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Abstract—This paper presents a multiple-model hypothesis
testing (MMHT) approach using a representative model (RM) for
detecting unknown events that may have multiple distributions. It
addresses various difficulties of MMHT for composite, multivari-
ate, nondisjoint, and mis-specified hypothesis sets with correlated
observations, and decides which region of the mode space covered
by the model set is better. The model-set likelihood (MSL)
based MMHT method (MMHT-MSL) is promising because of
its efficiency and theoretical validity. The MSL is dominated
by the likelihood of the closest-to-truth model in the model
set as the sample size increases. However, the multiple-model
approach usually intends to deal with all possible modes in
the convex hull of the model set rather than only the models
in the model set. Consequently, when mis-specification exists,
this dominating model is not necessarily representative; that is,
it is inappropriate for the model set rather than the region
of the mode space covered by the model set. Our approach
utilizes model-set adaptation (e.g., expected-mode augmentation
and best model augmentation) to improve coverage ability of
the model set, and then searches for the model which is closest
to the truth under some criterion in the model-set-covered
region as the RM. The RM based MMHT method (MMHT-
RM) can be expected to provide a more efficient detection in
the sense of minimizing the expected sample size subject to
the error probability constraints. Moreover, in contrast to the
MMHT-MSL, MMHT-RM is highly computationally efficient and
easy to implement. Performance of MMHT-RM is evaluated for
model-set selection problems in several scenarios. Simulation
results demonstrate the effectiveness of the proposed MMHT-
RM compared with MMHT-MSL.

I. INTRODUCTION

In statistics, hypothesis testing plays a fundamental role and

has been studied extensively. Traditional hypothesis testing

aims at determining one or more hypotheses possibly with

uncertain parameters, which is thought to specify a distribution

of a known structure. We can consider the traditional hypoth-

esis testing as a single model hypothesis testing because it

handles a single distribution case that may involve parametric

uncertainties. In some cases, however, the distribution (includ-

ing structure and parameters) is uncertain, which is a complex
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problem. In practice, the distribution may be partially known

rather than completely unknown, and it may have multiple

possible forms. This is referred to as the multi-distribution

detection (MDD) problem, where existing parametric or non-

parametric tests (see, e.g., [1], [2]) would not work well.

Take the maneuver detection problem as an example. The

measurements of “nonmaneuver” (straight and level motion

at a constant velocity) follow a corresponding distribution,

and “maneuver” essentially includes all other motion patterns.

Some patterns may be known. For instance, different maneuver

models correspond to different patterns whose measurements

may have different distributions (including structures and pa-

rameters). However, the multiple-model (MM) approach (e.g.,

autonomous MM (AMM), cooperating MM, and variable-

structure MM) [3] can utilize the partially known distributions

(e.g., possible motion patterns) available in some cases. Ac-

cordingly, multiple-model hypothesis testing (MMHT) tech-

niques (see, e.g., [4], [5], [6]) have been developed to deal

with MDD problems. Through the MM approach, MMHT

techniques formulate the MDD problem as one of special

binary hypothesis testing. Contrast to the traditional hypothesis

which usually specifies a distribution of a known structure with

one or more unknown parameters, the hypothesis in MMHT

may consist of different distributions, and we can consider it

as a special composite hypothesis.

Now that the MDD problem is formulated as one of binary

hypothesis testing by MMHT, sequential testing is preferred to

the non-sequential testing primarily for the following reasons:

the measurements are obtained sequentially; sequential tests

are usually substantially more efficient in terms of the use of

information in the measurements than non-sequential tests, and

thus lead to a quicker decision at the same level of decision

errors (see, e.g., [7], [8]). Wald’s Sequential Probability Ratio

Test (SPRT) [9] or 2-SPRT [10] as an (asymptotically) optimal

decision rule comes to mind naturally. However, SPRT or 2-

SPRT is only for simple hypothesis testing, but MMHT in-

volves composite hypotheses. Fortunately, the ideas of MMHT

using SPRT (MMSPRT) [4] and 2-SPRT (2-MMSPRT) [11]

have been proposed, in which the model-set likelihood (MSL)

[4] can convert each composite hypothesis to a simple one.

So, MMSPRT and 2-MMSPRT belong to the class of MSL
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based MMHT methods (MMHT-MSL). MMSPRT has a high

efficiency of detection when the truth is included in the

hypothesis sets, and meanwhile 2-MMSPRT can expect the

asymptotic optimality in the sense of minimizing the max-

imum expected sample size subject to the error probability

constraints when the mis-specified problem exists. The ideas

of MMSPRT and 2-MMSPRT seem promising because of

their efficiency and theoretical validity. These superiorities

stem from the merits of the MSL: (a) theoretically, the MSL

considers the model set as a whole, and this argument fits

the description of the MDD problem well; (b) the MSL can

convert each composite hypothesis in MMHT to a simple one,

and then the optimal (SPRT) or asymptotically optimal (2-

SPRT) test can be applied.

The likelihoods of the model sets from MM algorithms are

naturally of major interest [4] in the MMHT-MSL methods.

The MSL as the expected value of the model likelihood

calculated through MM algorithms can represent the whole

model set to some extent. However, it would be dominated

by the closest-to-truth model (e.g., the one with the smallest

Kullback-Leibler “distance” [12]) in the model set rather than

the region of the mode space covered by the model set (i.e.,

the set of model “candidates”) as the number of measurements

increases, because the MM algorithms in existing MMHT-

MSL methods are based on the basic assumption that one (and

only one) model in the model set is true at each time instant.

In practice, the set of models used in the MM approach is

usually used to cover the region of the mode space that is not

deemed unlikely to be in effect. In other words, the model

set is a set that represents this region of the mode space. We

refer to this region as the “model-set-covered region”. It is not

unlikely for any point (i.e., mode or model) in this region to

be in effect. In mathematics, we can formulate this region as

the convex hull of the model set. Moreover, we consider that

“mis-specification” exists when the assumption does not match

the truth—in other words, the true mode is not in the model

set. Consequently, the above behavior of the MM algorithm is

restrictive once it privileges only one model in the model set,

which is not the best one in the model-set-covered region, so

the convergent model from the MSL may be unrepresentative

when the model set is mis-specified. For example in Figure 1,

with an increase in the sample size, the model-set likelihoods

of M1 and M2 would be dominated by model likelihoods of

m1 and m2, respectively. As pointed out in [5], the MMHT

formulation is superior to the traditional M-ary hypothesis

testing [13] formulation since the problem is detection rather

than classification or identification. However, as shown above,

the results of the MMHT-MSL methods in Figure 1 might be

the same as the traditional M-ary hypothesis testing because

of the inappropriate dominating problem as the sample size

increases. On the other hand, mi (i = 1, 2) as the best model

in the original model set Mi rather than Si (the region covered

by Mi) is barely adequate to represent Si as a whole. In other

words, the MMHT approach is to decide which model-set-

covered region (rather than the original model set) is better.

From this point of view, the MMHT-MSL methods may be

inappropriate when mis-specification exists.

Since the convergent model of a model set in an MM

algorithm is usually unrepresentative when there is a mis-

specification, we should find a model that can represent the

model-set-covered region and is as close to the true mode as

possible at each time instant. This representative model (RM)

is not necessarily in the original model set, but it should be

related with the original model set under a certain criterion.

This model relates to the data and original model set, so it

maybe adaptive for a better accuracy to approximate the true

mode as the sample size increases. This idea is also illustrated

in Figure 1. As observed, R1 and R2 as the closest-to-truth

model in the model-set-covered region under some criterion

can represent well the model set as a whole for MMHT.

The model set is designed to cover the truth; however, the

convergence to an unrepresentative model implies that the

truth is not included in the original model set. To improve the

coverage ability of the model set, two model-set adaptation

methods (expected-mode augmentation [14] and best model

augmentation [15]) are applied in this paper. A model in

the model-set-covered region that may be closest to the truth

under some criterion is augmented to the original model set,

and then an MM algorithm is run, and the model having the

maximum probability is selected as the RM for the model-

set-covered region. As the name implies, MMHT-RM aims to

find an RM to represent the model-set-covered region under

some criterion, such as R1 and R2 for S1 and S2, respectively,

in Figure 1, and then the composite hypothesis in MMHT is

converted to a simple one. Finally, an (asymptotically) optimal

test can be applied.

Compared with the existing approaches for MDD problems,

this paper makes the following main contributions: (a) A new

MMHT method using a representative model is proposed to

handle the MDD problem in dynamic systems. All existing

MMHT methods (see, e.g., [4], [5], [6], [11]) are based on

the model-set likelihood, and none of them consider the in-

appropriate dominating problem of the MSL described before

when mis-specification exists. So, our method is more general

and suitable for MDD problems. The RM as the closet-to-truth

model in the model-set-covered region under some criterion

can help MMHT to make a quicker decision than the MSL.

Specifically, 2-MMSPRT [11] needs some approximations,

especially for calculating the model-set likelihood of dynamic
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Figure 1: Some examples of MDD problems
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systems and the nominal middle model between two model

sets; however, this is usually not needed in the RM approach.

(b) The proposed method provides a basic idea to derive

an RM to replace the whole model set in order to make a

quickest decision for MDD problems. Two versions of the RM

are presented for MMHT under different criteria describing

different relationships between the model set and the RM.

Since the existing approaches do not consider the inappropriate

dominating problem of the MSL in the presence of mis-

specification, the RM approach provides a new solution to

this important problem.

This paper is organized as follows. The MMHT techniques

and the problem formulation are presented in Section II. Sec-

tion III presents the RM approach with two specific model-set

adaptation methods. Section IV provides simulation results of

some illustrative examples for the MMHT-RM compared with

the MMHT-MSL. The conclusions are presented in Section V.

II. MULTIPLE-MODEL HYPOTHESIS TESTING AND

PROBLEM FORMULATION

As an emerging approach, MMHT has received much

attention in recent years due to its unique power and success

in handling MDD problems with structural (and parametric)

uncertainties, in converting each composite hypothesis testing

to a simple one, and in applying to the fields of maneuver

detection, fault detection and isolation, signal processing, etc.

(see, e.g., [4], [5], [6], [11]). To our knowledge, however,

they are all based on model-set likelihood calculated by MM

algorithms without considering the inappropriate dominating

problem. This section briefly describes MMHT techniques,

and then presents problems to be studied in this paper.

A. MMHT Formulation of MDD Problems

In an MDD problem, such as detection of a signal [16],

fault [17], and maneuver [18] [19], what we want to decide

is whether there is a thing (e.g., a signal) or not, rather than

what kind of thing is present. The distribution of the thing to be

detected might be partially known, and it usually depends on

some parameters related to the event class and special behavior

in typical situations. The MMHT approach formulates this

uncertainty as a special binary hypothesis test with two model

families in the MM framework [11]:

H0 :











H01 : zk ∼ f
(

zk|m1
0, z

k−1
)

...

H0n : zk ∼ f
(

zk|mn
0 , z

k−1
)

(1)

H1 :











H11 : zk ∼ f
(

zk|m1
1, z

k−1
)

...

H1r : zk ∼ f
(

zk|mr
1, z

k−1
)

(2)

where zk , (z1, . . . , zk) is the measurements up to time k,

M0 =
{

m1
0, . . . ,m

n
0

}

and M1 =
{

m1
1, . . . ,m

r
1

}

are sets of

possible models without and with the thing to be detected,

respectively, and f
(

zk|m, zk−1
)

is the likelihood function of

model m conditioned on zk−1. Note that the true model is

not necessarily in the hypothesis sets, so this is a typical mis-

specified problem.

Apparently, we should solve this hypothesis testing problem

in two phases: First, convert this composite hypothesis in (1)–

(2) to a simple one (e.g., using model-set likelihoods). Second,

choose a good test (e.g., MMSPRT [4] and 2-MMSPRT [11])

according to the prior knowledge (e.g., mis-specification is

possible or not) to make a quickest decision. This paper

focuses on the first task.

B. Existing Methods

In the MMHT formulation of MDD problems, the MM

approach gets around the distribution/model uncertainty and

formulates this uncertainty as part of a composite hypothesis.

In order to make a good decision, the MMHT-MSL methods

utilize the model-set likelihood to convert the above composite

hypothesis to a simple one. Therefore, the marginal and joint

likelihoods of a model set involved are naturally of major

interest in the MMHT-MSL methods.

The marginal likelihood of a model set Mj (j = 0, 1) is

defined as [4]

L
Mj

k , f
[

z̃k|s ∈ Mj , z
k−1

]

=
∑

mi∈Mj

f
[

z̃k|s = mi, z
k−1

]

· P
{

s = mi|s ∈ Mj , z
k−1

}

, (3)

where z̃k is the measurement residual, s is the true mode, mi

is the ith model, and s = mi denotes the event that model

mi matches the system mode s. The predicted probability

P
{

s = mi|s ∈ Mj , z
k−1

}

for each model mi in the set Mj

is available from an MM algorithm. The joint likelihood of

the model set Mj is defined as [4]

Lk
Mj

, f
[

z̃k|s ∈ Mj

]

. (4)

A subscript k and a superscript k are used for quantities at

time k and through time k, respectively. Finally, we need the

joint likelihood ratio

Λk ,
Lk
M1

Lk
M0

=
∏

k0≤κ≤k

LM1
κ

LM0
κ

(5)

in MMSPRT (see, e.g., [4], [5], [6]) and

Λ̂k
j ,

Lk
mM

κ

Lk
Mj

=
∏

k0≤κ≤k

L
mM

κ
κ

L
Mj

κ

, j = 0, 1 (6)

in 2-MMSPRT [11] if the residual sequence 〈z̃k〉 is white,

where k0 is the test start time, and mM
κ is the nominal middle

model between model sets M0 and M1 at time k. mM
κ ’s

likelihood function L
mM

k

k satisfies the following equation:

logα−1
0

KL(L
mM

k

k , LM0

k )
=

logα−1
1

KL(L
mM

k

k , LM1

k )
(7)

where α0 = α and α1 = β are the error probability constraints

[20]

P {“H1”|H0} ≤ α and P {“H0”|H1} ≤ β, (8)
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and KL(f1(x), f0(x)) =
∫

[log f1(x)
f0(x)

]f1(x)dx is the Kullback-

Leibler information [12].

The use of model-set likelihoods satisfies the SPRT’s and

2-SPRT’s simple hypothesis and (approximate) independence

requirements (through the forced identical independent distri-

bution method [11]). For the MM detection problem (1)–(2)

(with consideration of model mis-specification) subject to the

error probability constraints (8), the following MMHT-MSL

method is of (asymptotically) optimal efficiency (the proof

can be found in [4] and [11]):

1) choose M1 if Λk ≥ A in MMSPRT or Λ̂k
0 ≥ A0 in

2-MMSPRT, where A = 1−β
α

and A0 = α−1 (acceptance

region);

2) choose M0 if Λk ≤ B in MMSPRT or Λ̂k
1 ≥ A1 in 2-

MMSPRT, where B = β
1−α

and A1 = β−1 (rejection region);

3) otherwise, continue to test using more observations

(continuation region).

C. Problem Formulation

This section presents the following challenges (see, e.g.,

[4], [11]) of the MMHT formulation for the MDD problem.

(a) H0 and H1 are not necessarily disjoint: M0 ∩ M1 6= ∅.

The traditional hypothesis testing does not consider such a

nondisjoint case. (b) Both H0 and H1 are composite, which

can be seen from (1) and (2). Few optimal tests are available

for the composite case. (c) Sequential observations are usually

non-i.i.d. The sequence of likelihood ratios is not identically

distributed [21]. (d) The parameters that characterize each

model are usually multidimensional, especially in the dynamic

systems. Most tests are for the one-dimensional case, and the

efficiency of the multidimensional hypothesis testing needs

to be verified. (e) The quickest decision and desired error

probability constraints should be guaranteed no matter whether

the candidate models are specified or not.

Fortunately, the MSL based methods (see, e.g., [4], [11])

gave some solutions to overcome these difficulties and can

be used as a starting point. The 2-MMSPRT approach [11]

considered the mis-specified problem; however, it does not

address the inappropriate dominating problem of the model-set

likelihood when mis-specification exists. This paper presents

a more general approach based on a representative model for

MMHT problems in meeting these challenges. Our final goals

in this paper are: (a) Find an RM to represent the model-set-

covered region at every time instant in order to convert each

composite hypothesis to a simple one. (b) Make a decision as

quickly as possible subject to the error probability constraints.

(c) Decide on the hypothesis that is closest to the truth. It

is appealing that the more likely hypothesis set has a higher

probability to be accepted.

III. THE RM APPROACH

Consider a discrete time linear system. The ith model of

which in the MM method is:

xk+1=F
(i)
k xk +G

(i)
k w

(i)
k (9)

zk=H
(i)
k xk + v

(i)
k (10)

where E(w
(i)
k ) = w̄

(i)
k , cov(w

(i)
k ) = Q

(i)
k , E(v

(i)
k ) = v̄

(i)
k , and

cov(v
(i)
k ) = R

(i)
k . Superscript (i) denotes quantities pertinent

to model m(i) in the model-set M , and m
(i)
k denotes the event

that model m(i) matches the true mode s at time k:

m
(i)
k , {sk = m(i)}.

For simplicity and to capture the model close to the true

mode as soon as possible, we do not consider mode jumps

in this paper, and so the AMM algorithm is considered. The

AMM algorithm (see, e.g., [3], [22]) is one of the most widely

used MM methods, which suits the case of a time-invariant

true mode, because of its algorithmic simplicity, computational

efficiency, and good performance. One cycle of the AMM

algorithm is given in Table I.

Table I ONE CYCLE OF AMM ALGORITHM [3]

1. Model-conditioned filtering (for i = 1, 2, . . . , l):

Predicted state: x̂
(i)
k|k−1 = F

(i)
k−1x̂

(i)
k−1|k−1 +G

(i)
k−1w̄

(i)
k−1

Predicted covariance: P
(i)
k|k−1 = F

(i)
k−1P

(i)
k−1|k−1

(

F
(i)
k−1

)′

+G
(i)
k−1Q

(i)
k−1

(

G
(i)
k−1

)′

Measurement residual: z̃
(i)
k = zk −H

(i)
k x̂

(i)
k|k−1 − v̄

(i)
k

Residual covariance: S
(i)
k = H

(i)
k P

(i)
k|k−1

(

H
(i)
k

)′

+R
(i)
k

Filter gain: K
(i)
k = P

(i)
k|k−1

(

H
(i)
k

)′ (

S
(i)
k

)−1

Updated state: x̂
(i)
k|k = x̂

(i)
k|k−1 +K

(i)
k z̃

(i)
k

Updated covariance: P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k S

(i)
k

(

K
(i)
k

)′

2. Mode probability update (for i = 1, 2, . . . , l):

Model likelihood: L
(i)
k , p

[

z̃
(i)
k |mk

(i), z
k−1

]

= N
(

z̃
(i)
k ; 0, S

(i)
k

)

Mode probability: µ
(i)
k =

µ
(i)
k−1L

(i)
k

∑
j
µ
(j)
k−1

L
(j)
k

3. Estimate fusion:

Overall estimate: x̂k|k =
∑

i x̂
(i)
k|kµ

(i)
k

Overall covariance: Pk|k =
∑

i[P
(i)
k|k +

(

x̂k|k − x̂
(i)
k|k

)(

x̂k|k − x̂
(i)
k|k

)′

]µ
(i)
k

For the AMM algorithm, [23] pointed out that the probabil-

ity of the model in M with the smallest “distance” (which was

given a Kullback-type information theoretic interpretation in

[23]) to the truth tends to unity almost surely as time increases

if this smallest “distance” is unique. Consequently, the model-

set likelihood would converge to the likelihood of the (unique)

model closest to the truth in the original model set (e.g., m1

and m2 in Figure 1).

To present a more general formulation and achieve a quick-

est detection, this section will address the challenges stated

above using the representative model approach.

Before considering how to find a single model to represent

a model-set-covered region, we should answer a question

first: what kind of model is representative? In reality, the one

has the maximum probability value is probably most widely

used for representing a model set. However, to overcome the

inappropriate dominating problem of the MSL, the model-

set adaptation (MSA) should be used. The expected-mode

augmentation (EMA) [14] and the best model augmentation

(BMA) [15] are popular for MSA. The augmenting model at

each time instant is closest to the truth under some criterion.

For example, EMA augments the basic model set using the

minimum mean-square error estimation with fixed models,

while BMA uses the best model that minimizes the KL

criterion for the augmentation [15]. So, this section will focus
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on these two directions to find the RM from the model-set-

covered region.

A. RM Based on EMA (RM-EMA)

An example of the good representative model is the ex-

pected value of the true mode since it is statistically closest

to the true mode. This expected mode can be approximated

by a sum of mode estimates weighted by their probabilities,

readily available from the MM algorithm [14]. The theoretical

foundation for the EMA approach has been provided in [14],

and this paper will focus on its application to the derivation

of the RM of a model-set-covered region.

Given a model set M , let M+ = M ∪ m̄ denote the model

set M augmented by its expected mode m̄. So, this expected

mode is based on the model set Mi in Hi(i = 0, 1) conditioned

on data through time k:

m̄Mi

k|k : = E[s|s ∈ Mi, z
k]

=
∑

mj∈Mi

mjµ
(j)
k|k (11)

or through time k − 1:

m̄Mi

k|k−1 : = E[s|s ∈ Mi, z
k−1]

=
∑

mj∈Mi

mjµ
(j)
k|k−1, (12)

where zk , (z1, . . . , zk) is the sequence of measurements,

µ
(j)
k|k−1 = P{s = mj |s ∈ Mi, z

k−1} and µ
(j)
k|k = P{s =

mj |s ∈ Mi, z
k} denote the predicted and updated probabilities

of model j being the correct one, and mj is the parameter

value that characterizes model j (j = 1, . . . , l). The RM-EMA

algorithm is given in Table II.

Table II RM-EMA ALGORITHM

1. Initialization:

- For i = 1, 2, . . . , l, m(i) ∈ M and

[x̂
(i)
0 , P

(i)
0 , µ

(i)
0 ] = [x0, P0, µ0] are given

- For i = l + 1, m(i) = m̄M
0 and µ

(i)
0 = 1

2. Model probability reinitialization:

- For i = 1, 2, . . . , l + 1, µ
(i)
0 =

µ
(i)
0

l+1

3. For k = 1, 2, . . ., M+ = M ∪m(l+1),

and i = 1, 2, . . . , l + 1
- Run AMM algorithm [3]

S
(i)
k = H

(i)
k P

(i)
k|k−1

(

H
(i)
k

)′

+R
(i)
k

L
(i)
k = N

(

z̃
(i)
k ; 0, S

(i)
k

)

µ
(i)
k =

µ
(i)
k−1L

(i)
k

∑
j
µ
(j)
k−1L

(j)
k

- m̄M+

k =
∑

i µ
(i)
k m

(i)
k

- Augmenting model: m
(l+1)
k+1 = m̄M+

k

In general, the expected-mode m̄ is time varying and a

generic cycle is M+
k−1 → m̄k|k or m̄k|k−1, and the evolu-

tion of the augmented model set is M+
k = M ∪ m̄k|k or

M ∪m̄k|k−1. Finally, the probability of this expected-mode m̄
in M+ tends to unity almost surely as time increases in the

AMM algorithm. m̄ as the model statistically closest to the

true mode derived from the RM-EMA approach will give us

the model in the model-set-covered region that is “closest” to

the truth.

As pointed out in [14], this approach is quite general—it is

valid for all problems where the above m̄ is meaningful—and

is simple to implement because m̄ is readily available from

the AMM estimator with little extra computation. However,

the EMA approach can only handle the set of models which

differ only in the parameters with the same physical meaning

(additivity) [15]. The RM derived from the candidate models

with different structures or parameters will be presented in the

next section.

B. RM Based on BMA (RM-BMA)

In the RM-EMA approach, the RM is derived as the

expected value of the true mode, which is generated adaptively

in real time as a probabilistically weighted sum of mode

estimates over the augmented model set. This section will

focus on the RM as the model which is closest to the truth

under some criterion in the model-set-covered region. First,

we should provide a criterion to serve as a general measure

of the closeness between the true mode and the candidate

models (with different structures or parameters) in the model-

set-covered region. This section follows the idea of the BMA

approach in [15].

Given a model set M in which the models have different

structures or parameters. We consider that the RM of the M -

covered region S can be selected as the one with the minimum

Kullback-Leiber (KL) “distance” [12], [24], [15]:

m̂ = argmin
m(i)∈S

D(s,m(i)), (13)

where

D(s,m(i)) , D(p(zk|s), p(zk|m(i)))

=

∫

[ln
p(zk|s)

p(zk|m(i))
]p(zk|s)dzk, (14)

and p(zk|s) and p(zk|m(i)) are the probability density func-

tions (pdfs) of zk conditioned on s and m(i), respectively.

D(s,m(i)) quantifies the closeness of model m(i) to the true

mode s [15]. The realtime information provided by M , S, and

zk−1 should be considered, which leads to

D(s,m(i))

,D(p(zk|M,S, s, zk−1), p(zk|M,S,m(i), zk−1))

=

∫

[ln
p(zk|s, zk−1)

p(zk|m(i), zk−1)
]p(zk|s, zk−1)dzk. (15)

For the modes (models) with Gaussian assumptions as in (9)

and (10), zk can be assumed a Gaussian vector with the

distribution N (zk; z̄k,Σ). Assume

p(zk|s, zk−1) = N (zk; z̄
s
k,Σ

s
k)

p(zk|m(i), zk−1) = N (zk; z̄
i
k,Σ

i
k),

(16)
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where

z̄sk = E[zk|s, zk−1]

Σs
k = E[(zk − z̄sk)(·)′|s, zk−1]

z̄ik = E[zk|m(i)
k , zk−1]

≈ E[zk|m(i)
k , x̂k−1, Pk−1]

Σi
k = E[(zk − z̄ik)(·)′|m(i)

k , zk−1]

≈ E[(zk − z̄ik)(·)′|m(i)
k , x̂k−1, Pk−1],

(17)

and (·) denotes the same term right before it. Then (15)

becomes [15]

D(s,m(i))

=
1

2
{ln

∣

∣Σi
k

∣

∣

|Σs
k|

− n+ tr[(Σi
k)

−1(Σs
k + (z̄sk − z̄ik)(·)′)]}, (18)

where n is the dimension of zk, tr[·] means the trace of [·].
Actually, for a practical process, the true mode s is not known

to us. As pointed out in [15], without given s, we can assume

p(zk|s, zk−1) ≈ p̂[zk] = p[zk|M+
k|k−1, z

k−1], (19)

where M+
k|k−1 = M ∪ m̂k−1. Under this assumption, the KL

“distance” in (18) can be calculated by letting

z̄sk ≈ E[zk|M+
k|k−1, z

k−1]

=
∑

m(j)∈M
+
k|k−1

ẑj
k|k−1µ

(j)
k|k−1

Σs
k ≈ E[(zk − z̄sk)(·)′|M+

k|k−1, z
k−1]

=
∑

m(j)∈M
+
k|k−1

[P j

k|k−1 + (ẑj
k|k−1 − z̄sk)(·)′]µ(j)

k|k−1,

(20)

where

ẑj
k|k−1 = E[zk|m(j)

k , zk−1]

P j

k|k−1 = E[(zk − ẑj
k|k−1)(·)′|m

(j)
k , zk−1]

µ
(j)
k|k−1 , P{m(j)

k |M+
k|k−1, z

k−1}.
(21)

The RM-BMA algorithm is given in Table III.

Table III RM-BMA ALGORITHM

1. Initialization:

- For i = 1, 2, . . . , l, m(i) ∈ M ,

[x̂
(i)
0 , P

(i)
0 , µ

(i)
0 ] = [x0, P0, µ0],

and S are given

- For i = l + 1, m(i) = m̂M
0 and µ

(i)
0 = 1

2. Model probability reinitialization:

- For i = 1, 2, . . . , l + 1, µ
(i)
0 =

µ
(i)
0

l+1

3. For k = 1, 2, . . ., M+ = M ∪m(l+1),

and i = 1, 2, . . . , l + 1
- Run AMM algorithm [3]

ẑ
(i)
k|k−1 = H

(i)
k x̂

(i)
k|k−1 + v̄

(i)
k

S
(i)
k = H

(i)
k P

(i)
k|k−1

(

H
(i)
k

)′

+R
(i)
k

L
(i)
k = N

(

z̃
(i)
k ; 0, S

(i)
k

)

µ
(i)
k =

µ
(i)
k−1L

(i)
k

∑
j µ

(j)
k−1L

(j)
k

- z̄sk = ẑk|k−1 =
∑

i ẑ
(i)
k|k−1µ

(i)
k−1

Σs
k = Sk

=
∑

i[S
(i)
k + (ẑk|k−1 − ẑ

(i)
k|k−1)(·)′]µ

(i)
k−1

- m̂M+

k = argmin
m(l+1)∈S

D(s,m(l+1))

- Augmenting model: m
(l+1)
k+1 = m̂M+

k

Remark 1. Assumption (19) is the key in the RM-BMA

algorithm, because it provides an approximation to the truth

through the model set M and the augmenting model from S
with the realtime information.

The probability of the augmenting model calculated through

the above EMA or BMA based algorithm will tend to unity

almost surely as time increases in the AMM algorithm [14]

[15], so the augmenting model should be selected as the RM at

this time. After the RM-EMA or RM-BMA, each composite

hypothesis in (1)–(2) is converted to a simple one (an MM

system is convert to an adaptive single model), and then the

difficulties (a) and (b) in Section II.C are addressed naturally.

For the last difficulty in Section II.C related to the decision

rule, we can borrow the idea of MMSPRT [4] or 2-MMSPRT

[11], and it is omitted in this paper due to space limitation.

IV. ILLUSTRATIVE EXAMPLES

The model-set selection problem as a primary difficulty

in MM algorithms has received much attention in recent

years. A better model set will lead to better performance of

an MM algorithm for a given problem. On the other hand,

the MMHT problems can also be formulated as particular

model-set selection problems from another standpoint. For

example, consider CA (nearly constant acceleration) models

with different inputs and CT (nearly constant turn) models

with different turn rates (see, e.g., [14], [15]). A system has

the following equations:

xk+1=F j
kxk +Gj

k

(

ajk + wj
k

)

(22)

zk=Hj
kxk + vjk, k = 0, 1, 2 . . . (23)

where x = [x, ẋ, y, ẏ]′ denotes the target state, z = [zx, zy]
′

the measurement, vjk ∼ N (0, R) the measurement noise, and

Hj
k =

[

1 0 0 0
0 0 1 0

]

. For the CA models, ajk = [ax, ay]
′

(

m/s2
)

are the inputs, wj
k ∼ N (0, Q) with Q = 0.0032I

(

m2/s4
)

the process noise, F j
k = diag[F2, F2] with F2 =

[

1 T
0 1

]

, and Gj
k = diag[G2, G2] with G2 =

[

T 2/2
T

]

.

For the CT models, ajk = 0, Gj
k = I , wj

k ∼ N (0, Qj), and

F j
k = F j

CT, where F j
CT and Qj are given on the next page with

j = 1, 2, 3, ω1 = −5/30, ω2 = −3/30, and ω3 = 3/30. The

parameters are T = 1s and R = 1250I m2. All results are

over 1000 Monte Carlo (MC) runs and are expressed in terms

of the discrete time k (i.e., multiples of T ).

Consider two cases of the model-set selection problem with

parameters given in Table IV. The true acceleration a for Case

1 changes from [−6,−6]′ to [6, 6]′ with step length [0.5, 0.5]′,
and the true turn rate ω for Case 2 changes from −6/30 to

6/30 with step length 0.5/30. The filter is initialized by x̂0 ∼
N (x0, P0). We set the error probability constraints α = β =
0.01, x0 = [8000 m, 25 m/s, 8000 m, 200 m/s]′ for Case

1 [14], and x0 = [8000 m, 600 m/s, 8000 m, 600 m/s]′ for

Case 2 [15]. In Case 2 the radius of the turn rt = 18000
√
2
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m and its turn rate ωt = 1/30 rad/s.

Table IV PARAMETERS OF ALL EXAMPLES

Set for hypothesis H0 Set for hypothesis H1 Range of true a and ω

Case 1 M0 = {CA (a = [−5,−5]
′
), M1 = {CA (a = [5, 5]

′
), a from [−6,−6]′ to [6, 6]′

CA (a = [−3,−3]
′
)} CA (a = [3, 3]

′
)}

Case 2 M0 = {CT (ω = −5/30), M1 = {CT (ω = 3/30), ω from −6/30 to 6/30

CT (ω = −3/30)} CA (a = [−100, 100]
′
)}

As pointed out in [15], BMA can be viewed as a generaliza-

tion of EMA, and they have practical equivalence. The models

in Case 1 differ only in parameters and their weighted sum is

meaningful, so only the RM-EMA is considered for Case 1. In

Case 2 the models have different structures, and the RM-EMA

can not handle it, so only the RM-BMA is considered.

As is clear from Figure 2 and Figure 3, and not surpris-

ingly, under the error probability requirements, the expected

sample size of MMHT-RM (MMHT-EMA or MMHT-BMA)

is smaller than MMHT-MSL’s. Second, the simulation results

confirm the (asymptotic) efficiency of the SPRT based and

2-SPRT based MMHT methods whether using the MSL or

RM. Third, the RM approach lead to the decision which is

the closest-to-truth one from the probability of rejecting H0

(which is defined in Table IV). We can see that the more

likely model set has a higher probability to be accepted.

Finally, the proposed RM approach addresses the challenges

stated in Section II, and thus it is an effective method for

multi-distribution detection problems, especially for the mis-

specified case.

V. CONCLUSION

This paper makes contributions to the multi-distribution

detection problems when mis-specification exists. The MMHT

approach formulates this problem as one of special binary

composite hypothesis testing. To overcome the inappropriate

dominating problem of MSL based MMHT methods, a novel

and integrated approach based on the adaptive representative

model has been proposed in a general setting. Two specific

RM methods with model-set adaptation have been derived

to convert each composite hypothesis to a simple one, i.e.,

RM-EMA (for the models differently only in parameters)

and RM-BMA (for the models with different parameters or

structures). Through the proposed RM approach, an MM

system is convert to a single model (although adaptive), and

thus some challenges (e.g., composite, nondisjoint, and mis-

specified hypothesis sets) in MMHT techniques for the MDD

problem can be circumvented.

Several scenarios for the model-set selection problem in-

volving the models with different parameters and structures

have been simulated to compare MMHT-RM with MMHT-

MSL. Simulation results demonstrate that MMHT-RM can

address the inappropriate dominating problem in the MMHT-

MSL methods and it can be expected to make a good decision.
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
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(b) Probability of rejecting H0 (see Table IV)

Figure 2: Performance comparison between MMHT-MSL and MMHT-EMA for Case 1
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Figure 3: Performance comparison between MMHT-MSL and MMHT-BMA for Case 2

In summary, the proposed RM based MMHT method is

general for MDD problems and also computationally feasible.

Moreover, it is conceptually simple, generally applicable,

easily implementable, and significantly superior to the existing

methods.
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