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Abstract - Homotopy particle filters (HPFs), recently 

developed by Daum and Huang [1], present an alternative 

nonlinear filtering approach to sampling-based particle 

filters. Homotopy filters perform information update 

using the flow of particles to regions with high 

measurement likelihood. The particle flows in HPFs are 

solutions to a Fokker-Plank equation governing the 

dynamics of the posterior density function. The resulting 

partial differential equation is highly under-determined 

and has many solutions. In this work we study the 

nonzero-diffusion flow, and show its advantage in 

multisensor fusion. The nonzero-diffusion flow was 

chosen because it has the form of an information filter 

(inverse-covariance filter), and this feature makes it 

suitable for integration of measurement contributions 

from different sensors. The effectiveness of the HPF with 

nonzero diffusion flow as a fusion mechanism was 

evaluated for tracking a moving target using multiple 

range and bearing sensors. It is shown that the HPF 

requires several orders of magnitude fewer particles than 

a sampling-based particle filter, without loss in state 

estimator performance. 

 

Keywords: Homotopy Particle Filter, Flow Control, Target 

Tracking, Multisensor Fusion 

 

1 Introduction 

Similar to a sampling-based particle filter, a homotopy 

particle filter (HPF) represents the posterior distribution 

using a set of particles. However, instead of updating the 

weights of particles using the likelihood function, HPF 

controls the flow of the particles during the filter’s 

information update step. The motion of the particles is 

determined by a solution to a partial differential equation 

(PDE). As we will see in Section IV, the PDE is highly 

under-determined, and many solutions (particle flows) can 

be found. Daum and Huang introduced this new approach to 

Bayesian filtering, and have developed a number of 

interesting solutions over the past few years, including exact 
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flow [1], incompressible flow [2], and nonzero diffusion 

flow [3]  to name a few.   

Applications of the HPF to tracking problems have been 

studied recently [4], [5] and [6]. Choi et al. [4] evaluated the 

performance of homotopy filters with incompressible flow 

and exact flow in tracking a planar target with (linear) 

position measurements. Bell and Stone [5] used a homotopy 

filter with exact flow for a multi-target tracking problem 

with a linear observation model. Ding and Coates [6] 

implemented a homotopy filter with exact flow to track 

multiple targets using acoustic amplitude sensors. In all the 

above implementations, HPF algorithms rely on an 

extended/unscented Kalman filter (EKF/UKF) that is 

executed in parallel. Even though the reliance on EKF is not 

intrinsic to the exact flow filter, the EKF was used to 

provide covariance matrices needed in evaluating the flow. 

Ding and Coates [6] illustrated that the performance of the 

HPF can degrade when the EKF/UKF fail. 

In this work we chose to use an HPF with nonzero 

diffusion flow because (a) it can be implemented without 

reliance on an EKF to run in parallel, (b) the update 

expression of the nonzero diffusion flow has the form of an 

information (inverse-covariance) filter which lends itself to 

multi-sensor fusion quite well. The HPF with nonzero 

diffusion was used as a fusion mechanism to track a moving 

target using multiple sensors with nonlinear measurement 

models (range or bearing). Our implementation of HPF with 

nonzero diffusion does linearize the measurement models 

but it does so for each particle rather than the point estimate 

(as in EKF). Thus, the HPF can achieve very good 

estimation accuracies with several orders of magnitude 

fewer particles compared to a sampling-based particle filter. 

Simulation results show the effectiveness of the nonzero 

diffusion HPF under varying number of particles, and 

simulation parameters. 

Sections II and III provide background information about 

Bayesian filtering and sampling-based particle filtering. 

Section IV explains the theory behind the HPFs, and derives 

the PDE that provides the particles flow. Section V 

summarizes the derivation of nonzero-diffusion flow 

following the work in [2]. Section VI shows how HPF with 

nonzero diffusion flow can be used to fuse measurements 

from multiple sensors. Simulation results are presented in 

Section VII, where we evaluate the effectiveness of HPF 

with nonzero diffusion flow in tracking of a moving target. 
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2 Bayesian Filter 

Let ݔ௧ represent the state of a system at time t. Consider 

the following dynamical system modeling the evolution of 

the system over time:  

 

௧ݔ  ൌ ௧݂ሺݔ௧ିଵሻ ൅  ௧ିଵ ǡ (1)ݒ

 

where ௧݂ሺȉሻ is a (possibly nonlinear) d-dimensional 

transition function, and ݒ௧ is the process noise. We assume 

the Markov property holds for the system, i.e. ݌ሺݔ௧ȁݔ௧ିଵǡ ǥ ଵሻݔ ൌ  ௧ିଵሻ. The measurements takenݔ௧ȁݔሺ݌

from the system are modelled as 

 

௧ݖ  ൌ ݄ሺݔ௧ ǡ ݊௧ሻ (2) 

 

where ݊௧ is a measurement noise. The measurement ݖ௧ is 

conditionally independent from the past states given the  

 

 

current state, i.e. ሺݖ௧ȁݖ௧ିଵǡ ǥ ଵǡݖ ௧ݔ ǡ ǥ ଵሻݔ ൌ  ௧ሻ is known as the likelihood function. The objectiveݔ௧ȁݖሺ݌ ௧ሻ , whereݔ௧ȁݖሺ݌

of state estimation is to recursively estimate the state ݔ௧ 

from all available measurements ܼଵ ǣ௧ ൌ ሼݖଵǡ ଶǡݖ ǥ  ௧ሽ. Moreݖ

formally, we would like to estimate the conditional 

probability density function  ݌ ቀݔ௧ቚܼଵ ǣ௧ቁ, which is known as 

the posterior. In Bayesian filtering the posterior is computed 

in a two-step recursion. In the prediction step the current 

posterior ݌ ቀݔ௧ିଵቚܼଵ ǣ௧ିଵቁ is propagated to the next time step 

using the transition function  

௧ȁܼଵ ǣ௧ିଵሻݔሺ݌  ൌ න ௧ିଵሻǤݔ௧ȁݔሺ݌ ௧ିଵݔ௧ିଵȁܼଵ ǣ௧ିଵሻ݀ݔሺ݌ Ǥ (4) 

  

When measurement ݖ௧ arrives, the update step is 

executed. First the likelihood ݌ሺݖ௧ȁݔ௧ሻ is computed, and 

then it is used to update the posterior 

 

௧ȁܼଵ ǣ௧ሻݔሺ݌  ൌ ௧ȁܼଵǣ௧ିଵሻݖሺ݌௧ሻݔ௧ȁݖሺ݌௧ȁܼଵǣ௧ିଵሻݔሺ݌  ǡ    (5) 

 

where ݌ሺݖ௧ȁܼଵǣ௧ିଵሻ is the normalization constant. The pair 

of recursive equations (4) and (5) provides the optimal 

Bayesian solution for the posterior. However, the closed-

form solution only exists for some special cases as in 

Kalman filtering for linear Gaussian systems. Estimation 

methods such as particle filtering approximate the optimal 

Bayesian solution for nonlinear systems. 

3 Particle Filters 

Particle filters provide approximate solutions to a 

Bayesian filter by representing the posterior as a set of 

random samples and their associated weights ሼݔ௜ ǡ ௜ሽ௜ୀଵேݓ . 

Particles are drawn from a proposal density according to 

their weights (importance sampling). Formally, the posterior 

is represented by a discrete approximation ݌൫ݔ௧หܼଵǣ௧൯ ൎ ෍ ௧ݔ൫ߜ௧௜ݓ െ ௧௜൯ேݔ
௜ୀଵ ǡ 

where ߜሺȉሻ is the Dirac delta function. As in Bayesian 

filtering the posterior is computed in a recursion. In the 

propagation step the transition function ݌ሺݔ௧ȁݔ௧ିଵሻ is used 

to propagate the particles and compute the predicted density 

(4). When measurement ݖ௧ becomes available, the likelihood 

function ݌ሺݖ௧ȁݔ௧௜ሻ is computed for all particles and the 

weights of the particles are updated. In the end, particles are 

resampled according to their weights to avoid sample 

impoverishment [7]. This recursive algorithm is known as 

Sampling Importance Resampling (SIR) particle filter. In 

SIR particle filter, the weights of the particles are 

proportional to the likelihood function. Table below 

summarizes the measurement update step of the SIR particle 

filter. 

 

 Particle Filter - SIR  (Measurement Update) 

1 For ݔ௜ ǡ ݅ ൌ ͳǡ ǥ ǡ ܰ 

2          Likelihood:  Given ݖ௧ Compute ݌൫ݖ௧หݔ௧௜൯ 

3       Update weight:  ݓ௧௜ ൌ ௧ିଵ௜ݓ   ௧௜൯Ǥݔ௧หݖ൫݌ 
4 End 

5 Normalize weights ݓ௧௜ ՚ ௧௜Ȁݓ σ ௧௞௞ݓ  

6 Resample: draw new particles based on the weights.  

Table 1: Measurement Update for PF-SIR 

 The problem with essentially all particle filters is the 

“particle degeneracy” problem. To understand the problem 

better let us consider the un-normalized conditional 

probability density function 

ሻݔሺ݌  ൌ ݃ሺݔሻ݈ሺݔሻ ǡ 
 

where ݈ሺݔሻ is the likelihood, and ݃ሺݔሻ is the predicted 

density (see Equation (5)). ݃ሺݔሻ is given by the set of 

particles, and the likelihood ݈ሺݔሻ is known analytically. The 

difficulty arises from the multiplication of these two 

functions. If not enough particles are used, the posterior will 

have many particles with (nearly) zero weights, and very 

few non-zero particles. This phenomenon is known as 

particle degeneracy [7]. The problem is exacerbated when 

measurements are very accurate. Also the performance of 

sampling-based particle filters deteriorates significantly for 

problems with high dimensional state vectors. The number 

of particles that are needed to obtain the same level of 

performance grows exponentially with state dimension [8].  

4 Homotopy Particle Filters 

To mitigate the problems with sampling-based particle 
filters (e.g. particle degeneracy, exponential growth of 
number of particles, etc.), Daum and Huang [1] proposed an 
alternative approach to nonlinear filtering known as the 
particle flow or homotopy particle filter. In the particle flow 

௧௜ݓ  ן  ௧௜൯Ǥ (3)ݔ௧หݖ൫݌ 
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approach particles are essentially moved to regions in the 
state space where the posterior has larger values. The 
particles flow as the homotopy variable  varies continuously 
from 0 to 1.   

The flow in the un-normalized posterior is generated using 
a homotopy  ݌ሺݔǡ ሻߣ ൌ ݃ሺݔሻ݈ሺݔሻఒ 

 

as a function of parameter ߣ א ሾͲ  ͳሿ. The flow of the 
posterior corresponds to the Bayes rule. At the start of the 

flow (ߣ ൌ Ͳ), we have ݌ሺݔǡ ሻߣ ൌ ݃ሺݔሻ, i.e. ݌ሺݔǡ  ሻ is equalߣ

to the prior density. At the end of the flow (ߣ ൌ ͳ), ݌ሺݔǡ  ሻߣ

is equal to the desired posterior density ݌ሺݔǡ ሻߣ ൌ ݃ሺݔሻ݈ሺݔሻǤ  
The flow of the logarithm of the posterior with respect to  

is given by: 
 

         log ǡݔሺ݌ ሻߣ ൌ log ݃ሺݔሻ ൅  ሻ Ǥ    (6)ݔlog ݈ሺ ߣ

This represents a line homotopy of the logarithm of the 
densities. The task is to find an appropriate flow of the 
probability density defined by the log-homotopy (6). 
Suppose the flow for the Bayes rule obeys the following 
stochastic differential equation: 

 
ݔ݀  ൌ ݂ሺݔǡ ߣሻ݀ߣ ൅  (7) ݓ݀

where ݀ݓ is the diffusion noise (or flow nosie) with 

covariance matrix ܳሺݔሻ. Note that the objective is to 

compute the vector field (flow) ఒ݂ ൌ ݂ሺݔǡ  ሻǤ Using theߣ
Fokker-Plank equation governing the dynamics of the 
posterior density function, Daum and Huang [1] derived the 

following first-order PDE in the unknown function ఒ݂ (see 
APPENDIX for derivation): 

 

 ߲ log ݔ߲݌ ఒ݂ ൌ െlog ݈ െ divሺ ఒ݂ሻ ൅ ͳʹ݌ div ൤ܳሺݔሻ  ൨Ǥ  (8)ݔ߲݌߲

This PDE is highly under-determined because there is only 
one scalar valued equation, but the unknown function ݂ሺݔǡ  ሻ, or the flow, is a D-dimensional vector field. Ourߣ

objective is to solve equation (8), given ݌ሺݔǡ ǡݔሻ and ݈ሺߣ  .ሻߣ
There are many ways to solve this equation for finding an 
appropriate flow. In Section V, a solution is derived by 

imposing mild assumptions on the diffusion parameter ܳ. 
Necessary and sufficient conditions for the existence of the 
particle flow are discussed in [17]. 

A homotopy particle filter is similar to a standard particle 
filter where the posterior is represented by a set of particles ݔ௜. However, instead of updating particles weights using (3) 
a homotopy filter uses a particle flow (a solution of the flow 
PDE (8)) to update the particles states as the homotopy 
parameter  varies from 0 to 1. The particles are migrated in 
small steps using the Euler’s method: ݔ௜ሺɉ௞ሻ ൌ ௜ሺɉ௞ିଵሻݔ ൅ ߂௞ ȉ ݂ሺݔ௞ିଵ௜ ǡ   ௞ሻ ǡߣ
where the step size is ߂௞ ൌ ௞ߣ  െ  ௞ିଵ. No particleߣ
resampling is needed in a homotopy particle filter. Table 

below shows the update step in a HPF with a generic 
particle flow.  

 

 Homotopy Particle Filter  (Measurement Update) 
1 Compute particles mean ߤ௦ and covariance ௦ܲ 
2 For ߣ௞ ߳ ሾͲǡ ଶǡߣ ǥ ǡ ெିଵǡߣ ͳሿ 
3 ௦ǡߤ)compute_flow = ߣȀ݀ݔ݀          ௦ܲǡ   (௞ߣ

4          Move particles ݔ௞௜ ൌ ௞ିଵ௜ݔ ൅  ሻߣȀ݀ݔ௞ሺ݀߂

5 End  
6 Compute state estimates from the updated particles

Table 2: Measurement Update for HPF 

The compute_flow function could implement any of 

the particle flows such as exact flow, incompressible flow, 

or nonzero diffusion flow. 

5 HPF with Nonzero Diffusion Flow 

In this section we follow the work in [2] in derivation of 
the HPF with nonzero diffusion flow. Consider the PDE (8) 

with unknown ఒ݂. Suppose the diffusion parameter ܳ is 

nonzero, and the prior density ݃ሺݔሻ and likelihood function ݈ሺݔሻ are twice differentiable. Now compute the gradient of 

(8) with respect to ݔ 
 ߲ log ݔ߲݈ ൌ െ ఒ்݂ ߲ଶ log ଶݔ߲݌ െ ߲divሺ ఒ݂ሻ߲ݔ െ ߲ log ݔ߲݌ ߲ ఒ݂߲ݔ൅ ߲div ቂܳሺݔሻ డ௣డ௫ Ȁʹ݌ቃ߲ݔ Ǥ  (9) 

The above equation is actually a system of D equations 

with D unknown functions ఒ݂. If a nonzero diffusion ܳ and 

flow ఒ݂ exist such that the last three terms are summed up to 
zero, we get the simpler equation: 

 ൬߲ log ݔ߲݈ ൰ ൌ െ ఒ்݂ ቆ߲ଶ log ଶݔ߲݌ ቇ Ǥ  (10) 

Therefore, under the stated assumptions, the unique solution 

for ఒ݂ is given by: 

 ఒ݂ ൌ െ ቆ߲ଶ log ଶݔ߲݌ ቇିଵ ൬߲ log ݔ߲݈ ൰் Ǥ (11) 

Since the likelihood function ݈ is analytically given, the 

derivative of log ݈ can be computed analytically as well. To 

compute the Hessian of log -the definition of log ,݌
homotopy (6) must be used: 

 
 ߲ଶlog ଶݔ߲݌ ൌ ߲ଶlog ߲݃ݔଶ ൅ ଶݔ߲݈ ଶlog߲ ߣ  Ǥ (12) 

The Hessian of log ݈ is computed in closed-form. But 

computing the Hessian of log ݃ is more difficult. An 
approach using the k-nearest neighbor algorithm was 

proposed in [9]. Hessian of log  is also known as the ݌

observed Fisher information matrix.  
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If a Gaussian approximation to ݃ is used, the Hessian of log ݃ can be approximated by the sample covariance matrix ௦ܲ of the prior computed from the set of particles at  ߣ ൌ Ͳ. 
For applications where the nonlinear measurement has 
additive Gaussian noise, the information matrix (Hessian of log  ௜) becomesݔ evaluated at ݌

௜ݔሺܫ ǡ ሻߣ ൌ ߲ଶlog ݔ߲݌ଶ ቉௫೔ ൌ െ ௦ܲି ଵ െ  ௜ሻ Ǥݔሺܪ௜ሻ்ܴିଵݔሺܪߣ
Thus using (11) the nonzero-diffusion flow of each particle 
becomes  

 
 ఒ݂ሺݔ௜ሻ ൌ െܫሺݔ௜ ǡ ݖ௜ሻ்ܴିଵሺݔሺܪሻିଵߣ െ ݄ሺݔ௜ሻሻǡ (13) 

where ܪሺݔ௜ሻ is the linearized measurement matrix evaluated 

at ݔ௜; ܴ is the measurement noise covariance. Note that this 
flow is similar to the Extended Information filter [10] but for 
each particle rather than the conditional mean.   

Note: In numerical experiments the nonzero-diffusion 

flow requires much finer integration steps compared with 

the exact flow. This will add to the computational 

requirements of this flow. 

 

6 Multisensor Fusion and Tracking 

Given the similarity of the nonzero diffusion flow to an 

information filter, the multi-sensor estimation problem 

becomes considerably simple when the sensors are 

independent. As it is shown next, the flow of particles for 

the group-sensor filter is derived from the linear 

combination of the information from individual sensors. 

Let us consider ܵ sensors, each observing a common state 

according to  

 

ሻݐ௦ሺݖ  ൌ ݄௦൫ݔሺݐሻ൯ ൅ ݊௦ሺݐሻǡ   ݏ ൌ ͳǡ ǥ ǡ ܵ (14) 

where the noise ݊௦ሺݐሻ are assumed to be white and 

uncorrelated in both time and among the sensors: 

 

 Eሼ݊௦ሺݐሻሽ ൌ Ͳǡ    E൛݊௦ሺݐሻ݊௣ሺ݇ሻൟ ൌ ௧௞ܴ௦ߜ௦௣ߜ Ǥ  (15) 

Suppose the sensors make synchronized observations. We 

form the group measurement vector ࢠሺݐሻ, group (linearized) 

measurement matrix ࡴሺݐሻ, and group noise vector ࢜ሺݐሻ : 
ሻݐሺࢠ ൌ ൥ݖଵሺݐሻݖڭ௦ሺݐሻ൩  ǡ   ࡴሺݐሻ ൌ ൥ܪଵሺݐሻܪڭ௦ሺݐሻ൩  ǡ   ࢜ሺݐሻ ൌ ൥ݒଵሺݐሻݒڭ௦ሺݐሻ൩   . 
The measurement covariance for the group noise vector is  ࡾሺݐሻ ൌ Eሼ࢜ሺݐሻ࢜ሺݐሻࢀሽ ൌ blockdiagሺܴଵሺݐሻǡ ǥ ǡ ܴ௦ሺݐሻሻ Ǥ 
 

To obtain the flow expression for the multi-sensor 

estimation problem, we start by writing the flow and the 

information update equations for the group-sensor system: 

 ఒ݂ሺݔሻ ൌ െିܫଵିࡾ்ࡴଵ൫ࢠ െ ሻ൯ݔሺࢎ ǡ    (16) 

 

and ܫ ൌ െ ௦ܲି ଵ െ  Ǥ    (17) ࡴଵିࡾ்ࡴߣ

Using the above definitions, we have: 

ࡴଵିࡾ்ࡴ  ൌ ൥ܪଵሺݐሻܪڭ௦ሺݐሻ൩் ቎ܴଵି ଵሺݐሻ ڮ Ͳڭ ڰ Ͳڭ ڮ ܴ௦ି ଵሺݐሻ቏ ൥ܪଵሺݐሻܪڭ௦ሺݐሻ൩
ൌ ෍ ௦்ܪ ܴ௦ି ଵܪ௦ࡿ

࢙ୀ૚  

(18) 

and similarly 

ࢠଵ൫ିࡾ்ࡴ െ ሻ൯ݔሺࢎ ൌ ෍ ௦்ܪ ܴ௦ି ଵሺݖ௦ െ ݄௦ሺݔሻሻࡿ
࢙ୀ૚ Ǥ  (19) 

 

Substituting equations (18) and (19) into equations (16) and 

(17), the nonzero diffusion flow for the group-sensor system 

becomes 

ఒ݂൫ݔ௜൯ ൌ െܫ൫ݔ௜ ǡ ൯ିଵߣ ෍ ௦்ܪ ൫ݔ௜൯ܴ௦ି ଵ ቀݖ௦ െ ݄௦൫ݔ௜൯ቁࡿ
࢙ୀ૚ ǡ   (20) 

 

with the information update equation given by 

௜ݔሺܫ  ǡ ሻߣ ൌ െ ௦ܲି ଵ െ ߣ ෍ ௦்ܪ ሺݔ௜ሻܴ௦ି ଵܪ௦ሺݔ௜ሻࡿ
࢙ୀ૚ Ǥ (21) 

Thus the multi-sensor fusion algorithm with a nonzero 

diffusion flow would use equation (21) to compute the 

information matrix and then use equation (20) to compute 

the flow of the HPF, as summarized in the table below.  

 

 Nonzero Diffusion Flow  (compute_flow)

1 Inputs:  

• Homotopy parameter ߣ௞ 

• Particles mean ߤ௦ (at ߣଵ ൌ Ͳ)  

• Particles covariance ௦ܲ (at ߣଵ ൌ Ͳ)

2 For ݔ௜ ǡ ݅ ൌ ͳǡ ǥ ǡ ܰ 
3    Compute information update ܫሺݔ௜ ǡ   ௞ሻ using (21)ߣ

4    Compute the multi-sensor flow ఒ݂ሺݔ௜ሻ using (20) 
5 End  
6 Output: particle flow ݀ݔȀ݀ߣ ൌ ఒ݂ for all particles. 

Table 3: Nonzero Diffusion Flow 
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7 Simulation Studies 

We compared the performances of an HPF with nonzero-

diffusion flow (HPF-NZD) and an SIR particle filter (PF-

SIR) in a tracking problem involving a planar target. 

Target’s motion is observed using multiple sensors with 

states ܺ௦ ǡ ݏ ൌ ͳǡ ǥ ǡ ܵ. The measurement models are given 

by equation (14) where for a bearing sensor we have 

 ݄௦ሺܺǡ ܺ௦ሻ ൌ tanିଵ ൬ݔ െ ݕ௦ݔ െ ௦൰ݕ ǡ    and    ݊௦̱ࣨሺͲǡ ܴ௕ሻ  (22) 

 

and for a range sensor we have 

 ݄௦ሺܺǡ ܺ௦ሻ ൌ ඥሺݔ െ ௦ሻଶݔ ൅ ሺݕ െ ௦ሻଶǡ  and   ݊௦̱ࣨሺͲǡݕ ܴ௥ሻ Ǥ    (23) 

 

Note that measurements are nonlinear functions of target 

state with additive Gaussian noise. The bearing is measured 

clockwise relative to the horizontal line. The sensors take 

measurements of the target relative to the sensor location, 

and then measurements are passed to a fusion center where 

it runs PF-SIR and HPF-NZD algorithms. For both 

algorithms the initial particles are drawn from a Uniform 

distribution in the position space, and a zero-mean Normal 

distribution for the velocity and acceleration spaces. As 

measurements arrive, the HPF is implemented using the 

measurement update algorithm in Table 2 with particle flow 

given in Table 3. The step sizes of the homotopy parameter 

Ȝ are important for convergence of the HPF. We divided the ሾͲ ͳሿ range to 15 intervals with the first 5 intervals being 

between 0 and ͲǤͳ.   

Next we present the results of our study for two different 

scenarios. The first scenario (Section VII.A) considers 

tracking an accelerating target. The motion model (used in 

the filters) is linear but the measurement models are 

nonlinear (equations (22) and (23)). In the second scenario 

(Section VII.B), we use a nonlinear motion model suitable 

for tracking maneuvering targets. 

Each scenario is run 100 times for PF-SIR and HPF-NZD 

with different random initial conditions for the particles. 

State estimation errors are computed as the difference 

between the true target state and the estimated state. The 

magnitudes of position and velocity errors are defined as   

ሻݐ௣௢௦ሺߝ  ൌ ටߝଵଶ ൅ ሻݐ௩௘௟ሺߝ           ଶଶ ǡߝ ൌ ටߝଷଶ ൅  ସଶ  ǡߝ
 

where ߝ௜ denotes the estimation error for state dimension ݅. 
Errors are averaged over all 100 runs. Also, the percentages 

of convergence
2
 are computed as the ratio of the converged 

runs to total number of runs.  

 

                                                 
2
 In our study we say the state estimator converged when the 

position estimation errors remain less than 2 meters after a 

short initial period (10 time steps).  

7.1 Linear Motion & Nonlinear 

Measurement Models 

In this scenario, the target moves across the two-

dimensional plane (see Figure 1) and multiple sensors are 

taking measurements at constant intervals  ݀ݐ. Target’s state 

vector is given by its position, velocity, and acceleration ܺ௧ ൌ ሾݒ ݕ ݔ௫ ௬ݒ   ܽ௫  ܽ௬ሿ௧்
. Target’s motion is modeled by the 

nearly-constant-acceleration model:  

 ܺ௧ሶ ൌ ௧ܺܣ ൅  ௧ (24)ݓܤ

where  

ܣ ൌ ൥Ͳ ͳ ͲͲ Ͳ ͳͲ Ͳ Ͳ൩ ٔ ܤ   ଶ ǡܫ ൌ  ൥ͲͲͳ൩ ٔ  ଶ  ǡܫ
and ݓ௧  is the process noise, ٔ is the Kronecker product, and ܫଶ is the ʹ ൈ ʹ identity matrix.  

Figure 2 shows the state estimation results using a PF-SIR 

and a HPF-NZD. As the number of particles N varies from 

10 to 1000, the estimated position, velocity, and acceleration 

errors for the HPF-NZD remain relatively constant. 

However PF-SIR is not able to track the target for those 

numbers of particles. Each point in Figure 2 is the average 

of the accumulated errors over 100 Monte Carlo runs (The 

accumulated position (velocity) error is the sum of position 

(velocity) errors over the duration of the simulation). Most 

of the error is due to the fact that PF-SIR does not track the 

target, as it can be seen in Figure 3. PF-SIR achieves 

acceptable tracking performance with N=10000 particles. 

 

Figure 1: Scenario 1. Tracking an accelerating target using 
range and bearing sensors located at [30,0] and [10,0] 

respectively. 

Figure 4 compares the velocity error magnitudes of the 

HPF-NZD with N=100 and PF-SIR with N=10000 particles. 

HPF-NZD achieve the same performance as PF-SIR with 

two orders of magnitude fewer particles. The average error 

is computed over 100 Monte Carlo runs. Some statistics of 

the 100 runs are shown in Figure 5. The 50% and 97% 
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graphs show the mean and covariance (3ı) of the velocity 

estimation error.  

 

Figure 2: Estimation Error vs. Number of Particles  

 

Figure 3: Comparison of the convergence percentages. 

 

Figure 4: Comparison of velocity errors averaged over 
100 runs. 

 

Figure 5: Velocity Error Statistics of 100 Runs for HPF-
NZD with N=50 particles. 

 

7.2 Nonlinear Motion & Nonlinear 

Measurement Models 

In this scenario target is moving in a circular pattern and a 

pair of range and bearing sensors are taking measurements 

at constant intervals  ݀ݐ. Target’s state vector is given by its 

position [x y], speed v, heading angle ĳ, and turning rate, ܺ௧ ൌ ሾݔ ݕ ߮ ݒ ߱ሿ௧்
. Target’s dynamics is modeled 

by the coordinate-turn model with polar velocity [11] 

 ܺ௧ሶ ൌ ݂ሺܺ௧ሻ ൅  ௧ (25)ݓ

where 

 

݂ሺܺ௧ሻ ൌ ێێۏ
ሻͲͲݐሻሻ߱ሺݐሻsin ሺ߮ሺݐሺݒሻሻݐሻcos ሺ߮ሺݐሺݒۍێ ۑۑے

௧ݓ    ǡ ېۑ ൌ ێێۏ
ۍێ ͲͲͲݓ௩ሺݐሻݓఠሺݐሻۑۑے

 ǡ ېۑ
 

and ݓ௩ and ݓఠ are the process noise for target speed and 

turning rate. Figure 6 shows the circular trajectory of the 

target and sensors’ locations.  

Figure 7 shows that as the number of particles increases 

the accumulated position error decreases for PF-SIR but 

HPF-NZD is quite robust to changes in the number of 

particles. This is actually directly related to the increase in 

the convergence percentage (Figure 8). For HPF-NZD all 

100 runs converged while PF-SIR convergence improves 

gradually as more particles are used. Eventually, for 

N=50000 particles, PF-SIR achieves similar performance as 

HPF-NZD (see also Figure 9). Some statistics associated 

with the 100 runs of the HPF-NZD with N=100 particles are 

shown in Figure 10. It shows that HPF-NZD can track the 

target with small errors.   
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Figure 6: Scenario 2. Tracking a target moving in a circular 
pattern using bearing and range sensors located at [0,0]. 

 

Figure 7: Position Error vs. Number of Particles 

 

Figure 8: Convergence Percentage vs. Number of Particles 

 

Figure 9: Position Estimation Errors over Time. 

 

Figure 10: Position Error Statistics over 100 runs for HPF-
NZD with N=100 particles (for scenario 2). 

8 Summary and Conclusions 

We showed how to use the homotopy particle filter with 

nonzero diffusion flow (HPF-NZD) as a fusion mechanism 

to fuse information from multiple sensors. We chose to 

work with the nonzero-diffusion flow because it has the 

form of an information filter (inverse-covariance filter), and 

that feature makes it suitable for integration of measurement 

contributions as they arrive at the fusion center. We ran a 

number of studies with increasing degrees of difficulty. We 

started with an easy tracking problem (linear motion model 

+ linear position measurements) to more difficult tracking 

problems (nonlinear motion model + multiple nonlinear 

measurements). Our extensive comparative studies showed 

that HPF with nonzero diffusion flow outperforms SIR 

particle filter. As the dimension of the state space became 

larger, PF-SIR needed orders of magnitude more particles to 

achieve the same level of performance as HPF-NZD. 

However, the computational cost of HPF-NZD ended up 

being larger than PF-SIR. This was due to the need to 
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compute the Hessian of the log-likelihood and information 

matrix inversion in the flow equation (20) for every particle.  

The application of the HPF to target tracking with focal 

plane measurements is the subject of ongoing work. Particle 

filter implementations of track-before-detect algorithms 

[14], [15] have shown great potential in tracking low-SNR 

targets. However, a large number of particles are needed to 

achieve good results. This is true especially when 

measurements from multiple focal planes are fused [16] to 

generate 3D state estimates. In future works we will 

investigate the application of HPF to such multisensor 

fusion problems.  

Appendix 

Consider the log-homotopy equation (6)  log ǡݔሺ݌ ሻߣ ൌ log ݃ሺݔሻ ൅ ߣ log ݈ሺݔሻ Ǥ 
 

Differentiating the log-homotopy w.r.t. parameter  we have 
 
ߣ߲݌߲  ൌ Ǥ݌ log ݈ ǡ (26) 

where the assumption is ݌ሺݔǡ  ሻ is nowhere vanishing andߣ
differentiable. On the other hand, we can compute the 

function ݂ሺݔǡ  ሻ by using the Fokker-Plank equationߣ

 
ߣ߲݌߲  ൌ ݎܶ ൤߲ሺ ఒ݂Ǥ ݔሻ߲݌ ൨ ൌ  െdivሺ ఒ݂Ǥ ሻ݌ ൅ ͳʹ

div ൤ܳሺݔሻ  ൨  (27)ݔ߲݌߲

where divሺȉሻ is the divergence function. By equating the 
right-hand sides of equations (26) and (27) we obtain the 
following partial differential equation (PDE) governing the 
flow of the particles:  

Ǥ݌   log ݈ ൌ െdivሺ ఒ݂Ǥ ሻ݌ ൅ ͳʹ
div ൤ܳሺݔሻ   ൨ Ǥݔ߲݌߲

Using the product rule for the scalar valued function ݌ and 

the vector field ఒ݂ we expand divሺ ఒ݂Ǥ  ሻ to get݌
 

divሺ ఒ݂Ǥ ሻ݌ ൌ divሺ ఒ݂ሻǤ ݌ ൅ ݔ߲݌߲ ఒ݂ Ǥ 
 

Now assuming density ݌ is nowhere vanishing, and dividing 

by ݌ we obtain the first-order PDE, as given by (8). 
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