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Abstract—Recent research has provided several new methods
for avoiding degeneracy in particle filters. These methods im-
plement Bayes’ rule using a continuous transition between prior
and posterior. The feedback particle filter (FPF) is one of them.
The FPF uses feedback gains to adjust each particle according
to the measurement, which is in contrast to conventional particle
filters based on importance sampling. The gains are found as
solutions to partial differential equations. This paper contains
an evaluation of the FPF on two highly nonlinear estimation
problems. The FPF is compared with conventional particle filters
and the unscented Kalman filter. Sensitivity to the choice of gains
is discussed and illustrated. We demonstrate that with a sensible
approximation of the exact gain function, the FPF can decrease
tracking errors with more than one magnitude while significantly
improving the quality of the particle distribution.

I. INTRODUCTION

The aim in continuous-discrete time Bayesian filtering is

to estimate the posterior filtering density p(x(t)|Yk), or at

least the relevant moments, at each time t ∈ R. Here,

Yk := {y(t0), . . . ,y(tk)} denotes the set of measurements,

obtained at discrete time steps. Many models in continuous-

discrete time estimation are written on state-space form as

dx(t) = f(x(t), t)dt+ dβ(t),

yk = h(xk) + ek,
(1)

where x := x(t) ∈ R
n is the state; yk := y(tk) ∈ R

m is the

discrete-time measurement at time tk; f and h are the drift and

measurement function, respectively; and β and e are process

and measurement noise, respectively. Sometimes a discretized

counterpart to (1) is used, resulting in (with different f )

xk+1 = f(xk, k) +wk, (2a)

yk = h(xk) + ek. (2b)

In the following, f i
k := f(xi

k, k), and both process and

measurement noise are assumed Gaussian distributed with zero

mean and covariance matrices Q and R, where R is diagonal.

Extended Kalman filters (EKFs) and unscented Kalman

filters (UKFs) [1], [2] are popular estimation methods for

nonlinear systems. When the dynamics is highly nonlinear

and/or the posterior is not well represented by the first few

moments, the EKF and UKF may perform poorly. In these

cases, particle filters (PFs) are often preferred. PFs [3], [4]

have successfully estimated the states of (1) and (2) in many

applications, see [5]–[10] for some examples. PFs solve the

Bayesian recursions using a set of weighted particles, which

are propagated forward in time. One problem with PFs is the

inevitable particle degeneracy [11] (i.e., only a few particles,

or even one, have nonzero weight), caused by the way Bayes’

rule is implemented [12]. Degeneracy leads to decreased

performance, or even filter divergence. To mitigate degeneracy,

PFs use resampling, which consists of replacing particles

having low likelihood with more probable particles. The

resampling step makes PFs practically useful, but introduces

other negative effects, such as sample impoverishment and

increased variance [4]. Note that although the noise sources

are often assumed, or approximated as, Gaussian additive with

zero mean, PFs apply to more general noise distributions.

Since a number of years there exist variants of the PF that

remove degeneracy and therefore also the need for resampling.

Instead of implementing Bayes’ rule in one step, these algo-

rithms all have in common that they rely on a gradual transition

from the prior to the posterior. As a consequence, resampling

is avoided and importance sampling is not used. In [13], a

framework for gradual transition from prior to posterior was

introduced—see also [14], [15]. The particle-flow filter has

been introduced and improved in a series of papers, see, for

example, [16]–[18]. A related filter is the feedback particle

filter (FPF) [19]–[23]. The FPF applies a feedback structure

to each particle. It can be seen as a generalization of the

linear-regression filters in literature, such as the UKF or the

smart-sampling Kalman filter [24]. The feedback gains are

determined as the solutions to optimization problems, where

the Kullback-Leibler divergence serves as cost function [23].

This paper presents application and evaluation of the FPF

using two classical target-tracking problems—the vehicle reen-

try problem and the planar two-body problem. These problems

have in common that both the dynamics and measurement

equations are highly nonlinear. We consider both periodic

and infrequent measurements. The FPF is implemented with

two different approximations of the optimal feedback gains.

Comparisons are made with the UKF, the bootstrap particle

filter (PF), the Rao-Blackwellized particle filter (RBPF) [25],

and a particle filter using optimal sampling with linearized

likelihood [4], [26]. The purpose of this paper is to fill a void

in terms of thorough evaluations of the FPF on relevant and

challenging applications. The aim is to provide insight for

when the FPF outperforms more traditional approaches and

when it does not. There exist many variants of the PF, but

we here focus on two of the most commonly used. There has

been a few comparisons between PFs and the FPF before (e.g.,

[27]), but we go more into depth. In particular, we quantify

and illustrate how the choice of feedback gains can drastically

affect performance, which has not been discussed before.
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II. BACKGROUND ON PARTICLE FILTERS

Sampling-based approaches typically have in common that

they propagate samples (hypotheses) of the states, but the

samples can either be chosen deterministically or randomly.

We will next go through the conventional PF (discrete-time

case, but continuous versions exist) and the FPF.

One key ingredient in the derivation of recursive state esti-

mators using probability density functions is Bayes’ theorem

(or Bayes’ rule): for two variables x and y,

p(x|y) =
p(y|x)p(x)

p(y)
. (3)

The posterior p(xk|Yk) can be rewritten using (3), which gives

p(xk|Yk) ∝ p(xk|yk,Yk−1) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
. (4)

Thus, in (4), the measurement yk is used for updating the prior

density to obtain the posterior probability density function.

A. Particle Filtering

Assume that N particles (hypotheses) {xi
k}

N
i=1 are sampled

from the one-step prior as

xi
k ∼ p(xk|Yk−1). (5)

The PF [3], [4] then approximates this density with

p(xk|Yk−1) ≈ p̂(xk|Yk−1) =

N∑

i=1

wi
k|k−1δ(xk − xi

k).

Here, δ(·) is the Dirac delta function. The importance weights

{wi
k|k−1

}Ni=1 indicate how likely each particle is, and fulfill

N∑

i=1

wi
k|k−1 = 1, wi

k|k−1 ≥ 0, ∀i ∈ {1, . . . , N}.

Often it is impossible to sample from (5) directly. Instead,

let q(xk|xk−1,Yk) be a proposal density (the importance

density) from which it is possible to sample. Using the

importance density, the one-step prior is rewritten as

p(xk|Yk−1) =

∫

q(xk|xk−1,Yk)
p(xk|xk−1)

q(xk|xk−1,Yk)

· p(xk−1|Yk−1) dxk−1. (6)

By drawing N samples from the proposal density, the integral

in (6) approximates to a sum according to

p(xk|Yk−1) ≈
N∑

i=1

wi
k|k−1δ(xk − xi

k). (7)

The weights wi
k|k−1

are computed as

wi
k|k−1 ∝

p(xi
k|x

i
k−1)

q(xi
k|x

i
k−1

,Yk)
p(xi

k−1|Yk−1). (8)

By inserting (7) into (4), the posterior is obtained as

p(xk|Yk) =
N∑

i=1

p(yk|x
i
k)w

i
k|k−1

︸ ︷︷ ︸

wi

k

δ(xk − xi
k),

One obvious choice of proposal density is

q(xk|x
i
k−1,Yk) = p(xk|x

i
k−1). (9)

With this choice, the weight update equation reads

wi
k ∝ p(yk|x

i
k)w

i
k−1, (10)

since wk|k−1 = wi
k−1 in (8). With the proposal (9), the PF is

called the bootstrap PF. It was introduced in [3]. This version

is, by far, the most common in the PF literature. Another

option is to choose the proposal

q(xk|x
i
k−1,Yk) = p(xk|x

i
k−1,Yk), (11)

which leads to the weight update

wi
k ∝ p(yk|x

i
k−1)w

i
k−1. (12)

Eq. (12) implies that the weight is independent of the sample

xi
k, and is optimal in the sense that it maximizes the effective

number of samples [26] (all other alternatives will lead to

increased variance of the weights). The proposal (11) is

generally difficult to sample from exactly. However, for a

linear, Gaussian measurement relation (2b) in the form

yk = Hxk + ek,

the expression is analytic. For a nonlinear measurement rela-

tion a linearized version can be used, leading to

q(xk|x
i
k−1,yk) = N

(
xk|x̄

i
k, (Σ

i)−1
)

(13)

where

x̄i
k = f i

k−1 +Li
k(yk − ŷi

k),

Σ
i =

(
(Hi

k)
TR−1Hi

k +Q−1
)−1

,

Li
k = Qk(H

i
k)

T(Hi
kQ(Hi

k)
T +R)−1,

Hi =
∂h

∂x

∣
∣
∣
∣
f i

k−1

,

and the measurement likelihood is approximated as

p(yk|x
i
k−1) = N

(
yk|ŷ

i
k,H

i
kQ(Hi

k)
T +R

)
.

Irrespective of whether (9) or (11) is used, the PF includes

a necessary resampling step: when the effective number

of samples Neff becomes too small (in this paper when

Neff ≤ 2N/3), N particles are chosen (with replacement),

where the probability of choosing xi
k is wi

k. In this paper,

we will use both (9) and (13) for comparison with the FPF.

B. Feedback Particle Filter

A brief recapitulation of the continuous-discrete time FPF

follows next—see [20] for a more complete treatment. The

FPF approximates the posterior p with N unweighted samples,

or particles, xi as

p(x|Yk) ≈ p̂(x|Yk) =
1

N

N∑

i=1

δ(x− xi).
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Unlike conventional PFs, the FPF models the measurement

update of the ith particle as a controlled system (Fig. 1):

dxi = f idt+ dβi +U i
k.

To incorporate the new measurement yk, a particle flow

Si
k := Si

k(λ) and a control input U i
k := U i

k(λ) are introduced:

dSi
k

dλ
= U i

k, (14)

where λ ∈ [0, 1] is the pseudo-time. Si
k is initialized (λ = 0) to

equal the ith particle before the measurement update and U i
k

is designed such that the distribution generated by {Si
k}

N
i=1

approximates the posterior at λ = 1, see Fig. 2. This leads

to a simulation-based implementation of Bayes’ rule, unlike

traditional PFs. This approach is made possible by a log-

homotopy transformation, which transforms the discrete-time

Bayesian measurement update to a continuously evolving

process. In (14), U i
k has the form

U i
k(λ) = Ki

kI
i
k +

1

2
Ω

i
k,

where Ki
k =

[
ki
1 · · · ki

m

]
:= Ki(Si

k, λ) ∈ R
n×m is the

feedback gain, Ωi
k := Ω(Si

k, λ) is the Wong-Zakai correction

term [28], and Ii is the innovation error, which equals

Ii
k = yk −

1

2
(hi + ĥ), (15)

where

ĥ = E(h(x)) :=

∫

h(x)p(x) dx ≈
1

N

N∑

i=1

h(xi).

The innovation process (15) includes the predicted measure-

ment of particle i and the average of all particles. The control

synthesis is done by solving an optimal-control problem, with

the Kullback-Leibler divergence as the cost [23]. By defining

(φi)T =
[
φ1 · · · φm

]
:= φT(x, λ), kj := ∇φj(x, λ) is a

solution to the partial differential equation

∇ · (p∇φj) = −
1

Rjj

(hj − ĥj)p, (16)

for j = 1, . . . ,m and each time tk [22] (similarly for Ωk), and

where Rjj is the variance of the jth element in yk. In analogy

with the PF, the FPF is consistent (i.e., p̂(x|Yt) = p(x|Yt) for

all t given correct initial distribution) when N is inifinitely

large. However, the simulation-based update in the FPF re-

moves the need for resampling, which is present in PFs.

The consistency result for the FPF only holds for an exact

expression of the feedback gain. In fact, the main difficulty in

the implementation of the FPF is to find solutions to (16).

Typically it must be solved by numerical techniques, such

as direct numerical solutions or Galerkin solutions based on

the weak formulation of (16) [29]. This leads to suboptimal

feedback gains, but initial tests indicate that a constant-

gain approximation provides competitive performance in some

cases [22], [23], [27]. Approximations of varying complexity

Ki ẋi = f(xi) +U i
U i

−

1

2
(h(x̂i) + ĥ)

∑y ei x̂i

Fig. 1. Simplified block diagram of the FPF. It uses feedback gains {Ki}N
i=1

to control the particles {xi}N
i=1

. This is in contrast to the conventional PF,
where only the particles’ weights are changed in the measurement update.

ttk−1

λ

tk

λ

x(t−
k
) x(tk)x(t−

k−1
) x(tk−1)

Fig. 2. Illustration of the measurement update in the FPF. The state x is
predicted up to tk−1. When yk−1 arrives, the predicted state estimate is
corrected using a simulation-based update, yielding x(tk−1) (similar for tk).

can be computed based on the weak formulation of (16). A

function φj is a weak solution to (16) if

E(∇φj · ∇ψ) = E

(
1

Rjj

(hj − ĥj)ψ

)

(17)

for all functions ψ belonging to the Sobolev space H1(Rn, p)
[22]. By restricting ψ to belong to the subspace of H1(Rn, p)
spanned by {ψl}

L
l=1, φj is approximated as

φj =
L∑

l=1

κljψl. (18)

Hence, (18) is a weighted sum of basis functions {ψl}
L
l=1,

where {κlj}
L
l=1 are constants for a fixed tk. This implies that

kj =

L∑

l=1

κlj∇ψl. (19)

Eq. (19) leads to a finite-dimensional approximation of (17):

L∑

l=1

κljE(∇ψl · ∇ψ) = E

(
1

Rjj

(hj − ĥ)ψ

)

. (20)

In practical implementations, by substituting ψ with each ψl

and approximating the expectation using the particle distribu-

tion, (20) becomes a linear matrix equation

Aκj = bj . (21)

Note that the equation system is the same for all particles.

Hence, element sl of A, Asl, and element l of bj , blj , are

found as

Asl =
1

N

N∑

i=1

∇ψi
l · ∇ψ

i
s,

bsj =
1

RjjN

N∑

i=1

(hij − ĥj)ψ
i
s.
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A computationally simple approximation of Ki
k is found

by choosing {ψl}
n
l=1 = {xl}

n
l=1. With this choice, A in (21)

becomes the identity matrix, and we therefore end up with an

approximation that is the same for all particles, the constant-

gain approximation:

Kk ≈
[
c1 · · · cm

]
R−1,

cj :=
1

N

N∑

i=1

(

hij − ĥj

)

Si
k.

(22)

In the numerical study, we will use both (22) and an approx-

imation that depends nonlinearly on particle i, that is,

ki
j =

L∑

l=1

κlj∇ψ
i
l . (23)

As shown in the next section, whether using (22) or (23) can

have drastic impact on estimation performance.

III. APPLICATIONS

The numerical study contains two examples. One perfor-

mance measure we use is the root-mean-square error (RMSE):

Let x̂k,j denote the estimated mean (weighted mean for the

PFs) at time tk for the jth of M Monte-Carlo simulations.

Then the RMSE is computed as

RMSE =

√
√
√
√

1

M

M∑

j=1

(xk,j − x̂k,j)2.

The RMSE is not necessarily the best performance measure

for nonlinear, non-Gaussian systems, but is used because it is

the standard method for comparing estimation performance.

The compared methods are:

• FPF: the FPF with constant-gain approximation (22)

• FPFG: the FPF with the feedback gain (23) approximated

as a sum of circular basis functions

• UKF: the continuous-discrete time UKF in [30]

• PF: a bootstrap PF with prior sampling (9)

• LLPF: a PF using optimal sampling with linearized like-

lihood (13)

• RBPF: the Rao-Blackwellized particle filter [25]

The PFs use systematic resampling [31], which has linear

complexity in the number of particles.

A. Application 1—Reentry problem

The first application considers state estimation of a vehicle

that enters the atmosphere at high speed, see Fig. 3. This prob-

lem has been used as a benchmark problem in several papers,

for example, in [1], [32] for demonstrating the performance

of the discrete-time UKF. Later, the example was used in [30]

6350 6500

0

200

350

x1 [km]

x2 [km]

Fig. 3. One realization of the path (black) for the reentry problem. The earth’s
surface is shown as dashed and the radar location is the ’+’ in the lower left
corner. The coordinate system is located at the earth center.

for verifying the performance of the continuous-discrete time

UKF. The motion equations are

ẋ1 = x3, (24a)

ẋ2 = x4, (24b)

ẋ3 = Dx3 +Gx1 + w1, (24c)

ẋ4 = Dx4 +Gx2 + w2, (24d)

ẋ5 = w3, (24e)

D = b exp

(
r0 − r

h0

)

v, (24f)

b = b0 exp (x5), (24g)

r =
√

x21 + x22, v =
√

x23 + x24, (24h)

G = −
µ

r3
, (24i)

r0 = 6374, b0 = −0.59783, (24j)

h0 = 13.406, µ = 398601.2, (24k)

where (24f) is the drag force, (24i) is the gravity force from the

earth, and {wj}
3
j=1 are zero-mean, white, Gaussian process-

noise sources with joint spectral density

Q =





2.4064 · 10−4 0 0
0 2.4064 · 10−4 0
0 0 0



 .

The true initial state is Gaussian distributed with mean and

covariance

x0 =
[
6500.4 349.14 −1.8093 −6.7967 0.6932

]T
,

P0 = diag([10−6, 10−6, 10−6, 10−6, 10−6, 0]),

where diag(·) is the diagonal matrix with the argument on the

diagonal. To enhance UKF performance, the variance of w3

are in all filters set to 10−5. This noise term is redundant in

the FPF, but is included for sake of comparison. Note that this

increase in the process noise (roughening) is crucial for the
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PFs to have a chance of estimating the static parameter x5
[33]. For the filters, the initial mean and covariance are

x̂0 =
[
6500.4 349.14 −1.8093 −6.7967 0

]T
,

P̂0 = diag([10−6, 10−6, 10−6, 10−6, 10−6, 1]).

The vehicle is tracked by a radar that measures the range r
and bearing θ with the rate of 2 Hz—that is,

y =

[
r
θ

]

=






√

x21 + x22

arctan

(
x2
x1

)




+ e, (25)

where the measurement noise is Gaussian distributed with

covariance matrix

R = diag([10−6, (0.01π/180)2]).

Further details and motivation are found in [1], [32].

The simulated data is generated by forward-propagating

(24) using the Euler-Maruyama integrator [34] with step size

∆t = 0.001 s (i.e., 500 steps between each measurement).

The filters are discretized using the same scheme with step

size ∆t = 0.01 s. The measurement-update step (14) in the

FPF is discretized with ∆λ = 0.01 (i.e., the particle flow is

implemented using 100 time steps). All results are for 100

Monte-Carlo simulations.

1) Results: The time-averaged RMSEs as function of the

number of particles are shown in Fig. 4. The PF using optimal

proposal with linearized likelihood (LLPF) performs slightly

better than PF, but neither of them perform as good as UKF in

this example. Furthermore, both of the conventional PFs fail

in providing reliable estimates of x5, despite that roughening

is employed. FPF, however, has better performance than UKF

already for 100 particles; especially x5 is estimated more

consistently with the FPF.

Fig. 5 presents the minimum execution times as function of

time-averaged RMSE of x1 for one Monte-Carlo simulation,

measured with MATLAB’s tic and toc functionality. The

minimum of the execution times is chosen because it reduces

the effects of disturbances, such as memory management. The

implementations utilize vectorization. As seen, for a given

execution time, FPF improves RMSE with up to three orders

of magnitude compared with PF.

B. Application 2—Two-Body Problem with Bearing Sensors

The next example involves estimating the motion of a

satellite that orbits around earth (i.e., a two-body problem).

Simplified two-dimensional equations of motion relative to the

earth-fixed, earth-centered, inertial frame are given by

ṗX = vX ,

ṗY = vX ,

v̇X = −µ
pX
r3

+
1

m
FX + w3,

v̇Y = −µ
pY
r3

+
1

m
FY + w4,

(26)

101 102 103 104
10−2

10−1

N

x3 [km/s]

FPF

PF

LLPF

UKF

101 102 103 104

10−2

100

N

x1 [km]

101 102 103 104
10−2

10−1

100

N

x5 [-]

Fig. 4. Time-averaged RMSEs for x1, x3, and x5 as function of the number
of particles for the reentry problem. The differences are small, but FPF has
slightly smaller RMSE for both x1 and x3 for N ≥ 100. The RMSE values
are computed for N = 10, 50, 100, 500, 1000, 5000, 10000.

10−3 10−2 10−1 100 101
100

101

102

x1 [km]

Time [s]

Fig. 5. Minimum execution times for one simulation (20000 time steps) as
function of time-averaged RMSE of x1 for the reentry problem. FPF is in
black and PF in gray. UKF is shown (+) for reference.
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where [pX , pY ] are the longitudinal and lateral positions in

the earth-fixed frame, respectively, and [vX , vY ] are the corre-

sponding velocities. FX and FY are the external forces applied

to the satellite to correct for the perturbation accelerations w3

and w4, r =
√

p2X + p2Y , µ = 398601.2 is earth’s gravita-

tional constant, and m is the satellite mass. For simplicity,

FX = FY = 0 in what follows. The perturbations w3 and w4

are both assumed Gaussian distributed with zero mean and

standard deviation 0.1 m/s2.1 The initial conditions are

x0 =
[
7000 0 0 −7.54

]T
, (27)

in km and km/s, respectively (i.e., a low-earth orbit).
Two bearing sensors measure the angle relative to the

satellite. The sensors are located at

S1 = (r0, 0), S2 = (−r0, 0),

where r0 = 6374 km. The measurement model is

yk =

[
θ1
θ2

]

=







arctan

(
pY

pX −R0

)

arctan

(
pY

pX +R0

)






+ e,

and both sensors have Gaussian distributed, independent noise,

with zero mean and standard deviation 1 deg. Each sensor is

only able to track objects that reside in a cone with 40 deg

opening angle. When the satellite is within the respective X-

axis aligned cone, the sensor provides measurements at 0.1 Hz.

Fig. 6 shows a schematic of the setup. Note that the sensors

are never active simultaneously. Furthermore, because of the

infrequent measurements, there can be a severe mismatch

between actual measurement and predicted measurement.
In this example, we use two versions of the FPF. FPF is the

constant-gain FPF (22). In addition, FPFG is an FPF where (23)

is comprised of 12 circular basis functions, with the arguments

normalized between [0, 2π]. Hence, a 12×12 matrix equation

system (21) is solved at each time step in the particle-flow

update (14), which results in (23). The initial orbit is assumed

uncertain for all filters, with mean (27) and covariance matrix

P0 = diag([4, 4, 0.04, 0.04]).

The simulated data is generated by forward propagating (26)

using the Euler-Maruyama scheme with step size ∆t = 0.01 s.

The filters are discretized with step size ∆t = 0.1 s, and each

simulation lasts for 230 min, corresponding to approximately

2.5 orbits. In the FPFs, ∆λ = 0.001.
1) Results: Table I displays the time-averaged RMSEs

for the time steps when the satellite is within either of the

measurement cones, for 10 Monte-Carlo simulations using 100

particles. FPFG outperforms all other filters, sometimes with

more than one magnitude, and neither PF nor RBPF manage

to estimate the mean with high accuracy. It is clear that UKF

is unable to handle the combined severe nonlinearities and

infrequent measurements.

1Keplerian orbits do not exist in practice because of perturbation forces.
Satellites drift from their assigned orbital positions because of, e.g., solar radi-
ation pressure and atmospheric drag, if not accounted for. These disturbances,
i.e., w3 and w4, are modeled as Gaussians here.

−7000 0 7000

−7000

0

7000

X [km]

Y [km]

Fig. 6. The two-body problem with two bearing sensors (crosses) that measure
the respective angle to the satellite. The earth surface is indicated with the
large solid circle and the small solid circle indicates the earth center. The
true satellite path for one orbit realization is the dash-dotted circle. The cones
illustrate the sensors’ viewing angles (40 deg). When the satellite is outside
these cones, the estimation algorithms rely solely on prediction.

TABLE I
TIME-AVERAGED RMSES FOR THE TWO-BODY PROBLEM WHEN

EXECUTING 10 MONTE-CARLO SIMULATIONS FOR A SIMULATION TIME

OF 230 MIN. THE PARTICLE FILTERS USE N = 100. THE RMSE IS ONLY

COMPUTED FOR THE TIME STEPS WHEN EITHER OF THE SENSORS TRACK

THE SATELLITE.

Algorithm pX pY vX vY

FPFG 29.7 42.9 0.06 0.04
FPF 36.5 55.5 0.09 0.05
PF 110.2 441.9 0.49 0.12

RBPF 112.7 434.7 0.47 0.12
UKF 127.1 227.7 0.34 0.17

The RMSE measures the accuracy of the estimated mean,

but does not necessarily give a proper measure of how well

the filters estimate the posterior. The dynamics is governed

by an approximately circular orbit; hence, combined with the

measurements it is possible to conclude that the posterior

should be approximately directed along the orbit. To give

an indication of the different filters’ abilities to capture the

constrained motion and thus represent the posterior, Figs. 7

and 8 show the estimated posteriors for each filter after

approximately two orbits, for N = 100 and N = 1000,

respectively. Only FPFG (part a) is able to capture the con-

strained motion for 100 particles. Both PF and RBPF (part

c) give skewed posteriors and significantly biased estimates

(compare with Table I). In addition, PF clearly has a scattered

particle distribution. The resampling causes this behavior, and

results in that the particles are concentrated around clusters.

For 1000 particles (Fig. 8), RBPF and PF produce particle

distributions that are more aligned with the orbit, but they

are still slightly skewed. In both figures, FPF estimates the

posterior to be skewed with respect to the orbit, and the tail

of the posterior is significant for 1000 particles. This is an

effect of the constant feedback gain, which adjusts all particles
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Fig. 7. Particle clouds and (weighted) mean for N = 100 after roughly two orbits for one realization. True position is indicated by the green circle and
true path is in dash-dotted gray. Part (a) shows the particle cloud, estimated path (solid), and estimated mean (green diamond) for FPFG . Part (b) displays
the same for FPF, and estimated mean and 3σ ellipse (solid red) for UKF. Part (c) shows particle distributions for PF in red and RBPF in black. Only FPFG

captures that the posterior should be aligned along the orbit without severe bias. The distributions of PF and RBPF are heavily biased and skewed. In addition,
the effect of resampling is clearly seen for PF. The distribution of FPF is also skewed, because the constant-gain approximation does not utilize the constraints
in the dynamics. The 3σ ellipse for UKF does not cover the true position. Note that the scales differ for the subfigures.
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Fig. 8. Same notation as in Fig. 7 for N = 1000. For part (c), the green diamond indicates the weighted mean for RBPF. The conventional particle filters
now also perform well. The estimated mean is quite accurate with the constant-gain approximation FPF (FPF), but the posterior has large tails. Subfigures (a)
and (c) have the same scaling. The covariance matrix for UKF is almost degenerate., and the performance of UKF is clearly inferior compared with all other
filters. The plots give a representation of the estimated posteriors, but does not necessarily represent the average accuracy in the mean.
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along the same direction whenever a measurement is available

(22). When using more complex expressions for the feedback

gain that accounts for the dynamics, the constrained motion is

more accurately captured. This results in a posterior estimate

that is aligned with the orbit. Note that the mean of UKF is

heavily biased. The (almost degenerate) 3σ ellipse does not

cover the true position. In fact, when inspecting the estimated

paths (not shown here), it is clear that the estimated path of

UKF slowly diverges for each orbit.

IV. CONCLUDING DISCUSSION

We presented results and assessed the performance of the

FPF compared with more traditional filtering techniques for

two estimation problems. The considered problems highlight

that nonlinearities alone do not justify the use of particle-

filter approaches over the UKF. However, combined with large

uncertainties, particle-filter approaches is the preferred choice.

The first problem was the reentry problem. With the param-

eters and noise levels in this particular example, it is clear that

the UKF is very competitive. Still, the FPF performs slightly

better than the UKF already for 100 particles, especially for

estimation of the aerodynamic parameter x5. The performance

of either PF approach is worse than the UKF for reasonably

small values of N . All filters used the same noise levels. It is

highly likely that roughening/dithering [3], [26] can improve

performance, but roughening is already used for x5. For the

combined state and parameter estimation problem, there exist

particle filters that give better performance [33]. However, it

is notable how much more accurate the FPF is than the PFs

without sacrificing computational efficiency.

The two-body problem again highlighted the FPF’s rela-

tive estimation increase per particle compared with the PFs,

when using few particles. In addition, it is clear that with

a sensible choice of feedback gain, the posterior estimate is

highly accurate even for a small number of particles. The

downside is the necessity for solving a linear matrix equation

in the measurement update, but it is encouraging that only

using 12 basis functions (three per state) results in much

improved particle distribution compared with the constant-gain

approximation. Future work is to provide guidelines for how

to choose the problem-dependent feedback gain.
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