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Abstract—The Ensemble Kalman Filter (EnKF) is a Kalman
based particle filter which was introduced to solve large scale
data assimilation problems where the state space is of very large
dimensionality. It also achieves good results when applied to a
target tracking problem, however, due to its Gaussian assumption
for the prior density, the performance can be improved by
introducing Gaussian mixtures. In this paper, a new derivation
of the EnKF is presented which is based on a duality between
Gaussian products and particle densities. A relaxation of the
Gaussian assumption is then achieved by introducing a particle
clustering into Gaussian Mixtures by means of the Expectation
Maximization (EM) algorithm and to apply the EnKF on the
clusters. The soft assignment of the EM allows all Gaussian
components to contribute to each of the particles. It is shown
that the EM-EnKF performs better than a standard particle
filter while having less computation time.

I. INTRODUCTION

The theory of target tracking is a growing family of al-

gorithms to calculate the probability density function (pdf)

of the state of a system or an object based on noise cor-

rupted sensor observations. An estimate of the state is then

obtained by taking the mean of the pdf and a corresponding

covariance matrix which is the expected estimation error

squared additionally provides a measure of accuracy for this

estimate. Bayesian estimation is the framework of recursive

filtering methodologies, which allow us to process a current

measurement by means of a prior or initial density and a

measurement likelihood function which statistically describes

the performance of the involved sensor. Thus, a tracking

algorithm is an iterative updating scheme for calculating con-

ditional probability density functions p(xk|Z
k) that represent

all available knowledge on the object states xk at some time tk,

which typically is chosen as the present time. The densities are

explicitly conditioned by the sensor data time series Zk. The

iterative scheme consists of two processing steps per update

cycle, referred to as prediction and filtering. The propagation

of the probability densities involved is given by basic update

equations (see [1] for instance).

Prediction. The prediction density p(xk|Z
k−1) is obtained

by combining the evolution model p(xk|xk−1) with the pre-

vious filtering density p(xk−1|Z
k−1):

p(xk−1|Z
k−1)

evolution model
−−−−−−−−→

constraints
p(xk|Z

k−1)

p(xk|Z
k−1) =

∫

dxk−1 p(xk|xk−1)
︸ ︷︷ ︸

evolution model

p(xk−1|Z
k−1)

︸ ︷︷ ︸

previous filtering

.

(1)

Filtering. The filtering density p(xk|Z
k) is obtained by

combining the sensor model p(zk|xk), also called the “like-

lihood function”, with the prediction density p(xk|Z
k−1)

according to:

p(xk|Z
k−1)

current sensor data
−−−−−−−−−−→

sensor model
p(xk|Z

k)

p(xk|Z
k) =

p(zk|xk) p(xk|Z
k−1)

∫
dxk p(zk|xk)

︸ ︷︷ ︸

sensor model

p(xk|Z
k−1)

︸ ︷︷ ︸

prediction

. (2)

According to this paradigm, an object track represents all

relevant knowledge on a time varying object state of interest,

including its history and measures that describe the quality

of this knowledge. As a technical term, ‘track’ is therefore

either a synonym for either the collection of densities p(xl|Z
l),

l = 1, . . . , k, . . ., or of suitably chosen parameters charac-

terizing them, such as estimates related to appropriate risk

functions and the corresponding estimation error covariance

matrices.

An analytical solution to a recursive computation of these

densities is given for instance by the Kalman filter in the

case of linear Gaussian models. For non–linear scenarios,

only approximate solutions are feasible. The first-order Taylor

approximation is called the extended Kalman filter (EKF)

which has low computation cost, since it is still an ana-

lytic solution. The performance of the linearization can be

improved by means of deterministic samples chosen at the

local neighborhood of the current estimate. This algorithm

is known as the unscented Kalman filter (UKF). The term

Particle filter (PF) subsumes all kinds of numerical solutions.

Here, knowledge about the state typically is represented by a

set of state samples, which implies that the density is given

by a Dirac–mixture. Since then the noise terms are simulated

by means of appropriately sampled random numbers, these

methods are also known as sequential Monte–Carlo (SMC)

methods.

In the literature, a variety of particle filter algorithms can

be found [2]. Still, the basic sampling importance resampling

(SIR) particle filter [3] is often used due to its robustness.

The main drawback of the SIR–PF is that it can suffer from
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impoverishment of the particle weights. For numerical reasons,

resampling has to be used in order to avoid the particles to

degenerate. More recently, new algorithms have been proposed

which are based on a log–homotopy transition between the

prior and the posterior. For instance, the Daum–Huang filters

(see [4] and the references within) model this transition phase

in terms of a physical flow which is determined by a “force”

induced by the measurement. This leads to a stochastic differ-

ential equation (SDE) which then can be solved numerically

by introducing a discretized pseudo time evolving from prior

to posterior. However, the computation time for the SDE is

too high for standard target tracking scenarios, and as a con-

sequence these algorithms are often outperformed by a SIR–PF

as shown in [5]. A different homotopy approach is provided

by the progressive filter which was presented by Hanebeck

in [6]. In the progressive filter, a incremental inclusion of the

likelihood function is achieved by a partition of the exponent

going from zero to one. This prevents particle impoverishment

by means of frequent resampling and an appropriately chosen

step size. To improve the computation speed, a fast resampling

method based on a Gaussian approximation has been proposed.

However, this Gaussian assumption might lead to additional

approximation errors. A Kullback–Leibler divergence based

approach to obtain the posterior particles is proposed in [7].

The resulting algorithm is similar to the Ensemble Kalman

filter (EnKF) based filter proposed in [8], however, the addi-

tional noise term in the Kalman based update is different. The

EnKF adds some zero–mean Gaussian distributed noise to the

measurement for each sample and applies Kalman filter update

equations for each particle. As a consequence, a consistent

filter results which is consitent and performs well in non–

linear scenarios. The EnKF also has been extended to Gaussian

mixtures in [9], [10].

In this paper a novel derivation of the EnKF by means

of a Gaussian product representation is presented. Then, the

Gaussian assumption for the prior is relaxed and the product

representation is applied to Gaussian mixtures. The Gaussian

mixture clustering is achieved by the Expectation Maximiza-

tion (EM) algorithm [11].

Structure: This paper is structured as follows. In Section

II, the statistical models are provided and a formulation of

the estimation problem is given. Then, in Section III, the

relationship between a Gaussian distributed particle distribu-

tion and a Gaussian product representation is introduced. This

relationship is used in Section IV to compute the posterior

particle states in the linear as well as in the non–linear case.

An evaluation of the algorithm is provided in Section VI and

the paper is concluded in the final section.

II. FORMULATION OF THE PROBLEM

Throughout this paper, the following models are assumed.

The state transition from time tk−1 to time tk given by the

equation1

xk = fk|k−1(xk−1) +wk (3)

where fk|k−1(xk−1) describes the deterministic evolution of

the parameters in time and wk is some Gaussian zero–

mean random noise with covariance matrix Qk|k−1. Whenever

fk|k−1 is a linear function in the state, we can write it as a

matrix and will use a capital letter notation:

xk = Fk|k−1xk−1 +wk. (4)

Note that this transition is fully described by the Markov

kernel

p(xk|xk−1) = N
(
xk; fk|k−1(xk−1), Qk|k−1

)
. (5)

The sensing process at time tk is modeled by the measure-

ment equation1

zk = hk(xk) + vk. (6)

The measurement function hk(xk) is the mapping from state

space into the measurement space. The Gaussian zero–mean

random noise vk describes the measurement error of the

sensor. Its covariance is given by the matrix Rk. As a conse-

quence, the measurement is described as random variable itself

whereby its distribution is given by the probability density

function

p(zk|xk) = N
(
zk; hk(xk), Rk

)
. (7)

Again, whenever the measurement function is linear in the

state, the matrix notation is used: hk(·) = Hk. Since in many

applications, either the transition model or the measurement

model can be chosen to be linear, for the remainder the former

is assumed to be given by the linear Gaussian density:

p(xk|xk−1) = N
(
xk; Fk|k−1xk−1, Qk|k−1

)
. (8)

The goal of a Bayesian filter is to compute recursively the

posterior density p(xk|Z
k), which provides an estimate of the

state by taking the mean, and where Zk is the time series of

sensor data:

Zk = {z1, . . . , zk}. (9)

The recursion is set up by an initial density at time t1 which

is based in the first observation z1. Then, for each instant of

time tk, the current result is obtained by a prediction–filtering

cycle applied to the posterior at time tk−1 as described in (1)

and (2).

III. ON THE GAUSSIAN PRODUCT PARTICLE DUALITY

In this section, the focus is on the transition of a particle

representation of a pdf at time tk−1 to time tk. Therefore, let

the representation of the density at time tk−1 be given by a

Dirac mixture of N components:

p(xk−1|Z
k−1) =

1

N

N∑

i=1

δ(xk−1 − xi
k−1|k−1). (10)

1The assumption of additive noise is not the most general model, however,
it is general enough for most practical applications.
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According to the laws of marginalization and due to the

Markov property, the prior at time tk which refers to the

density at the current time without consideration of the mea-

surement zk is given by the integral

p(xk|Z
k−1) =

∫

dxk−1 p(xk|xk−1)

·
1

N

N∑

i=1

δ(xk−1 − xi
k−1|k−1) (11)

which results in a Gaussian mixture by means of the model

introduced in (8):

p(xk|Z
k−1) =

1

N

N∑

i=1

N
(
xk; Fk|k−1x

i
k−1|k−1, Qk|k−1

)
.

(12)

An approximation of (12) by means of a particle set is obtained

by taking samples from the Gaussian mixture components and

it is well known that taking

p(xk|Z
k−1) =

1

N

N∑

i=1

δ(xk − xi
k|k−1) (13)

with

xi
k|k−1 = Fk|k−1x

i
k−1|k−1 +wi

k|k−1, (14)

wi
k|k−1 ∼ N

(
O, Qk|k−1

)
(15)

satisfies this approximation. However, these samples might

also be computed by using a first and second moment ap-

proximation of the sampled posterior density at time tk−1:

p(xk−1|Z
k−1) =

1

N

N∑

i=1

δ(xk−1 − xi
k−1|k−1) (16)

≈ N
(
xk−1; x

(N)
k−1|k−1, P

(N)
k−1|k−1

)
(17)

where the mean is given by

x
(N)
k−1|k−1 =

1

N

N∑

i=1

xi
k−1|k−1, (18)

and the covariance can be computed by

P
(N)
k−1|k−1

=
1

N − 1

N
∑

i=1
{

(x
(N)
k−1|k−1

− xi

k−1|k−1)(x
(N)
k−1|k−1

− xi

k−1|k−1)
⊤
}

. (19)

According to the product formula in the Appendix, the ap-

proximation is proportional to a product of Gaussians with

the following parameters

p(xk−1|Z
k−1) ∝

N∏

i=1

N
(
xk−1; x

i
k−1|k−1, NP

(N)
k−1|k−1

)

(20)

Taking N samples from the linear Gaussian Markov kernel

yields a similar representation of the transition density:

p(xk|xk−1) ≈
N∏

i=1
{
N
(
xk; Fk|k−1xk−1 +wi

k|k−1, NQk|k−1

)}
. (21)

As a consequence, the prior density is obtained by an appli-

cation of the product formula which now yields exactly the

parameters given in (14) and (15).

The benefit of this Gaussian product representation for the

sampling process is as follows. If it is required to compute an

approximation of the posterior which includes the processing

of a current measurement zk, the transition from time tk−1 to

time tk is obtained up to a normalization constant factor by

p(xk|Z
k) ∝

∫

dxk−1 p(xk|xk−1) p(zk|xk)

·
1

N

N∑

i=1

δ(xk−1 − xi
k−1|k−1). (22)

We can now take samples from both, the Markov transition

model as well as the measurement model where the latter is

given by

p(zk|xk) =
N∏

i=1

N
(
zk + ui

k; hk(xk), NRk

)
, (23)

and

ui
k ∼ N

(
O, Rk

)
. (24)

Using the sampled Gaussian products from (21) and (23)

yields an N–factorized version of the posterior of the Bayesian

posterior:

p(xk|Z
k) ∝

∫

dxk−1

N∏

i=1
{

N
(
xk; Fk|k−1xk−1 +wi

k|k−1, NQk|k−1

)

· N
(
zk + ui

k; hk(xk), NRk

)

· N
(
xk−1; x

i
k−1|k−1, NPN

k−1|k−1

)
}

, (25)

IV. ENSEMBLE KALMAN FILTER

Based on the considerations in the previous section, it is

useful as a “sanity check” to consider for a moment that a

linear scenario is given, that is that the likelihood has a linear

dependency on the state:

p(zk|xk) = N
(
zk; Hkxk, Rk

)
. (26)
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since the measurement noise vk is independent of the prior

estimation error. In the non–linear case, the measurement

function hk(·) can be replaced by a first order Taylor approx-

imation taken at the ith particle:

Hi
k = Dh

∣
∣
∣
∣
x=x

i

k|k−1

. (49)

This approximation yields the following gain matrix Wi
k|k−1:

Wi
k|k−1 = P

(N)
k|k−1H

i ⊤
k (Hi

kP
(N)
k|k−1H

i ⊤
k +Rk)

−1. (50)

Thus, this approach is similar to an EKF for each particle,

however, it should be noted that the Jacobian is taken at N

potentially distinct points which yields a lower approximation

error than a single linearization. However, this algorithm has

higher computation time compared to the first approach for

the very same reason.

V. GAUSSIAN MIXTURE ENSEMBLE KALMAN FILTER

From the considerations above, it becomes clear that the

EnKF is based on the assumption of a Gaussian distributed

prior density p(xk|Z
k−1). Whenever the likelihood of previ-

ous measurements has been non–linear, this assumption is not

given anymore. We therefore propose to approximate the prior

by a Gaussian mixture:

p(xk|Z
k−1) =

Mk∑

j=1

pj N
(
xk; x

(j)
k|k−1, P

(j)
k|k−1

)
, (51)

where Mk, {pj}j , {xj

k|k−1}j , and {Pj

k|k−1}j are parameters

which are to be estimated. This data clustering problem can be

solved by the Expectation Maximization (EM) algorithm [11].

The result is a soft data assignment of each prior particle to

all of the clusters:

x
(j)
k|k−1 =

N∑

i=1

wi,jxi
k|k−1, (52)

P
(j)
k|k−1 =

1

N − 1

N∑

i=1

wi,j

· (xi
k|k−1 − x

(j)
k|k−1)(x

i
k|k−1 − x

(j)
k|k−1)

⊤, (53)

pj =

N∑

i=1

wi,j (54)

where wi,j is the probability of particle i being assigned to

cluster j. This soft assignment can be used to obtain a linear

combination of all gain matrices for each of the clusters. Thus,

Fig. 2. In this figure, 1000 samples from the non–linear measurement
likelihood were taken. The large standard deviation of 13.11◦ in bearing
and low noise of 1m in range leads to a “banana shaped” likelihood when
transformed into Cartesian coordinates.

for the jth cluster one obtains

P(N,j)
xz =

1

N − 1

N∑

i=1

wi,j

· (xi
k−1|k−1 − x

(N)
k|k−1)(zk − hk(x

i
k|k−1))

⊤

(55)

P(N,j)
zz =

1

N − 1

N∑

i=1

wi,j

· (zk − hk(x
i
k|k−1))(zk − hk(x

i
k|k−1))

⊤ (56)

W
(N,i)
k|k−1 =

Mk∑

j=1

wi,jP(N,j)
xz (P(N,j)

zz )−1. (57)

This yields for the ith sample of the posterior distribution the

following update scheme:

xi
k|k = xi

k|k−1 +W
(N,i)
k|k−1(zk − hk(x

i
k|k−1) + ui

k). (58)

VI. NUMERICAL EVALUATION

In this section the EnKF and EM-EnKF filters are evaluated

and compared to other filtering algorithms. At first, a linear

scenario is considered to show that the result of the EnKF

is close to the optimal solution given by the Kalman filter

estimate. Then, a tracking scenario with a two–dimensional

range–bearing sensor is simulated. The problem is non–linear

and also non–Gaussian in Cartesian coordinates since a large

standard deviation in cross–range and a rather low standard

deviation in range lead to “banana shaped” densities. This

can be seen in Figure 2, where 1000 samples from the

measurement distribution for a fixed target position were taken.

Linear Scenario: In the linear scenario, the two dimen-

sional position of a target is measured with a single sensor

once per second. The target is located at the origin and

goes along a random trajectory according to the Discretized

White Noise Acceleration (DWNA) model with an initial
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Fig. 3. RMSE for the linear scenario: The RMSE for a single simulation run
shows that the estimate and the standard deviation (STD) of the estimate are
close to an optimal Kalman filter (KF).

Fig. 4. The convergence towards the probability density function of the
Kalman filter is shown. For an increasing number N of particles, the | · |2–
norm of the difference in the position estimates as well as the norm of the
difference in the estimation error covariances tend to zero.

velocity of 1m
s

and a noise density with q = 1.0m2

s3
. The

position measurements are disturbed by an additive, zero–

mean Gaussian noise with a variance of 10m2 in x− and

y− coordinates, respectively. The EnKF was set up with 100

particles only.

In Figure 3, the estimation error of the target position

for a single simulation run is shown. One can see that the

estimation quality is close to equal. This is particularly stressed

in Figure 4. For an increasing number of particles N = 10
(black), N = 100 (blue), N = 1000 (magenta), the distance

to the optimal posterior density given by the Kalman filter

result is compared at each time step of a single simulation

run. The lines with circles are the Euclidean distances in the

position estimates whereas the slashed lines are the distances

in the matrix 2–norm for the estimation error covariances.

Non–Linear Scenario: For the non–linear case a two

dimensional range–bearing sensor located at the origin was

simulated. Once per second the sensor is taking a measurement

of the target which starts at (1000, 1000)⊤ with a velocity

vector (−5, 5)⊤. The measurements are corrupted by an

additive Gaussian distributed zero–mean noise with standard

deviation σr = 1m in range and σθ = 13.11◦ in bearing,

respectively. This rather low noise in range and high noise in

cross–range is also known as the banana problem [14]. The

EM-EnKF is compared to the EnKF, standard SIR particle

filter (SIR–PF), and an extended Kalman Filter (EKF). Both,

the SIR–PF is using N = 1000 particles, whereas the EnKF

and the EM-EnKF are using 200 particles only. In Figure 6,

the results of the root mean squared error (RMSE) of 100
Monte–Carlo runs are shown. For all kind of particle filters, it

is crucial to compare the processing time, too, as increasing

the number of particles will lead to lower RMSEs but also

to a higher processing time. The computational load of the

compared algorithms is shown in Figure 5.

It can be seen that the EKF is extremely fast due to its

analytic solution, which is well–known. However, the EKF

also has the worst estimation error of all algorithms. The

average performace of the EnKF is comparable to the SIR–

PF while there is a significant reduction in the processing

time compared to the SIR–PF. The estimation performance

can be improved by using the EM induced Gaussian mixture

approximation as proposed in this paper. This also leads to

higher computation time, however, the resulting algorithm

still is faster than a SIR–PF. This is due to the fact that no

resampling is required for the ensemble filters.

VII. CONCLUSION

The Ensemble Kalman Filter (EnKF) is a Kalman based

particle filter which was introduced to solve large scale data

assimilation problems where the state space is of very large

dimensionality. It also achieves good results when applied

Fig. 5. Box–plot of the processing time for a single simulation run of 100
time steps for each algorithm.
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Fig. 6. RMSE of the EKF, SIR–PF, EnKF, and EM–EnKF where a sampled
gain was used for the Ensemble filters.

to a target tracking problem, however, due to its Gaussian

assumption for the prior density, the performance can be

improved by introducing Gaussian mixtures. In this paper, a

new derivation of the EnKF is presented which is based on

a duality between Gaussian products and particle densities.

A relaxation of the Gaussian assumption is then achieved by

introducing a particle clustering into Gaussian Mixtures by

means of the Expectation Maximization (EM) algorithm and

to apply the EnKF on the clusters. The soft assignment of the

EM allows all Gaussian components to contribute to each of

the particles. The higher computation time for this algorithm

is compensated by the fact that resampling is avoided as

impoverishment of weights does not occur. In the evaluation,

it was shown that the EM–EnKF particle filter has lower

computation time and lower estimation error in comparison

to a standard resampling particle filter.
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APPENDIX

Product Formula for Gaussians in Identical Variables

Given two Gaussians in the same variable x, the following

equation holds:

N
(
x; a, A

)
N
(
x; b, B

)
= N

(
a; b, A+B

)

· N
(
x; y, P

)
, (59)

where the abbreviations y and P are given by

P =
(
A−1 +B−1

)−1
and y = P

(
A−1a+B−1b

)
.

(60)

Product Formula for Linearly Conditional Gaussians

For matrices of suitable dimensions the following formula
for products of Gaussians holds:

N
(

z; Hx, R
)

N
(

x; y, P
)

=

N
(

z; Hy, S
)

{

N
(

x; y +Wν, P−WSW⊤
)

N
(

x; Q(P−1y +H⊤R−1z), Q
) (61)

with the following abbreviations:

ν = z−Hy (62)

S = HPH⊤ +R (63)

W = PH⊤S−1 (64)

Q−1 = P−1 +H⊤R−1H. (65)

Parameter Convergence in the Linear Gaussian Case

In the section, the convergence of the posterior particle

representation to the Kalman filter mean and covariance is

shown. Since the prediction step is equivalent to the standard

prediction for particle filters, we restrict ourselves to the update

step. According to the update formula of all particles in (34),

the mean of the posterior distribution is given by

x
(N)
k|k =

1

N

N∑

i=1

xi
k|k (66)

=
1

N

N∑

i=1

xi
k|k−1 +Wk|k−1(zk −Hkx

i
k|k−1 + ui

k)

(67)

where Wk|k−1 is the Kalman gain and the drawn noise ui
k is

zero–mean. According to the assumption of converging prior

parameters, one obtains

lim
N→∞

x
(N)
k|k = xk|k−1 +Wk|k−1(zk −Hkxk|k−1) (68)

= xk|k. (69)

Similarly, the covariance matches the true covariance of the

optimal estimate given that enough particles are used. This can

be seen by using the update equation, again. One obtains for

the covariance

P
(N)
k|k =

1

N − 1

N∑

i=1

(xi
k|k − x

(N)
k|k )

2 (70)

where the abbreviation (·)2 = (·)(·)⊤ is used. Since it is

assumed that the prior samples are distributed with covariance

Pk|k−1 the covariance of the posterior distribution equals by

taking the limit N → ∞:

P
(N)
k|k = Pk|k−1 − 2Pk|k−1H

⊤
k S

−1
k HkPk|k−1

+Pk|k−1H
⊤
k S

−1
k (HkPk|k−1H

⊤
k +Rk)S

−1
k HkPk|k−1

(71)

= Pk|k−1 −Wk|k−1SkW
⊤
k|k−1 (72)

= Pk|k. (73)

This concludes the proof.
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