UKF 5.3 m 12.5 m 42.1 % 98.8 % 100.0 %
Particle 4.6 m 8.9 m 32.8 % 88.8 % 96.2 %

VI. RESULTS

To evaluate the particle filters NLOS mitigation its posi-

tioning performance is compared to the results of a weighted

least squares (LS) solver as described in [14], a tightly-coupled

Bayes Filter (TC) and the Unscented Kalman Filter implemen-

tation of the NLOS mitigation (UKF). For the evaluation raw

GNSS sensor observations from an ublox LEA-4T low-cost

single frequency GPS receiver are used. They were recorded

during an urban test drive within the city of Chemnitz which

includes NLOS conditions at straight sections and during

turns as well as two railway underbridges, see figure 1. The

data collection has been done with the prototyping vehicle

CARAI [20] which is available at Chemnitz University of

Technology. It is also equipped with a high-reliable reference

GNSS system that provides a ground truth trajectory with

centimeter-level accuracy. The particle filter was configured

to use 5000 samples which a preliminary test indicated to

be overly sufficient. To select the process noise parameters

shown in table I for each of the three filter candidates a

maximum likelihood optimization using the Covariance Matrix

Adaption Evolution Strategy [21] was performed so that each

filter produced the most plausible solution. For each of the

four algorithms, the horizontal position error in relation to the

ground truth and the corresponding confidence interval was

calculated. Furthermore, for the position errors the root mean

square error (RMSE) for the whole sequence is calculated

as well. For a reliable positioning algorithm, the number of

solutions outside the estimated confidence interval should be

rather small. For example, taking the 3σ measure yields that

99.7% of all possible solutions shall be within the estimated

interval. For the sake of completeness, the average of the

estimated confidence interval denoted by 3σ is calculate as

well.

In table III the resulting RMSE and the average estimated

3σ integrity interval for all four algorithms is given. As

expected, the weighted least squares and the simple tightly

coupled filter perform worst under such difficult conditions.

Non-line-of-sight effects are not modelled which causes sev-

eral large position errors. As both algorithms are unaware

of this the estimated confidence intervals remain quite static.

For the least squares approach they directly depend upon

the number of observed satellites and their slowly changing

geometric constellation while the tightly coupled filter adds

some noise-like dynamic to it, this can be seen in figure

2 and 3. The pseudorage measurement accuracy estimation

of the least squares algorithm, that is used to weight the
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Fig. 2. Estimation results for weighted least squares solution. The almost
static confidence interval is only subject to the number of observed satellites
and their geometric constellation.
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Fig. 3. Estimation results for tightly coupled Bayes filter. As NLOS conditions
are not considered they cause outliers well above the relatively even 3σ
interval.

measurements, is based upon the elevation and correction

models. These cause, in contrast to the distributions used

for the other algorithms, a relative high integrity interval

estimation. This helps in mitigating the first NLOS sequence

after second 50 but yields the largest integrity interval reducing

the dependability of its solution. However, a non-weighted

least squares produce larger errors and a much smaller 3σ
estimation further worsening the result.

The solution of the UKF-based NLOS mitigation is shown

in figure 4. In comparison to the tightly coupled filter the

RMSE is reduced by 31 % to 5.3 m and the integrity esti-

mation now adapts to the environmental challenged receiving

conditions. Although this raises the average interval estimation

by almost 60 %, making it almost as large as the least squares

estimate, comparing figure 3 and 4 indicates that this is mainly

caused by the increased estimation during assumed NLOS

sequences. This also meets the expectations from a theoretical

point of view. As both filters use the same basic measurement

and motion models the integrity estimation during free LOS

conditions should be comparable while the down weighting of

NLOS hypotheses and thereby the less relying at the measured

pseudoranges increases the estimation.

The particle filter based approach is visualized in 5. It

achieves a further reduction of the RMSE by 13 % to 4.6 m. In

comparison to the UKF-based implementation a very similar
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Fig. 4. Estimation results for the UKF based NLOS mitigation implemen-
tation. A large confidence interval that reflects the local circumstances is
estimated and large outliers are mitigated.
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Fig. 5. Estimation results for the Particle Filter based NLOS mitigation
implementation. The position error got reduced further, but the shrunk
confidence interval is violating it more often now.

behavior can be observed although the estimated confidence

interval is significantly reduced too. As a result, the position

estimates more often violates the 1 to 3σ interval. One possible

explanation for this behavior is the number of satellites used

by both algorithms. For this, the normalized weighted sum

of the number of satellites within the LOS hypothesises of

both algorithms is shown in figure 6. Although it can be seen

that the particle filter tends to rely more on particles with

more LOS classified satellites than the UKF implementation

does - especially for free LOS sequences, this ratio is almost

balanced at difficult NLOS areas. This matches the observed

lower confidence estimation at the begin of the test sequence,

however a higher increase during bad receiving conditions

would have been expected.

VII. CONCLUSION

Within this paper, an algorithm for GNSS-based vehicular

positioning based on a particle filter and empirical data was

proposed and evaluated. Therein the focus was set on the

mitigation of non-line-of-sight effects like multipath that are

most challenging within an urban area. The paper at hand

addresses problems of an earlier but already promising prob-

abilistic approach by using a particle filter that now could

incorporate a more suitable constant LOS/NLOS model. This

was implemented and validated using real world measurements
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Fig. 6. Comparison of the statistical number of effectively used satellites.
Under free LOS conditions the particle filter considers more satellites useable
which reduces its confidence estimation.

of an urban test drive. Using this scenario it was shown that

the new approach further reduced the positioning error by

13 % or 0.7 m. The confidence interval estimated alongside

of the vehicle state was reduced as well. However, this lead to

more position samples exceeding it, a possible disadvantage

for applications that need to rely on it. As the algorithm

is intended for online processing in a vehicle, it is real-

time capable on current PC hardware and could be further

optimized due to the parallel nature of a particle filter.

Besides a deeper analysis of the integrity short-coming,

further research will include the integration of odometry/INS

sensor that is available in nowadays vehicles, the integration

of GNSS Doppler measurements for GNSS only applications

as well as a deeper analysis of the algorithms application to

multi-constellation GNSS positioning.
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